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Abstract

The ability to automatically segment an image into distinct regions is a critical aspect in many visual processing
applications. Because inaccuracies often exist in automatic segmentation, manual segmentation is necessary in some
application domains to correct mistakes, such as required in the reconstruction of neuronal processes from microscopic
images. The goal of the automated segmentation tool is traditionally to produce the highest-quality segmentation, where
quality is measured by the similarity to actual ground truth, so as to minimize the volume of manual correction necessary.
Manual correction is generally orders-of-magnitude more time consuming than automated segmentation, often making
handling large images intractable. Therefore, we propose a more relevant goal: minimizing the turn-around time of
automated/manual segmentation while attaining a level of similarity with ground truth. It is not always necessary to inspect
every aspect of an image to generate a useful segmentation. As such, we propose a strategy to guide manual segmentation
to the most uncertain parts of segmentation. Our contributions include 1) a probabilistic measure that evaluates
segmentation without ground truth and 2) a methodology that leverages these probabilistic measures to significantly
reduce manual correction while maintaining segmentation quality.
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Introduction

The proper segmentation of an image can facilitate analysis

useful in many applications. In this paper, we will focus on the

reconstruction of neural connectivity from electronic microscope

(EM) images as the primary driver application for our approach.

To discern the neural connectivity, an EM image is segmented

into different bodies and those portions are linked to each other in

a manner that is consistent with boundaries visible in the image to

form reconstructed neurites. Because of the large volume of image

data, tens of thousands of images are typical, automatic

segmentation is employed. However, because small errors in the

segmentation can result in large topological errors, manual

inspection of the entire volume is necessary to correct any errors

[1].

Manual segmentation poses many difficulties. First, segmenta-

tion itself is an inexact operation. Conceptually, there are often

many ways to segment an image that similarly trained experts may

disagree upon. Because of this, there is an inherent ambiguity in

even the so-called, ground-truth segmentation. The authors in

[2,3] describe a similarity metric that incorporates this uncertainty

among different ground truths. Second, results rely on the

inspection of the entire image volume, even if automatic

segmentation is used as the starting point. This need to look at

every pixel forms a lower bound on the reconstruction effort, even

if no errors are discovered or corrected.

In this paper, we consider the goal of segmentation as one that

simultaneously produces something close to ground truth while

minimizing the time for manual verification. Typically, manual

verification turn-around time is characterized as a function of

errors needed to be corrected, i.e., nuisance metric. However, we

introduce a different formulation of the work required in

segmentation to account for other factors such as the percentage

of image volume that needs to be examined. In this manner, we

explicitly formulate a goal metric allowing a graceful tradeoff

between the quality of the segmentation and the amount of work

required to manually verify/correct the segmentation. In general,

many applications do not require 100% accuracy. In [1], the dense

reconstruction of neural connectivity facilitates the classification of

cell types and ease of synaptic tracing. Small topological errors in

this domain will likely not interfere with either objective and in

practice many such errors are explicitly accepted in past

methodology.

To facilitate such a system that trades off accuracy and turn-

around time, we propose several contributions. First, we introduce

a segmentation methodology that decomposes the problem of

image segmentation to a series of graph manipulations where each

node represents a set of image voxels and the edge strength

represents the connectivity between nodes [4,5]. We refer to such

a graph as a probabilistic segmentation graph. The system shares

conceptual similarities to that proposed in [4] with the important

difference that the edge strengths are not reduced to yes/no
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decisions. The connectivity rather indicates the probabilistic

certainty of nodes being connected.

We introduce similarity metrics to evaluate the quality of the

segmentation without the presence of ground truth. Typically,

ground truth is useful to evaluate the effectiveness of a

segmentation algorithm. Because a priori ground truth is not

generally available for real applications, we introduce a novel self-

referential similarity metric that uses the probabilistic segmenta-

tion graph as its primary input. In this manner, we provide a

number that shows how certain we are that the segmentation is

correct. This is used as a guide for manual correction so that

uncertain parts of the segmentation are examined first. More

importantly, when enough parts are examined this certainty

reaches a level where the manual correction can be safely

terminated. We show results where more than 98% of manual

correction is avoided while maintaining an acceptable level of

accuracy. This motivation is illustrated in Figure 1 that shows how

the quality of segmentation varies as a function of manual effort

(image taken from the Drosophila/fly Medulla). When manual effort

is not focused on the most important aspect of the image,

segmentation improvements occur slowly. We introduce a

prioritization that behaves more closely to the ideal scenario of

achieving the most improvement with the smallest amount of

work.

We first discuss previous efforts in automatic segmentation,

similarity metrics, and some background in our target application

of neuronal reconstruction. Then we introduce our optimization

objective and probabilistic graph. Next, we propose probabilistic

measures for assessing the quality of this segmentation and ways to

use these measures to guide manual correction. Finally, we present

results that indicate the ability of our approach to reduce the time

of manual correction.

Background

This section briefly surveys the relevant segmentation strategies

that we leverage in this work. In addition, we explain how the

quality of the segmentation is assessed using different similarity

metrics. Finally, this section explains the domain considered in our

experiments: neuronal reconstruction.

1 Hierarchical Image Segmentation and Analysis
The goal of image segmentation as shown in Figure 2 is to start

with an image and automatically segment it into its relevant

components. Our initial segmentation strategy most closely follows

[4]. Using a boundary classifier such as Ilastik [6], each pixel in the

image is classified to be either boundary or not boundary. This

produces a boundary map. From this boundary map, a watershed

algorithm is performed so that connected non-boundary pixels

form basins called watershed regions or superpixels. (For the

remainder of the paper, we will generally refer to any 2/3D

watershed region as a superpixel.) These superpixels are consid-

ered atomic elements that will be the building blocks for the final

segmentation. A Region Adjacency Graph (RAG) can be extracted

from the watershed where the nodes are superpixels and an edge

between superpixels indicates adjacency. The superpixels can be

merged together in a process called agglomeration. Without

ground truth, the agglomeration routine usually deploys some

heuristic to determine when to stop. One straightforward strategy

involves using the mean boundary value between two superpixels

as the criterion for determining whether a merger should be

performed or not. In [4], the authors describe an approach where

the edges between the superpixels in the RAG are classified into a

true edge or a false edge. A false edge indicates an edge that can be

removed.

The quality of the segmentation algorithm is determined by

measuring its similarity to ground truth. In this paper, we

primarily use the Rand Index as described in [7,2,3]. There are

other similarity measures, such as warping error [8], which are

likewise effective in measuring similarity. We chose the Rand

Index primarily because of its conceptual simplicity, linear-time

computation, and because it is a foundation for the algorithms

introduced later. (The straightforward implementation of the

Rand index takes quadratic time. This algorithm is reduced to

linear complexity by assigning each pixel in both images to a

unique bin determined by the segmentation partition it belongs to.

Pair-wise similarity is determined by simply determining the

cardinality of disagreements of image A compared to image B’s

partitions and image B compared to image A’s partitions.) In the

following paragraphs, a brief description of the Rand Index (RI)

[7] is provided.

Figure 1. Tradeoff between effort and quality of segmentation. The quality of reconstruction is shown as a function of the reconstruction
effort. Randomly finding places to verify leads to slow improvements in segmentation quality.
doi:10.1371/journal.pone.0044448.g001
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The Rand index is a measure of the pairs of pixels that agree in

a segmentation partition between the segmentation being assessed

and ground truth. More formally the Rand index is given by the

following formula:

RI~

D(PA(x1)~PA(x2)) ^ (PG (x1)~PG(x2))DzD(PA(x1)=PA(x2)) ^ (PG(x1)=PG (x2))Dð Þ
n
2

� �
PA(x) and PG(x) are functions that respectively indicate which

partition in image A being analyzed and ground truth G that a

pixel, x, belongs. For example, PA(X1) = PA(X2) means that pixel

X1 and X2 are in the same partition in image A. n is the number of

pixels in the image. If a pixel is in two different partitions or in the

same partition in both images, the index increases. The absolute

value indicates a summation over all pixel pairs in the image.

The Rand index is limited in usefulness because it is not

normalized. A random segmentation compared to ground truth

will receive different Rand index values depending on the

granularity of the segments in the ground truth. There is also a

tendency for images with several small segments to receive a very

high Rand index even for a bad segmentation. The adjusted Rand

index (ARI) [9] is defined as follows:

ARI~
(PA(x1)~PA(x2)) ^ (PG(x1)~PG(x2))j j{Expected

MaxIndex{Expected
ð2Þ

Where MaxIndex and Expected are normalization factors defined as

follows:

MaxIndex~
PA(x1)~PA(x2)j jz PG(x1)~PG(x2)j j

2
ð3Þ

Expected~
DPA(x1)~PA(x2)DDPG(x1)~PG(x2)D

n

2

� � ð4Þ

MaxIndex represents the average granularity between the segmen-

tations of the ground truth and the comparison image A. This gives

the maximum possible similarity between image segmentations.

Expected represents an average correspondence between image

segmentations. The resulting ARI is normalized so the maximum

value is 1 (or 100%) and the expected score given by comparing

two random partitions is 0.

2 EM Reconstruction
After automatically segmenting an image, there will often be

discrepancies with the ground truth. When discrepancies occur,

some applications may require manual verification and correction

of the segmentation. In this section, we explore the application of

reconstructing neuronal cell shapes from electron microscope

(EM) images. Reconstructing neurons in EM data is an important

aspect of determining neural connectivity. More motivation for

this application can be found in [1].

We will briefly describe the procedure in [1] that is used to

motivate the methodology introduced in this paper. First, a small

specimen is prepared and sliced into thin sections. These slices are

imaged one at a time using an electron microscope. The resulting

EM images are transformed and aligned to form an anisotropic

image volume. It is anisotropic since the resolution of EM is

typically much higher than the thickness of the images slices, even

though they are sliced as thinly as possible. (Typical values are

4 nm/pixel in X and Y, and 50 nm in Z). 2D segmentation and

agglomeration are performed on each section and these segments

are aligned to form a 3D reconstructed body. These reconstruc-

tions typically are small subsets of the entire neuron and must be

merged together manually. As reported in [1], reconstructions of

small parts of a fly (Drosophila) optic system can take several

Figure 2. Segmentation workflow. The workflow consists of boundary prediction and agglomeration including automatic and manual effort.
doi:10.1371/journal.pone.0044448.g002

(1)
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months. It is our hope that the techniques here will significantly

reduce this manual reconstruction bottleneck.

Optimizing Segmentation Turn-Around Time
In this section, we introduce an optimization criterion to

motivate the algorithms in this paper. The goal is to minimize

segmentation turnaround time while maintaining a level of

similarity with the accepted ground truth. We define the following

objective:

min W ~aDXseg(image)DzbDXcorr(seg(Xseg(image)))Dz

cNver(seg(Xseg(image)))

S(seg(Xcorr(seg(Xseg(image)))),groundtruth)wthreshold

ð5Þ

where the variables W refers to work/turnaround time, threshold is

minimum quality for the final segmentation, and seg refers to a

function whose input is a set of segmentation operations, Xseg, and

output is a segmentation. S(seg(Xcorr(seg(Xseg(image)))), groundtruth) is

the similarity of the final segmentation to ground truth.

Conceptually, S can be the Rand index, warping error, or any

appropriate metric for evaluating the quality of the segmentation.

In this work, variants of the Rand index will be used.

a, b, and c represent weighting terms. |Xseg(image)| refers to the

number of operations needed to perform automatic segmentation,

where a is a small constant due to computing speed. In addition,

because a|Xseg(image)| is generally substantially smaller than

manual segmentation (and compute resources tend to be relatively

inexpensive), we can drop this term from the formulation.

Xcorr(seg(Xseg(image))) refers to the set of operations required to

manipulate/correct an incorrect segmentation. b|Xcorr(seg(Xseg(-

image)))| corresponds to the nuisance metric which indicates the

amount of work that someone needs to correct a segmentation.

For the sake of simplicity, our model assumes that Xcorr is

composed of identically weighted operations. We will later explain

how this is a valid assumption. Nver(seg(Xseg(image))) is a function of

the volume of image data and reflects the amount visual inspection

performed (without modification).

We now motivate an even simpler formulation where |Xcorr|

and Nver are combined into one term. To verify the correctness of

an image, the neighborhood around each pixel is examined to

check whether a neighboring pixel is a member of the same

segmentation, or, similarly, whether any pixel constitutes a

boundary. This operation is simplified greatly when pixels are

combined into atomic superpixels, where a boundary between two

superpixels can be viewed as a single edge. The manual evaluation

of such an image can now be formulated as a set of yes/no

questions: for each pair of adjacent pixels/superpixels, are they

connected? In the worst-case scenario where all the pixels/

superpixels are disconnected, the number of questions posed

would be equal to the number of edges. When connections exist,

this number can be much smaller due to transitive inference. Our

new objective is:

min W~ D(seg(Xseg(image)))
�� ��

S(seg(D(seg(Xseg(image)))),groundtruth)wthreshold
ð6Þ

where D now represents the set of decisions performed on the

initial automatic segmentation. In other words, work is now

defined as the number of these decisions. The quality of the

resulting segmentation increases monotonically as more decisions

are made.

A major assumption of the above formulation is that the manual

segmentation can be decomposed into a set of equally hard yes/no

decisions. We have observed in previous EM reconstruction efforts

that this is essentially true.

Decisions involving boundaries with sufficient evidence or size

are equally simple to make. However, the last 1–2 percent of small

processes in the segmentation is difficult to manually correct due to

the limits of EM resolution. Intuitively, this suggests that above a

certain threshold of boundary evidence, the difficulty of deciding

how to correct part of segmentation is constant for a given expert

and image type.

In the following sections, we will propose algorithms for finding

the optimal D, Dopt, which satisfies this formula. In addition, we

will introduce a similarity measure that does not depend on

ground truth that is generally not available.

Segmentation Uncertainty

Agglomeration requires the merger of adjacent superpixels. This

can be done automatically or manually. In this section, we expose

the uncertainty involved with agglomeration. The infrastructure

discussed in this section is used in the next section, where we

introduce a measure to effectively exploit uncertainty.

1 Probabilistic Segmentation Graph
After a watershed is created from an image, we create a Region

Adjacency Graph (RAG) as defined in Section 2, which indicates

the adjacency between superpixels. We then determine a weight

for each edge in the RAG. This weight is determined by

calculating several features (such as minimum edge pixel value,

mean boundary, edge size, etc [4]). Each edge is classified as either

true or false using a random forest classifier, as in [4]. Unlike [4],

we do not directly use the true/false classification to label the edge,

rather, we use the uncertainty in the prediction to be an edge

weight. In practice, we can use any classification algorithm that

can annotate a probability of an edge being a true edge.

The resulting RAG with probabilistic edge weights constitutes a

probabilistic segmentation graph. We make some assumptions about the

segmentation graph. 1) Each edge probability is taken as being

independent evidence. 2) The size of the edge boundary (used as a

feature) implicitly influences the edge probability through the

classification. As a result, small faces between adjacent superpixels

will probably lead to higher uncertainty. However, the impact of

deciding which superpixels should be merged or not depends on

both confidence and the size of the superpixel.

The approaches outlined in this paper rely on, to some degree,

the quality of the segmentation graph. If the probabilities returned

by the edge classification greatly differ from actual ground truth,

our estimates and algorithms will be off. In our experiments, we

show some results to suggest that the quality of the segmentation

graph does significantly impact prediction. We also show that our

current methods show considerable improvement over random

prioritization. Since the uncertainties produced by the random

forest classification are out-of-bag and random forests behave

reasonably well in the presence of small variations in input, we

believe the uncertainty on the training volume to be a reasonable

representation of the actual accuracy exhibited on the test volume.

Without any further infrastructure, the probabilistic segmenta-

tion graph can be used to analyze the quality of segmentation and

provide an ordering for manual reconstruction. When agglomer-

ating superpixels automatically, it is not straightforward to know

when to stop merging superpixels together. The probabilistic

segmentation graph can indicate whether an edge should or

should not be removed. If no manual verification is possible, an

Minimizing Manual Neuronal Reconstruction Time
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agglomeration algorithm might use a threshold of 50% on the

edge probability, so that edges with probability greater than 50%

(indicating confidence in connectivity) are removed. Alternatively,

if manual reconstruction is performed, the segmentation might be

conservatively refined so that only edges with connection

probability greater than 90%, for example, are eliminated. In a

similar manner, this probability can indicate which edges should

be examined for decisions during manual reconstruction. Potential

prioritization strategies involve ignoring edges with edge proba-

bilities above and below a certain threshold. For example, the

remaining edges might be ordered so that the most uncertain

edges are examined first, so that the segmentation quality can be

improved quickly.

However, edge probabilities do not indicate which decisions

made during manual reconstruction are most topologically

significant. Consider Figure 3a where a connection between two

small superpixels could be examined before a more certain

connection between larger superpixels. In the next two sections,

we will introduce new measures for determining which edge is

more important to examine first. In addition, local edge

probability can be misleading when agglomerating superpixels.

In Figure 3b, there are two superpixels connected by another

superpixel, b, which acts as a bridge. Both edges connected to b

indicate a connection with probability greater than 50%. If the

agglomeration algorithm eliminates one edge, the other edge

might also be eliminated since it is also greater than 50%.

However, the initial watershed indicates that the probability that a

and c are connected is less than 50%. In this manner, it is possible

for large topological errors to occur after agglomeration.

Therefore, it is important to consider how likely two superpixels

are connected globally without only examining the local connec-

tions. We explain the strategy to compute this information in the

following. This global connectivity will then be leveraged in the

next section.

2 Pair-wise Connection Strength
To enable a more global assessment of connectivity, we

compute connection strength between every pair of superpixels

in the probabilistic segmentation graph. For instance, if the edge

probability between a and b is 5%, the connection strength can be

much greater if there is another path through the graph with a

higher connection strength. Therefore, to find the absolute

connection strength between a and b, we must compute the

connection probability for every path between a and b. Computing

this connection probability is daunting for two reasons: 1) for n

superpixels there are n2 pairs and 2) there can be an exponential

number of paths between two superpixels.

To greatly simplify this calculation, we approximate the

connection between two superpixels by examining the strongest

connection path between two nodes. With this simplification,

Dijkstra’s algorithm [10] can be applied. The algorithm described

below finds the shortest path from a source superpixel A to all

other nodes in the RAG:

1. Start with a given superpixel, A, where all other superpixels are

connected with 0% probability.

2. Add A to the heap and set the current connection strength to 1.

3. Grab the most connected superpixel on the heap and set the

current connection strength

a. Add to pair-wise connection table with connection

strength

b. Examine all edges connected to the superpixel

c. For each unexamined superpixel, multiply the edge

connection probability to the current connection strength

and add to the heap

This variant of Dijkstra’s algorithm, as with the classic version

the Dijkstra’s algorithm [10], has worst-case complexity of

Figure 3. Challenges in using edge probability to determine agglomeration strategies and manual reconstruction priority. (a)
Examining edges solely based on edge probability is not always ideal since it does not account of the size of the connected superpixels. (b) a and c
should not be connected even though both local connections a–b and b–c indicate a connection.
doi:10.1371/journal.pone.0044448.g003
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O(|E|+|V|log|V|) using a Fibonacci heap, and is quite fast for

any given node pair However, computing the distance between all

N‘2 pairs of nodes in the RAG can still be prohibitive (especially if

a more inclusive shortest path algorithm is used – see below).

However, the vast majority of potential connections are so

improbable we do not need to compute their exact value.

Therefore we establish a connection threshold that determines

when the algorithm terminates. For the graphs we use here, this

limits exploration of the graph to only a few nearest neighbors,

with a concomitant decrease in execution time. For large graphs, it

is also possible to split the problem up into small overlapping

regions since it is unlikely that a superpixel would be connected to

something distant (measured in terms of the number of edges

between the superpixels).

If more accuracy is desired, more paths can be considered

between any two superpixels to provide a better estimate of affinity

between the nodes. In our experiments, we have noticed that

considering more paths does not greatly impact our results

(especially given the extra computation required) and consider

only the highest probability path. For completeness, we briefly

discuss computing connection strength using multiple paths in

Appendix A of Text S1.

GPR – Evaluating Segmentation in the Presence of
Uncertainty

From the pair-wise connection probability, we compute a novel

measure called the Estimated Generalized Probabilistic
Rand Index (GPR). This measure quantifies the certainty in the

probabilistic segmentation graph, where the set of pair-wise

connection probabilities encodes a superposition of several

different segmentation configurations with varying degrees of

likelihood. GPR extends the Rand index to the situation where no

ground truth is available to compare the segmentation against.

The estimated GPR introduced in the paper has some

similarities to the Normalized Probabilistic Rand Index (NPR)

introduced in [3]. In that work, the authors devise NPR to

facilitate comparisons between different segmentations and ground

truth from multiple sources. However, the target domain of our

work is very different. In this paper, we derive a measure to

quantify the uncertainty in a segmentation graph, in addition to

having the capability of evaluating specific segmentation algo-

rithms. While the probabilistic segmentation graph can be

considered a limiting case of generalizing multiple ground truths,

the mechanism for determining these probabilities is very different

(a result of automatic edge classification). Our approach affords us

the luxury of evaluating our algorithms with minimal ground truth

allowing us to guide segmentation refinement, the dominant time

bottleneck in connectomic reconstruction. On a more technical

note, the normalization of GPR is defined to closely follow the

Adjusted Rand Index [9], so that we can account for differences in

segment granularity between images. We introduce a novel and

efficient formulation to enable this normalization in the following

paragraphs.

We now define the unnormalized GPR (U-GPR) in a manner

analogous to Rand index in Equation 1:

U{GPR~P
i,j

Pr(PRAG(xi)~PRAG(xj))
2zPr(PRAG(xi)=PRAG(xj))

2

n

2

 ! ð7Þ

Xi refers to individual pixels; however, the formulation above can

be simplified by summing over each superpixel (weighting by the

size of the superpixel accordingly). The summations will now be

explicitly shown (unlike in Equation 1) to make the formulations

clearer. Pr() refers to the probability of connection between the two

superpixels. PRAG(xi) indicates the partition id that xi belongs to

with respect to the probabilistic segmentation graph or RAG. The

formulation can be considered as a comparison of the probabilistic

Figure 4. Manual verification methodology. GPR is used to both prioritize edges to be examined and terminate the manual work.
doi:10.1371/journal.pone.0044448.g004
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segmentation graph to itself. If there is complete certainty, then

there will be absolute agreement in connectivity.

As with the Rand index, the U-GPR, by itself, does not give

meaningful results since the value returned varies depending on

the granularity of the underlying ground truth (in this case

embedded in the probability). For images with hundreds of distinct

neurites, the U-GPR will likely be close to 1. GPR is the

normalized version of U-GPR and is analogous to the adjusted

Rand index in Equation 2:

GPR~

P
i,j

Pr(PRAG(xi)~PRAG(xj))
2{Expected

ExpectedMax{Expected
ð8Þ

ExpectedMax corresponds to the expected granularity of the

probabilistic segmentation graph. This can be visualized as

randomly picking two configurations of the segmentation graph

and computing the maximum correspondence possible as done for

the adjusted Rand index. When this is averaged over all the

possible segmentation configurations in the probabilistic segmen-

tation graph (weighted by their likelihood), the result is simply the

expected granularity of the graph given by:

ExpectedMax~
X

i,j

Pr(PRAG(x1)~PRAG(x2))~

X
i

DSi D
2

� �
z
X

i,j

DS1DDS2DPr(Si~Sj)
ð9Þ

Where S and |S| correspond to a superpixel and the number of

pixels in the superpixel respectively. This normalization deter-

mines the expected granularity of segmentation and that provides

an estimate of the highest likely correspondence to the uncertainty

graph. Notice that the expected granularity of the probabilistic

segmentation graph consists of the granularity of the superpixels

added with the number of pairs between two superpixels

multiplied by the likelihood that they are connected. Because the

pair-wise connection probability calculated already account (or

approximate) for dependencies between the superpixels, each

superpixel pair can be analyzed separately. Referring back to

Equation 8, Expected can be defined as:

Expected~
ExpectedMax2

n

2

� � ð10Þ

Computing the GPR requires only a linear traversal of the pair-

wise connections between the superpixels. In the worst case, there

is quadratic number of connections in the RAG; however, in

practice, the number of pair-wise connections is significantly

smaller as per the discussion in the previous section. The algorithm

used to calculate pair-wise probability dominates the complexity of

GPR. More details of this computation can be found on publically

available software at https://github.com/qedq/NeuroProof.

The GPR metric can be viewed as a measure of the normalized

deviation in the probabilistic segmentation graph. When the

deviation is small, there is high confidence in the underlying

probabilistic graph. The ‘ground truth’ is the underlying edge

probabilities and the derived pair-wise connection probabilities. As

we will show in the experiments, the fidelity of the GPR depends

on the quality of the edge classification. While the GPR measures

the confidence in the probabilistic graph, and similarly, the edge

classification, the graph is not a specific segmentation but rather a

superposition of several possible configurations. GPR can be

extended to compare a concrete agglomeration to the probabilistic

graph. We include this formulation in Appendix B of Text S1. We

will use this result to estimate the quality of an agglomeration

algorithm. Ideally, the GPR would be a tight lower bound to the

actual adjusted Rand index if ground truth were available.

Manual Correction in the Presence of Uncertainty

After an automatic segmentation is produced, manual verifica-

tion is necessary to assure correctness. However, manual

verification requires the visual inspection of the entire segmenta-

tion. While a quality automatic segmentation reduces the number

of corrections required, the turn-around time will reach a lower

limit unless at least some parts of segmentation can be ignored. A

straightforward strategy would be to ignore all edges with a certain

level of certainty. Such a strategy does not properly distinguish

Figure 5. EM data samples used in the experiments.
doi:10.1371/journal.pone.0044448.g005
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between a segmentation where every edge is slightly above the

threshold or where only half are. We introduce a manual

verification strategy that uses a global budget, reflected by the

GPR, as a means of substantially reducing the amount of work,

and therefore turn-around time, required.

We define this objective in a similar manner to Equation 6:

MinW~ D(seg)j j

GPR(seg)wthreshold
ð11Þ

where the goal is to minimize the number of decisions needed to

achieve a certain GPR value. We achieve this goal using a

methodology outlined in Figure 4. Starting from the probabilistic

segmentation graph in the top left of the figure (edge probabilities

not shown), the GPR is calculated. We then check if the GPR is

greater than some cut-off threshold, such as 90%. If it is, the

segmentation is considered to be at a reasonable level of

confidence. If not, we find an edge in the RAG that is both

uncertain and whose resolution could lead to the largest

topological change, which we will discuss in detail in the next

paragraph. We then assign a person to manually check whether

the edge is true or false. This information is then used to update

the probability for that edge in the graph by setting it to 1 (in the

case of a connection) or 0 (in the case of a true edge) and the GPR

can be recalculated. In practice, when a false edge is removed and

two superpixels are merged, we could recompute the edge

probabilities to adjacent superpixels where the boundary evidence

has changed to further improve the GPR estimate. We avoid this

additional step in this work.

Finding the edge with the largest topological impact is done in a

greedy manner by choosing the most impactful edge. (Greedy order

is not necessarily optimal. Finding an optimal order is complicated

by runtime complexity and the indeterminism introduced by

human interaction that prevents an absolute knowledge of how

future decisions will be made.) We determine the most impactful

edge with this measure:

Impact a,bð Þ~DPr(PRAG(a)~PRAG(b))(GPRYes(seg){GPR(seg))Dz

DPr(PRAG(a)=PRAG(b))(GPRNo(seg){GPR(seg))D
ð12Þ

This measures the impact of the edge between adjacent regions a

and b (for generality, the region could consist of multiple merged

superpixels). The first absolute value term is the change in GPR

that occurs if a manual decision yields a false edge result (or yes

decision). The likelihood of this change is given by the edge

probability between the two regions (determined by the initial edge

classification). The edge probability between two superpixels (or

regions when the edge probability is recomputed after a merger)

determines the likelihood since an actual decision is restricted to

the local edge between the regions. It is not based on some

measure of global connectivity. The second absolute value term

determines the change in GPR due to a true edge (or no decision).

If a given edge has very high or very low edge connection

probability, this impact will be very small since either outcome will

only minimally impact the GPR. Notice that this measure finds the

absolute expected change in GPR without requiring the change to

be an increase. This emphasizes decisions that make large

topological changes to the graph independent of whether the

immediate result is an increase in graph certainty.

Computing the impact measure in Equation 12 can also be

time-consuming since it requires calculating the GPR resulting

from a yes and no decision on each edge. In addition, because the

pair-wise probabilities are updated after every manual decision,

this ranking will change for each iteration in Figure 4. To avoid

this prohibitive runtime cost, we update the impact ranking after

several decisions are made with the hope that the ranking does not

change significantly. Furthermore, we heuristically ignore edges

whose local edge probability is above and below a certain

threshold (compared to the other edges). In practice, this ranking

can be continually updated with a background process improving

the ranking while manual decisions are made.

Using the GPR as a guide and cut-off mechanism is a proxy for

comparing the segmentation to a ground truth using a measure

such as the adjusted Rand index. An initial segmentation with a

low GPR might not give a score similar to an actual Rand index.

However, the low score indicates inherent ambiguity in the

classifier and reveals, through our impact measure, what parts of

the segmentation need to be examined. As more confidence is

added to probabilistic segmentation graph through manual

decisions, the GPR slowly reduces into a more concrete

representation of the ground truth. As we show in the next

section, the number of decisions required to greatly improve the

GPR number is a small fraction of the total number in the RAG.

Materials and Methods

In our experiments, we consider EM image samples from the

Drosophila Larva, Drosophila Medulla, and Drosophila Lobula,

obtained from Janelia Farm Research Campus, and mammalian

Retina, courtesy of Dr. Winfried Denk (sample prepared in [11]),

as shown in Figure 5. Training is performed on one 2D EM slice

from each sample. Training entails boundary labeling and edge

classification, which is determined by comparing to a ground truth

segmentation of the sample. Testing is performed on another 2D

EM slice from each sample located near the training slice.

Table 1. Reducing reconstruction effort through prioritization.

Percent Effort to Proofread 90%

EM Image Initial GPR GPR Priority Random Priority Edge Probability Priority

Larva 48% 25% 78% 41%

Medulla 35% 46% 95% 67%

Lobula 41% 38% 83% 53%

Retina 84% 2% 37% 27%

GPR priority uses GPR to rank the most significant edges. Random priority orders the edges randomly. Edge probability priority ranks the edges based on the
connection probability determined by the classifier.
doi:10.1371/journal.pone.0044448.t001
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A boundary classifier is created from each image in the training

set using Ilastik [6]. One classifier is applied to both training and

testing images for each sample to produce a boundary map from

which a watershed is created. In practice, each sample trained in

Ilastik only requires a few hundred ground-truth label points to

produce a high-quality boundary classification. Ground truth is

then created from the watershed volume. Although our method-

ology assumes each superpixel in the watershed is atomic, it is

possible for the ground truth to violate this assumption. This

happens infrequently and does not appreciably affect the results.

Using the training image ground truth, we classify the edges

between the superpixels. We derive the following features over the

boundary probability map to be used in edge classification: 1)

mean pixel value, 2) minimum boundary intensity, 3) maximum

boundary intensity, 4) size of both nodes, 5) difference of average

intensity between the interior of the nodes, 6) multiplication of

both nodes’ difference in average intensity between the edge and

interior, 7) max between the two nodes’ edge intensity normalized

Figure 6. Adjusted Rand Index as a function of manual reconstruction effort. Effort is determined by the number of yes/no decisions. GPR
Priority dominates Random Priority in each sample.
doi:10.1371/journal.pone.0044448.g006

Figure 7. Shows the predictiveness of GPR similarity measure compared to the actual adjusted Rand index computed with an
expert-created ground truth. The y-axis gives similarity as a function of different agglomeration thresholds. The agglomeration is based on the
mean intensity of the pixel-wise boundary prediction.
doi:10.1371/journal.pone.0044448.g007
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by their size, and 8) the size of the edge. The classification is

computed using random forest as in the work in [4] using the

default settings in VIGRA (http://hci.iwr.uni-heidelberg.de/

vigra/).The classification is then applied to the test image

watersheds to produce connection probabilities on each superpixel

edge. This is the starting point for the following experiments.

Empirical Results

We now demonstrate the effectiveness of GPR to guide manual

segmentation refinement. First, we show that GPR can be used as

a cut-off mechanism to determine when manual reconstruction

can safely terminate. Second, we explore how the GPR relates to

the actual adjusted Rand index against ground truth. Finally, we

Figure 8. Show the predictiveness of GPR similarity measure compared to the actual adjusted Rand index. Unlike Figure 7, the
agglomeration is based on the edge connection probability, not the mean intensity of the boundary.
doi:10.1371/journal.pone.0044448.g008
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examine various performance details of our methodology in terms

of the runtime, consistency, and quality.

1 Reducing Manual Reconstruction Effort
Table 1 reveals the reduction of manual reconstruction effort

(number of edges examined) to achieve a threshold of segmenta-

tion quality without examining some of the edges. The second

column gives the GPR before any manual examination of the

edges. The next three columns, GPR, Random, and Edge

Probability priority are three strategies for ordering the edges to

achieve the segmentation threshold fastest. For the GPR and

Random priority, the threshold is reached when the GPR is

.90%. For the Edge Probability priority, the threshold is a

reached when all edges with connection confidence 10–90% are

examined. For this experiment, the manual reconstruction is

simulated by software that labels each edge yes/no based on the

ground truth.

The table shows that the GPR Priority consistently considers

fewer edges to reach its threshold as compared to the Random and

Edge Probability Priority. The great improvement compared to

Random Priority indicates that even with the same stopping

metric, the decision order can greatly effect how quickly the GPR

increases. The Edge Probability Priority indicates there are more

edges with connection certainties between 10 and 90 percent than

edges needed to reach a 90% GPR using the GPR Priority. The

increase in work required for Edge Probability suggests that many

edges whose connection are not topologically significant enough to

be examined using the GPR Priority. In particular, note that in the

Retina only 2% of the edges needed to be manually verified to

achieve 90% confidence in the segmentation, compared to 27%

needed for Edge Probability Priority.

2 Accuracy of GPR Metric
Manual reconstruction generates yes/no decisions on uncertain

edges. When this information is re-incorporated in the connection

graph, we run an agglomeration algorithm that speculatively

merges superpixels to ideally generate a segmentation closer to

ground truth. Future work will involve directly using the GPR

metric to guide agglomeration. For these experiments, we perform

agglomeration by merging superpixels with the largest mean

boundary value agglomeration. We report the highest adjusted

Rand index for all mean boundary thresholds. In Table 1, the

highest adjusted Rand index for all samples after the manual

decisions with every priority strategy was greater than 90%. This

indicates, at least for these examples, that the predicted similarity

Figure 9. The poor predictiveness of GPR similarity measure compared to the actual adjusted Rand index. While the agglomeration is
based on mean intensity as in Figure 7, the quality of the edge probabilities is degraded by only using mean intensity as a feature for computing
edge probability, thus leading to poor correspondence between GPR and the adjusted Rand index.
doi:10.1371/journal.pone.0044448.g009

Figure 10. The quality of GPR approximation as a function of the number of paths considered. Note that small magnitude difference
between one path and the maximum number of paths.
doi:10.1371/journal.pone.0044448.g010
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with the ground truth is a lower bound of the actual similarity with

ground truth.

Figure 6 shows that GPR-based priority achieves better

similarity with ground truth with fewer decisions (with respect to

mean boundary agglomeration) than random priority. Edge

probability and GPR-based priority perform similarly on the

Larva and Lobula but the GPR-based priority greatly outperforms

edge probability for the Medulla. In other words, these results

indicate that by using GPR-based priority, greater similarity with

ground truth can be achieved with similar amount of effort to

other techniques. Data on the mammalian retina is excluded from

the analysis since the initial similarity with ground truth is very

high (.95%).

We also show the quality of GPR by noting how well it predicts

the similarity of a segmentation to ground truth. While automat-

ically agglomerating superpixels, the best stopping threshold is

unclear without ground truth. We compare the probabilistic graph

to each segmentation with the anticipation that the highest degree

of correspondence will occur at a threshold where the actual

similarity to ground truth is greatest. While it is possible to

selectively choose edges that correspond with ground truth but

refute the initial evidence, we hope that the combination of a

quality probabilistic segmentation graph and an agglomeration

algorithm that is not an explicit adversary of the measure leads to

good prediction of similarity. Figure 7 shows how well the GPR-

based metric models the actual adjusted Rand index for different

mean agglomeration thresholds. Threshold 0 means that every

superpixel boundary pixel is considered a connection. Threshold

256 means that every superpixels boundary pixel is not a

connection. Notice that in the Medulla the GPR-based prediction

correspondence closely to the actual ground truth suggesting an

optimal agglomeration threshold around 100 (compared to the

straightforward 128 stopping point for mean agglomeration). The

threshold predicted for the Larva and Lobula is not quite optimal,

but the predicted curve tracks closely with the actual curve and is

an under-estimate.

In Figure 8, we show the effectiveness of predicting the

similarity of a segmentation to ground truth using a different

agglomeration strategy. This agglomeration eliminates all edges

with X% certainty of not being an edge. As with the previous

example, our similarity measure predicts actual similarity in the

Medulla closely. In addition, the 50% threshold does not yield

close to the optimal solution, whereas the GPR-based similarity

measure is much closer to optimal.

3 Performance Details of GPR
This section will first discuss the impact of the edge classification

on the quality of the GPR result. We will then discuss the

implication of considering more than one path in the GPR

calculation.

The GPR analysis is dependent on the probability generated by

the random forest. We first examined the sensitivity of the GPR

metric on small changes to the probabilistic segmentation graph.

Performing 5 different edge classifications obtained from different

random starting seeds on the Larva sample, we see only a small

variation in the GPR and GPR-based effort numbers reported in

Table 1 of less than 0.5% and 1% respectively.

In future work, we want to develop a measure to indicate

whether the probabilities obtained through classification are good.

However, we have observed that choosing a very simple set of edge

features for the random forest classifier leads to poor results. We

experimented with a simple classification routine that only

considered the mean value along an edge. With this classification,

the larva failed to achieve an adjusted Rand index of 90% despite

reaching GPR of 90% suggesting that many edges were incorrectly

being ignored due to an incorrect high degree of certainty. The

impact of this classifier is more profound when examining the

predictiveness of the GPR measure of the adjusted Rand index. In

Figure 7, the optimal threshold was accurately determined for the

Medulla sample using GPR. With the simpler classifier, the quality

of the prediction is seriously degraded as evidenced in Figure 9.

Calculating the GPR for each sample takes on the order of

seconds using only one path, for the sample images, as it is just a

variation of Dijkstra’s algorithm. The speed of this computation

makes it a more attractive approach than the extra bookkeeping

required for analyzing multiple paths. One would expect that for a

segmentation that has few false splits that one path would be

sufficient since there would be fewer connecting paths. Is this the

case for a more fragmented watershed? In Figure 10, we calculate

the GPR using different numbers of paths for two versions of the

Retina sample (chosen due to its small size): the original watershed

and a more fragmented version of the watershed. In both cases,

the results indicate that the GPR changes a small amount when

using a more accurate algorithm of more paths. For this example,

when the watershed is less fragmented, the GPR approximation is

an over-estimate and quickly converges to the actual GPR. When

the watershed is more fragmented, the GPR approximation in an

under-estimate and also quickly converges to the actual GPR.

Furthermore, the magnitude of one-path approximation error is

larger for the sample with the fine-granularity watershed.

However, even in this case the change in GPR is only about

7%. If the one-path approximation becomes more accurate when

it is higher, each refinement of the probabilistic segmentation

graph due a manual decision should produce a more accurate

approximation.

Discussion

In this work, we examine applications in image segmentation

where the quality of segmentation requires manual verification.

This is particularly prevalent in domains involving classification of

neuronal cells and connectomics from EM data. Reconstructing

these circuits, even with an initial automatic segmentation, can

take months to years. In this domain, we introduce a strategy to

minimize the amount of manual reconstruction effort while

achieving a high quality in the refined segmentation. To this

end, we propose a novel similarity metric, GPR, which determines

segmentation quality from probabilities rather than requiring

initial ground truth. By prioritizing which part of the image to

manually verify first using GPR, we show that our segmentation

converges to a high-level of similarity much more quickly than

alternative prioritization strategies. Furthermore, we achieve

significant reduction in manual reconstruction effort to achieve a

high-level of segmentation quality. Finally, the GPR measure can

be deployed as a standalone mechanism to evaluate the quality of

a segmentation algorithm in the absence of a gold standard.

There are many opportunities to further improve our approach.

Currently, our boundary and edge classification strive to minimize

pixel/edge-wise error. Developing classifiers that minimize prob-

abilistic uncertainty could lead to a better probabilistic segmen-

tation graph and, consequently, a more accurate GPR. As

observed in Figure 9, inadequate training data or a simple feature

set can lead to less edge certainty and/or reduced generalizability,

which can degrade estimation. Furthermore, an agglomeration

could be created that directly leverages GPR, which should

outperform mean boundary-based agglomeration. Finally, we are

still exploring optimal ways of using GPR to generate a more

optimal manual decision order.

Minimizing Manual Neuronal Reconstruction Time

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e44448



Supporting Information

Text S1 Appendices. These appendices go into more detail on

algorithms supporting the main theory in this paper. (Appendix A)

Describes how to compute the affinity between two nodes with

multiple, non-independent paths. (Appendix B) Describes how to

compute the similarity between a segmentation and a probabilistic

segmentation graph.
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