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Abstract: The quality of automatic metabolite profiling in NMR datasets from complex matrices
can be affected by the numerous sources of variability. These sources, as well as the presence of
multiple low-intensity signals, cause uncertainty in the metabolite signal parameters. Lineshape
fitting approaches often produce suboptimal resolutions to adapt them in a complex spectrum
lineshape. As a result, the use of software tools for automatic profiling tends to be restricted to
specific biological matrices and/or sample preparation protocols to obtain reliable results. However,
the analysis and modelling of the signal parameters collected during initial iteration can be further
optimized to reduce uncertainty by generating narrow and accurate predictions of the expected
signal parameters. In this study, we show that, thanks to the predictions generated, better profiling
quality indicators can be outputted, and the performance of automatic profiling can be maximized.
Our proposed workflow can learn and model the sample properties; therefore, restrictions in the
biological matrix, or sample preparation protocol, and limitations of lineshape fitting approaches can
be overcome.

Keywords: automatic profiling; NMR; machine learning

1. Introduction

Metabolomic studies characterize the low-molecular-weight components (<1 kDa),
called metabolites, in biofluids or cell/tissue extracts [1,2]. The quantification of the metabo-
lite levels in nuclear magnetic resonance (NMR) spectra is called metabolite profiling [3–5].
This process requires the measurement of the area below an NMR peak, or signal, that
belongs to a metabolite, either by the integration or deconvolution of the signals. In the case
of 1D 1H-NMR spectra, the most encountered peak shapes can be fitted with a Gaussian
and/or a Lorentzian function; they are modelled by a combination of three signal parame-
ters: intensity, chemical shift, and half bandwidth [3,6,7]. The fitting process outputs the
combination of parameter values that fits the spectrum lineshape with the lowest error;
then, the signal is quantified, integrating the area below the peak shape described by
those values.

Several tools have recently been developed, which can automatically estimate signal
parameter values [8–10]. These tools are usually based on optimization solvers (e.g., the
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Levenberg–Marquardt algorithm) which evaluate the search space shaped by the range
of possible values for each parameter to find an optimal way to represent the replication
of the spectrum lineshape with the lowest fitting error [11,12]. Adjustment of the range
of values for each parameter will maximize the possibilities of convergence towards an
optimal solution, decreasing the possibility of falling into a local minimum.

However, automatic approaches are often compromised by the multiple sources of
variability which can be observed in a complex matrix (e.g., macromolecule-based baseline
issues, chemical shift, and half-bandwidth variability caused by pH, ionic strength or
temperature fluctuations, and signal overlap [13]) (Figure 1a). Therefore, such variability
forces the model towards wider ranges of the possible parameter, increasing the chances of
falling into a suboptimal solution (Figure 1b) [14]. In addition, the presence of low-intensity
signals adjacent to the targeted peak of interest adds complexity to the spectrum lineshape,
which can cause suboptimal fittings. Consequently, optimization algorithms may not find
the actual parameter values for the signals of interest. As a result, automatic profiling
tools sometimes provide wrong metabolite identifications (an important bottleneck in
metabolomics [15]) and can perform suboptimal quantifications. To reduce the generation
of suboptimal fitting outcomes, several bioinformatic solutions tackle this by reducing the
search space during the optimization, for example, the use of a chemical shape indicator
[CSI] [16,17], the simultaneous lineshape fitting of all the signals that belong to the same
metabolite, or chemical shifts modelling using multiple sources of information, among other
methods [18,19]. One should note that such strategies are dependent on prior information.
Therefore, they cannot handle unidentified metabolites and might not be robust to small
variations in the expected lineshape. For example, simultaneous lineshape fitting is prone
to chemical shift variability errors, (please refer to the Supplementary Materials in Section 1
to see additional examples of observed variations, both in the expected half bandwidth
and in the expected intensity ratios of metabolite signals in a complex matrix, e.g., see
human urine). Consequently, to ensure optimal performance, some tools can only operate
optimally in specific matrices or require restrictive procedures in the sample preparation
step and/or spectrum acquisition. Such matrix- and protocol-based restrictions can hinder
the high-throughput NMR analysis or, worse, can introduce false positives and negatives
assignments that can eventually get published in the metabolomics literature when such
restrictions are not strictly followed [20,21].
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Figure 1. The figure shows a difficult signal fitting where the chemical shift variability present in
this signal (a) forces lineshape fitting algorithms to consider a wide range (light grey rectangle) of
possible chemical shift values during the fitting (b).

To obtain the best possible quality outcome of lineshape fitting during NMR automatic
profiling, one must limit the ranges of possible parameter values, and also adjust the values
depending on the biological matrices and sample properties. NMR signals that originated
from atoms with similar chemical environments show a similar response to the fluctuations
in the sample conditions. As a result, there are extensive multicollinearity in their half-
bandwidth and chemical shift values [18]. This property or feature can be exploited to
identify signal parameters that do not behave as expected by such multicollinearity. In
addition, accurate spectrum-specific predictions with prediction intervals (PIs) for each
signal parameter can be estimated according to the information from the collinear signals.
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Such PIs may be used to create very narrow and accurate value ranges to be used during
the lineshape fitting in a subsequent profiling iteration. It is very well known that the
intensities of the signals from the same metabolite are correlated. Therefore, the expected
signal intensity of different peaks that belong to the same metabolite can be predicted from
the estimated known intensities. Consequently, it is not essential to perform the lineshape
fitting of all the metabolite signals belonging to the same metabolite simultaneously.

One approach would be to use a prediction protocol that will take advantage of
the multicollinearity to limit the ranges of possible parameter values. Machine learning
approaches have previously been used in biological applications, mostly for classification.
Usually, a training dataset is used to generate the model and an evaluation dataset is used
to estimate its performance. Often, different machine learning algorithms are compared in
analysis with the aim to select the most suitable method in different applications, such as
blood cells [22,23], brain tissue [24,25], or cancer samples [26,27]. In contrast to the existing
approaches, we have used machine learning algorithms not to classify or to obtain a result,
but to adjust the input parameters (both starting estimates and tolerance) of our lineshape
fitting routines. Thus, our proposed prediction workflow is not dependent on prior matrix,
protocol, or metabolite information as this information is already encoded in the signal
parameter values collected during the first profiling iteration. Therefore, it should be able
to better handle an unidentified or atypical metabolite more robustly and is less affected
by the properties of the sample matrix- or protocol-based complexities. In addition, we
calculate the distance between the predicted parameter values and the ones collected in
the initial profiling iteration. The quantified distance may be a better profiling quality
indicator than some of those currently in use (e.g., fitting error) and can help to further
minimize annotation errors and suboptimal quantifications. To our knowledge, there has
been no attempt to provide an open-source flexible automatic signal parameter prediction
that maximizes the quality of the information provided by NMR profiling tools. In this
study, we show how the proposed workflow helps maximize the quality of metabolite
profiling in a 1D 1H-NMR dataset.

2. Results
2.1. H-NMR Metabolite Profiling and Prediction Pipeline of Expected Signal Parameter Values

Automatic metabolic profiling of two 1D 1H-NMR datasets was performed using
the rDolphin R package [28]. rDolphin is an open-source automatic tool for profiling 1D
NMR spectra in a study that collects and exports the signal parameter values for analysis.
After NMR spectra profiling, the collected and outputted signal parameters were used to
predict, in each signal from different samples, the expected spectrum-specific values (with
their PIs) according to the information present and extracted from other spectrum signals
(Figure 2a). These predictions can be used in future steps to evaluate the results and to help
with identifying inaccurate signal chemical shifts, to improve quantifications or signal and
peak fitting.

To make the spectrum-specific prediction of a signal parameter, the values of the
parameter extracted from other signals were collected and used to create a dataset of
predictors (Figure 2(a1)).

To enhance the quality of the parameter extracted from the dataset of predictors, three
common machine learning processes were applied successively (Figure 2(a2)):

• A data cleaning step to minimize the influence of inaccurate feature values (possibly
due to wrong annotation or suboptimal quantification) during the prediction phase.

• A feature selection step, using the “Boruta” R package, to filter non-relevant features
to reduce the noise in the dataset.

• Finally, we included a further feature engineering step [29], adding the first five PCs
of the signal parameter dataset to the predictor dataset. The first PC components
explain most of the system variance and relegate noise-related variance to later PCs.
Consequently, the possible high noise-related variance in the dataset is minimized,
and, hence, prediction performance is enhanced.
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Figure 2. (a) In this example, signal parameter prediction pipeline was used to optimize chemical
shift value of a signal (table in the upper right). In order to enhance the chemical shifts of the signal
in question, a training dataset was built, excluding the signal to predict (a,1). The dataset is then
cleaned, filtered, and enriched to maximize its prediction quality (a,2). The information from the first
iteration was used to train a prediction model. During training, bootstrap resampling was used to
avoid overfitting inaccurate values (a,3). For each predicted chemical shift, the distribution of the
predictions made during the bootstrap iterations was built and the median value and 95% PIs of
this distribution were outputted (a,4). After optimization, the predicted value and PIs are shown in
the bottom right table; in this case, an inaccurate chemical shift, shaded in red, was clearly outside
the 95% PIs, shaded in green. (b) shows the distributions of chemical shift predictions generated.
These distributions were very narrow and could help generate even narrower chemical shift ranges
(dark grey rectangle) than those originally needed without machine learning prediction (light grey
rectangle) (c).
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After the enrichment steps, a random forest-based prediction model was trained
using the enriched dataset of the predictors and used to predict the signal parameter
(Figure 2(a3)). The random forest algorithm is an ensemble learning method, based on the
bootstrap aggregation (also called bagging) of decision trees [30,31]. The random forest
algorithm solves the main drawback of bagging trees (the tendency to create similar decision
trees with highly correlated predictions) by adding randomness to the tree construction
process. The random forest models show that the possible nonlinear factors have a higher
performance match during the exploratory data analysis phase, and a lower variance
during the prediction step. In addition, 0.632 bootstrap resampling, a particular bootstrap
method that substantially outperforms other alternatives and is a standard option provided
by the “caret” R package, was applied to minimize overfitting [32,33] As stated before, we
used machine learning algorithms to adjust the input parameters (both starting estimates
and tolerance) of rDolphin lineshape fitting routines. As we are interested in the method
being applicable to different datasets, without the need to retune the parameters of the
machine learning algorithms, we mostly used the default algorithm options without any
further optimization.

Then, for each spectrum, the distribution which best represents the predictions gener-
ated during the bootstrap (see Figure 2(a4)) was estimated. The spectrum-specific predicted
value in the signal parameter analyzed is the median value (with 95% PIs) of this distribu-
tion. In the example (Figure 2), one of the signals (shaded in red) was initially not within
the calculated prediction interval, but after steps two and three returned to the accepted
range (shaded in green).

In case the predictions of parameters were not spectrum-specific, the best possible
prediction of the parameter consisted of the median value, found in all spectra having a
95% PIs with 95% central distribution of values, being used. For each signal and parameter,
the ranges of the 95% PIs of the spectrum-specific and the spectrum-unspecific predictions
were compared to evaluate the results (see Figure 2b).

In addition, a quality indicator, based on the difference between the predicted signal
parameters and the parameters obtained during profiling, was calculated. For each one of
the signal parameters with available information, the absolute difference was normalized
to 0–1. Subsequently, the values obtained for each signal of each spectrum were averaged.
As a result, a 0–1 “anomaly score” was generated to show signal parameter anomaly
during profiling.

2.2. Using Accurate Predicted Values with Narrow PIs That Can Be Used to Maximize
Profiling Performance

The predictions generated (such as the one shown in Figure 2c) have narrow spectrum-
specific PIs for all the analyzed signal parameters. For the fecal extract dataset, the median
range in the spectrum-specific 95% PIs of the chemical shift was 4.7 × 10−4 ppm. This
value is lower than the bucket width (6 × 10−4 ppm) and is a reduction of 75.8% in the
median range in the spectrum-unspecific 95% PIs (1.9 × 10−3 ppm) (Figure 3, top left).
In the serum dataset, the median range in the spectrum-specific 95% PIs calculated was
1.9 × 10−4 ppm, a reduction of 87.1% in the median range in the spectrum-unspecific 95%
PIs (1.4 × 10−3 ppm) (Figure 3, bottom left).

For half bandwidth, the median range in the spectrum-specific 95% PIs was calculated
in the fecal extract dataset at 8.6% of the predicted half bandwidth. This value is a reduction
of 58.4% from the median range in the spectrum-unspecific 95% PIs (20.6% of the predicted
half bandwidth) (Figure 3, top middle). In the serum dataset, the median range in the
spectrum-specific 95% PIs calculated was 4.0% of the predicted half bandwidth, a reduction
of 80.3% in the median range from the spectrum-unspecific 95% PIs (20.1% of the predicted
half bandwidth) (Figure 3, bottom middle).

For intensity, the median range in the spectrum-specific 95% PIs was calculated in the
fecal extract dataset at 22.2% of the predicted intensity. This value is a reduction of 92.8%
in the median range in the spectrum-unspecific 95% PIs (309.9% of the predicted intensity)
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(Figure 3, top right). In the serum dataset, the median range in the spectrum-specific 95%
PIs calculated was 6.9% of the predicted intensity, a reduction of 93.3% in the median range
in the spectrum-unspecific 95% PIs (102.9% of the predicted intensity) (Figure 3, bottom
right). Apart from showing narrow PIs, the predictions also helped to maximize profiling
performance when they were used in a new profiling iteration.
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The quality of quantifications was ranked using both indicators, the fitting error
and the calculated anomaly score. To parameterize its performance (as quality indicators
for quantification), this ranking was then used to gradually replace the worst-ranked
quantification in each metabolite by the equivalent one obtained in the new higher-quality
profiling iteration.

The anomaly score showed an effectiveness at ranking the quantifications which might
be further optimized. In comparison with the anomaly score, the fitting error showed a
general lower effectiveness to detect improvable quantifications.

3. Discussion

The results of the study showed that predicting signal parameter values with the
information collected during the initial profiling iteration can help with maximizing the
profiling performance. The only limitation is that the number of samples in the set must
be high enough (around 30 samples minimum) to ensure the proper functioning of the
prediction routines. The improvement achieved in this study has been demonstrated in
complex biologically matrices and not in spike-in samples which cannot fully reproduce the
usual complexity of metabolomics studies (biofluids). Our study also presents a new quality
indicator based on the information generated by our machine-learning-based pipeline. This
new quality indicator, called the anomaly score, may provide higher-quality information to
improve the detection of suboptimal quantifications and, additionally, enables detection
of wrong annotations (a source of false positives and negatives) that can be found in
the metabolomics literature [15,20,21]. In addition, our machine-learning-based pipeline
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(contained in the “signparpred” function in the rDolphin R package) can be exported to
other profiling tools.

The great advantage of our approach is in the generation of predictions specific to
each signal and each spectrum with accurate and narrow PIs. The high-quality predictions
ensure that the algorithmic minimization of the signal fitting error prevents the pervasive
problem of falling into wrong local minima when numerous parameter values are optimized
(dozens of parameters in the case of complex lineshape fittings). Other approaches try to
handle this problem by creating narrow value ranges prior to the profiling. However, when
dealing with complex matrices, they may have limitations such as:

• Strict sample preparation requirements or spectrum acquisition limitations. Caveats:
difficulty of changing established protocols in laboratories, less flexibility to adapt the
spectrum acquisition process to the properties of samples.

• Half bandwidth and chemical shift prediction. Caveats: broadening of TSP signal
mediated by protein, nonlinear patterns in certain signals in complex matrices, inability
to handle unidentified metabolites [13].

• Simultaneous lineshape fitting of all the signals of a same metabolite. Caveats: vari-
ability in the relative intensity of signals depending on the matrix, challenges when
the signal chemical shift is not predicted exactly, inability to handle unidentified
metabolites.

• Algorithm-based signal alignment. Caveats: signal distortion, wrong annotations [34,35].

In contrast to the above, our approach is not dependent on restrictions or extensive
previous information about signal properties; it only needs a flexible first profiling iteration
that collects information for accurately characterizing the properties of the metabolite
signals profiled. In addition, the information obtained about the signal parameters of
unidentified metabolites can be studied to find annotated signals with similar patterns and,
consequently, create valuable inferences about their structure and properties.

The maximization of the profiling quality shown in the results was not associated with
a correlated decrease in the signal fitting error (the standard quality indicator outputted by
NMR profiling tools). The mean fitting error of quantifications increased by 0.26% in the
fecal extract dataset and decreased by 0.02% in the serum dataset. This suggests a ceiling in
the performance of lineshape fitting approaches when matrices are complex. For example,
they may give little importance to the lower intensity signals in the region analyzed, or
not fully monitor the high-intensity baseline present, e.g., in the serum. The adjustment
information parameterizes the properties of the entire spectral region, considering not
only the signals from the metabolites of interest, but also the baseline and the signals from
the rest of the metabolites. On the contrary, the information generated by our prediction
channel parameterizes the properties of the metabolites, minimizing the influence of the
rest of the signals. As a result, the new information generated by this workflow leads
to next-generation quality indicators which can, for example, be used to monitor wrong
annotations due to the associated chemical shift signal that is not consistent with the
information present from the whole dataset. Such quality control means have the potential
ability to filter out suboptimal quantifications more effectively. Consequently, it may be
possible to profile many more metabolites without decreasing the profiling quality.

The variability of chemical shift is one of the biggest challenges to progress in the
automatic profiling of NMR datasets. The PIs achieved during the prediction phase tend
to be even lower than the bucket-width chosen. Thanks to the accurate chemical shift
prediction, signals can be correctly assigned and the lineshape fitting performance max-
imized. The fact that chemical shift can be accurately predicted in fecal extract, a matrix
with considerable variability in chemical shift and signal overlap, suggests that accurately
predicting chemical shift in human urine is achievable. This matrix is of great interest to
metabolomics. However, its complexity makes robust automatic profiling a real challenge,
and it is recommended that some tools are not used for this type of matrix. A promising
technique for maximizing the quality of NMR profiling in human urine through chemical
shift prediction has recently been published [18]. Nonetheless, this technique cannot be
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exported to NMR profiling tools because of licensing restrictions, and it requires strict
sample preparation and spectrum acquisition criteria. The machine learning pipeline we
propose, when tuned to the special conditions of human urine, may be a generalizable
solution to the signal misalignment problem in human urine (please refer to Section 2 of
the Supplementary Materials to see the current results for a human urine dataset).

4. Materials and Methods
4.1. Datasets

For this study, two datasets were analyzed: a dataset of 146 fecal extract samples
from a medical treatment study, and a dataset of 212 serum samples from a nutritional
intervention study.

For the fecal extract dataset, study participants collected fecal samples at home in
sterile fecal collection tubes the same day as, or the day before, their medical appointment
and following the standard operating procedures. If required, samples were stored at 4 ◦C
overnight. The fecal samples were stored at −80 ◦C until processing; details are available
in Noguera-Julian, M. et al. [36]. For NMR processing, 70–100 mg of dry fecal matter
and 1000 mL of 0.05 M PBS buffer in D2O were placed in a 2 mL Eppendorf tube. The
sample was vortexed and sonicated, until complete homogenization, and the mixture was
centrifuged (15,000 rpm around 20,000× g, 25 min, 4 ◦C). For NMR measurement, 600 mL
of the upper phase were placed into a 5 mm NMR tube and 1H NMR spectra were recorded
at 300 K on an Avance III 500 spectrometer (Bruker®, Ettlingen, Germany) operating at a
proton frequency of 500.20 MHz using a 5 mm PBBO gradient probe. One-dimensional
1H were acquired using nuclear Overhauser effect spectroscopy. A NOESY pulse program
with presaturation was used to suppress the residual water peak, with a mixing time set
at 100 ms. The spectral width was 10 kHz (20 ppm), and a total of 256 transients were
collected into 64 k data points for each 1H spectrum. After zero filling and exponential line
broadening (0.5 Hz), spectra were Fourier transformed, manually phased, and baseline
corrected using TopSpin software (version 3.2, Bruker BioSpin GmbH, Ettlingen, Germany).
Bucketing (6 × 10−4 ppm as bucket width) was used, while spectra referenced to TSP
at 0 ppm. For the normalization of data, probabilistic quotient normalization [37] was
performed through rDolphin [28].

For the serum dataset, sample collection details are available in Hernández-Alonso, P.
et al. [38]. For each sample, 300 µL aliquots were mixed with 300 µL of sodium phosphate
buffer. The Carr–Purcell–Meiboom–Gill (CPMG) pulse program, with the sample kept at
37 ◦C, and presaturation was used to suppress the residual water peak. Datasets were
acquired on a Bruker 600 MHz Spectrometer (Bruker BioSpin, GmbH, Ettlingen, Germany)
equipped with an Avance III console and a TCI CryoProbe Prodigy. The CPMG data were
preprocessed on the NMR console (using TopSpin 3.2, Bruker BioSpin, GmbH, Ettlingen,
Germany) using zero filling, exponential line broadening (0.5 Hz), and phase correction.
Bucketing (6 × 10−4 ppm as bucket width) and referencing to the anomer of glucose at
5.233 ppm were performed through rDolphin [28].

4.2. 1H-NMR Metabolite Profiling Workflow

Automatic metabolic profiling was performed using the rDolphin R package [28].
rDolphin is an open-source tool that collects the values of the signal parameters and exports
them for analysis. rDolphin performs a lineshape-fitting-based profiling which adjusts
spectral regions to a sum of Lorentzian signals, each one of which is characterized by
three parameters: intensity, chemical shift, and half bandwidth. The fitting process is
performed using the Levenberg-Marquardt nonlinear least-squares algorithm with lower
and upper bounds provided by the “minpack.lm” R package [39]. The values of the
algorithm parameters used during lineshape fitting are available in the Supplementary
Materials. To avoid falling into local minima, the fitting optimization is iterated a number
of times, proportional to the spectrum lineshape complexity. The initial estimated signal
parameters are randomly initialized for each iteration. In the next step, the algorithm selects
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the resolution with the least lineshape fitting error. After lineshape fitting, the areas below
the signals are quantified, a specific fitting error for each signal is estimated (procedure
explained in Section 4 of the Supplementary Materials), and finally the optimized signal
parameter values are collected.

A graphical user interface (GUI) enables the users to select the metabolites target for
fitting and the profiling method (area integration, signal deconvolution) for each of the
signals is then applied. The GUI can be used to supervise the optimal value ranges for each
chemical shift and to change the half bandwidth that can be used during lineshape fitting.

The first dataset 80 signals (66 through deconvolution and 14 through integration)
from 52 different metabolites were profiled. For the second dataset, 48 signals (43 fitted
through deconvolution and 5 through integration) from 33 different metabolites were
profiled. In addition, the signal parameter values and fitting errors were collected for both
dataset profiling iterations.

5. Conclusions

Most existing NMR profiling tools require some means of restrictions for data analysis
parameters to ensure that their workflows can be widely applied to different datasets (e.g.,
different matrix, different sample preparation method, or the choice for acquisition). In this
study, we have demonstrated that, by using previously collected data from the dataset, a
more generalized approach to NMR profiling is possible. The nature of multicollinearity
that is presented in the collected information enables a narrow prediction of the expected
signal parameters, a robust property against the noise present in spectra. As a result,
the quality of the signal parameter values derived during the profiling method can be
maximized and, therefore, enhance the quality of automatic metabolite profiling.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12040283/s1: Figure S1: variability in the expected intensity,
Figure S2: variability in the expected half bandwidths of signals, and Figure S3: spectrum-specific
prediction intervals. This is in addition to the values of algorithm parameters used during lineshape
fitting, the signal-specific calculations of the lineshape fitting error method, and the analysis of the
coefficient of variation after profiling improvement.
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