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Abstract

Human Leukocyte Antigen (HLA) is a type of molecule residing on the surfaces of most human cells and exerts an essential role in
the immune system responding to the invasive items. The T cell antigen receptors may recognize the HLA-peptide complexes on
the surfaces of cancer cells and destroy these cancer cells through toxic T lymphocytes. The computational determination of HLA-
binding peptides will facilitate the rapid development of cancer immunotherapies. This study hypothesized that the natural language
processing-encoded peptide features may be further enriched by another deep neural network. The hypothesis was tested with the
Bi-directional Long Short-Term Memory-extracted features from the pretrained Protein Bidirectional Encoder Representations from
Transformers-encoded features of the class I HLA (HLA-I)-binding peptides. The experimental data showed that our proposed HLAB
feature engineering algorithm outperformed the existing ones in detecting the HLA-I-binding peptides. The extensive evaluation data
show that the proposed HLAB algorithm outperforms all the seven existing studies on predicting the peptides binding to the HLA-
A∗01:01 allele in AUC and achieves the best average AUC values on the six out of the seven k-mers (k=8,9,...,14, respectively represent
the prediction task of a polypeptide consisting of k amino acids) except for the 9-mer prediction tasks. The source code and the
fine-tuned feature extraction models are available at http://www.healthinformaticslab.org/supp/resources.php.
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Introduction
Peptide is a type of compound formed by the connections
of amino acids through peptide bonds and involved in
various biological activities [1]. Endogenous peptides are
mostly produced by proteolysis within cells and play
important biological functions in anti-tumor, immune
regulation and endocrine regulation through the interac-
tions with membrane receptors and proteins [2].

T cells in the human immune system may be activated
by the target-specific binding of antigenic peptides to
the class I and class II Major Histocompatibility Com-
plex (MHC) molecules [3]. Human MHC is also called
the Human Leukocyte Antigen (HLA). The main function
of the class I HLA (HLA-I) molecules is to present the

bound peptides to the T cell antigen receptors on the
surfaces of T cells ( [4]. These HLA-I-binding peptides
are usually derived from the degraded products of self-
or non-self-proteins. The self-produced proteins rarely
cause immune responses, while the non-self-peptides
can stimulate radical responses of the human immune
system. The interaction between the HLA molecules and
peptides initiates the subsequent recognition of these
foreign peptides by the T cells and controls the size and
effectiveness of the immune response. Therefore, a major
goal of developing vaccines and immunotherapies is to
accurately predict the binding of peptides to the HLA
molecules.
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There are two main classes of computational studies
for the HLA-I-binding peptide prediction problem, i.e.
score function and deep learning. (i) The quantitative
structure–activity relationship has been widely used
to score the class I MHC-/epitope-binding affinity [5].
The traditional sequence scoring functions were also
utilized to complement the binding affinity predictions,
and various scoring functions were proposed, e.g.
amino acid frequency scores [6], WebLogo-based entropy
information [7] and Position-specific scoring matrix [8].
Anthem [9] combines five popular scoring functions
to encode the peptides and used the wrapper feature
selection algorithm to choose a feature subset to train the
AODE classification model [10]. (ii) Deep learning exhibits
powerful capabilities to extract the latent patterns
within the biological sequences. DeepHLApan uses the
stacked BiGRU with an attention module to extract
the sequential patterns within the peptides [11]. Mei
et al. evaluated the performances of 19 HLA-I peptide-
binding prediction tools and conducted a comprehensive
review of the prediction results from the perspectives of
prediction score calculation methods, utilized algorithms
and evaluation strategies [12]. This provides a staged
progress summary of the existing prediction studies of
HLA-I molecules and peptides.

A peptide may be regarded as a life’s language
and its contextual information may need a better
elaboration way. The natural language processing
(NLP) area is rapidly developing recently, and various
powerful algorithms have been proposed to extract the
latent contextual patterns. Ghosh et al. proposed the
contextual version Long Short-Term Memory (LSTM)
for the large-scale NLP prediction tasks [13]. Chapman
et al. also demonstrated that the contextual features
described the clinical text well for the prediction tasks
[14]. Rao et al. established the Tasks Assessing Protein
Embedding pretrained semi-supervised learning tasks
and demonstrated its transferability to the other peptide-
based prediction tasks [15].

This study hypothesized that the deep learning-
based features may be further encoded by deep neural
network for the latent peptide patterns. Bidirectional
Encoder Representations from Transformers (BERT) is
a popular language representation model [16], and it
was further re-tuned with protein sequences such as
the Protein Bidirectional Encoder Representations from
Transformers (ProtBert) [17]. We tested the hypothesis
with the HLA-I-binding prediction framework, HLAB, via
the features extracted by the pretrained ProtBert model
cascaded with Bi-directional Long Short-Term Memory
(BiLSTM). The ProtBert-BiLSTM-extracted features were
then enriched by the Uniform Manifold Approximation
and Projection (UMAP) [18] algorithm. The features were
further refined by feature selection algorithms. The
model trained using the optimized features outper-
formed the existing HLA-I-binding peptide prediction
tools or methods.

Table 1. Dataset summarization; overview of the peptides of
different lengths used for both the training, validating and
independent datasets

Length Training Validating Testing

8 22 643 7 309 7 564
9 360 248 120 175 116 349
10 87 465 29 442 27 126
11 39 423 13 002 11 619
12 16 198 5 431 5 471
13 8 373 2 745 2 818
14 4 672 1 569 1 579

Materials and Methods
Summary of the dataset
The peptide sequences binding with the HLA-I alleles
were retrieved from the study Anthem [9]. Due to the
space limitation, the detailed description may be found
in the Supplementary Materials and Table 1.

The pretrained ProtBert model
BERT is a language representation model trained on a
very large language corpus [16]. It has achieved the new
state-of-the-art results in 11 NLP tasks. BERT’s model
architecture is a multi-layer bidirectional transformer
encoder. Each layer has 12 or 24 encoder blocks for the
BERT-base and BERT-large models, respectively. One layer
consists of a multi-head self-attention sub-layer and a
fully connected feed-forward sub-layer. A residual con-
nection is deployed around each of the two sub-layers,
followed by the layer normalization.

Elnaggar et al. introduced a new NLP model called Prot-
Bert [17], which is obtained via fine-tuning the original
BERT model with the protein sequences from the two
databases, UniRef100 [19] and BFD [20]. The database
UniRef100 is a widely used database of reference pro-
tein sequences, and the database BFD merged all the
protein sequences available in the database UniProt [21]
and the proteins translated from multiple metagenomic
sequencing projects. ProtBert increased the number of
layers to 30 in order to deliver better performances in
the downstream supervised tasks. The authors demon-
strated the advantages of the ProtBert model on three
tasks, i.e. predicting the secondary structure, subcellular
localization and membrane-binding.

This study further tuned the ProtBert model with the
HLA-I-binding peptides in the training datasets before
extracting the sequence features.

Bi-directional Long Short-Term Memory
LSTM is a subtype of recurrent neural network [22]. Its
design characteristics fits the modeling of sequential
data like text and time series. The bi-directional version
LSTM (BiLSTM) shows a better capability in capturing the
text patterns by a combination of forward and backward
LSTMs [23]. BiLSTM has been successfully utilized for
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the predictions of antibacterial and antifungal peptides
[24, 25].

Feature dimension reduction and feature
selection
The dimensionality of the feature space may be reduced
to improve the classification performances of a dataset,
including both dimension reduction [26] and feature
selection [27] algorithms. It is anticipatable that the
removal of irrelevant features will improve the efficien-
cies of both training and predicting tasks.

The dimension reduction algorithm tries to retain the
pairwise distance structure between all the samples
(PCA) [28] or prefers the local distances over the global
ones (t-SNE) [29]. UMAP transforms the feature space
into a new space based on the Riemannian geometry
framework and retains more global structure with faster
running speed against the t-SNE algorithm [30]. UMAP
carries the following advantages compared with the
other dimension reduction algorithms. (i) UMAP captures
both global and local structures, (ii) UMAP receives less
constraints by the sample size of a dataset and (iii)
UMAP performs well in a large dataset even with tens
of thousands of dimensions. So this study used UMAP
to the extracted features for the downstream prediction
tasks. We set the number of dimensions after the UMAP
dimension reduction to 5∼18, and the HLA-I-binding
peptide prediction tasks for different HLA-I alleles were
optimized to different numbers of dimensions. The final
results may be found in the Supplementary Table S2
available online at http://bib.oxfordjournals.org/.

Feature selection has demonstrated its efficacies in
reducing the number of the original features and the
learned latent features in many studies [6]. There are two
main classes of feature selection algorithms, i.e. filters
and wrappers [31]. A filter feature selection algorithm
evaluates the associations of the individual features with
the class labels, while a wrapper evaluates a heuristi-
cally selected feature subset for the classification perfor-
mance. A filter usually runs faster but performs worse
than a wrapper. This study used five feature selection
algorithms, they are T-test, Wilcoxon rank-sum test (W-
test), Random Forest (RF), Recursive Feature Elimina-
tion based on Linear Regression method (LR-RFE) and
Recursive Feature Elimination based on Support Vec-
tor Machine method (SVM-RFE). T-test and W-test rank
the features by the ascendent order of the statistical
P-values. The other three feature selection algorithms
rank the features by their algorithmic default settings.
We chose the percent of the top-ranked features as the
chosen features to build the classification models.

This study sets three values, 0.55/0.75/0.95, for the
feature selection parameter to select features. The exper-
imental data show the necessity of setting this param-
eter. The detailed parameter choices may be found in
Supplementary Table S2 available online at http://bib.
oxfordjournals.org/.

The proposed framework HLAB
This study is carried out in the following steps, as illus-
trated in Figure 1.

First, the latent features are extracted from the input
sequences. Each input vector is a 49-letter residue
sequence, 34 of which are from the HLA and 15 are from
the corresponding peptide. The input HLA-I sequence is
transformed into a pseudo-sequence by the NetMHCPan
algorithm [32]. There is no peptide in the datasets longer
than 15 amino acids. So a peptide sequence is encoded
as a 15-letter sequence. A peptide shorter than 15 is
complemented with the pseudo amino acid ‘X’ to its
end so that a 15-letter sequence is loaded into the input
vector. The HLA pseudo-sequence is concatenated with
the peptide sequence for the next step. The characters
‘[CLS]’ and ‘[SEP]’ are added to the head and end of the
entire concatenated vector according to the requirement
of the BERT model. The input vector is fed into the
ProtBert model and the BiLSTM model for the purpose of
feature extraction. The 49D input sequence is encoded
as a 1536D high-dimensional feature vector.

Second, the dimension of the feature space is reduced
through dimension reduction and feature selection algo-
rithms. We transform the feature space using the UMAP
algorithm and then seek out the top-ranked features by
their individual associations with the class labels using
feature selection algorithms, such as T-test and W-Test.

Third, we establish the classification models using the
chosen features on the training datasets and evaluate
the trained models on the validating datasets. The pre-
diction model with the best prediction performance on
the validating dataset is used for the final prediction of
whether the query testing peptides bind to the model-
specific HLA-I alleles on the testing dataset.

Based on the parameter settings of BERT [16] and
ProtBert [17], we set the learning rate as 5e-5, batch size as
16, dropout rate as 0.1, and the Adam optimizer was used
for the model optimization. And the number of hidden
unites in the BiLSTM layer is 768. The total number of
training epochs is three.

Binary classifiers and their performance metrics
The prediction between each HLA-I allele and its fixed-
length binding peptides was a binary classification
model, as similar as in [9, 32–38]. The input of the binary
classification model is an HLA-peptide pair, and the
output of that is 1 or 0, where 1 means the peptide
will bind to the HLA allele, and 0 means the peptide
will not bind. Seven popular binary classifiers are used
to establish the classification models, including logistic
regression (LR) [39], support vector machine (SVM) [40],
bagging classifier (Bagging) [41], extreme gradient boost
(XGBoost) [42], k-nearest neighbor (KNN) [43], decision
tree (Dtree) [44] and naive bayes (NB) [45].

A binary classifier is evaluated by the following five
performance metrics, i.e. area under the receiver oper-
ating characteristic (ROC) curve (AUC), sensitivity (Sn),
specificity (Sp), accuracy (ACC) and Matthews correlation

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac173#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac173#supplementary-data
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Figure 1. Overview of the proposed framework HLAB. There are the following main modules, including data preprocessing, feature extraction, feature
dimension reduction, feature selection and classification.

coefficient (MCC). The measurements TP and FN are the
numbers of true positives and false negatives. While the
measurements TN and FP represent the numbers of true
negatives and false positives. The metrics Sn and Sp are
defined as Sn = TP/(TP + FN) and Sp = TN/(TN + FP). The
overall accuracy is defined as Acc = (TP + TN)/(TP + FN
+ TN + FP). The correlation coefficient of the predictions
of a binary classifier is defined as MCC = (TP × TN-FP
× FN)/sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN +
FN)), where sqrt(x) calculates the squared root of x. AUC
is a popular parameter-independent metric to describe a
binary classifier.

A classifier is trained using the training dataset and
is evaluated on the validating dataset. The model with
the best AUC value on the validating dataset is tested on
the testing dataset. Unless otherwise specified, the exper-
imental data in the following sections were conducted on
the combined validation dataset of all the alleles and all
the peptide lengths.

Results and Discussion
Evaluation of model hyperparameters
The deep learning models may perform differently with
the different hyperparameter values. We evaluated the
two major hyperparameters Epoch and BatchSize shown
in Figure 2. A smaller loss value suggested a better model
performance. Figure 2A suggested that the model loss did
not linearly change with the different epochs, and the

loss started to increase after Epoch = 3. So the minimum
loss was achieved when Epoch = 3. A similar pattern was
also observed for different values of the hyperparameter
BatchSize. And the minimum loss 0.0891 was achieved
when the BatchSize = 16. The following sections used
Epoch = 3 and BatchSize = 16 as the default values.

Evaluation of the pretrained model weight
parameters
The protein evolution and structural information may
be distilled into the pretrained ProtBert model through
the self-supervised training process, and this section
evaluated the contribution of such information to the
prediction of the HLA-I-binding peptides. We initialized
the ProtBert network with the random weights and
denoted this version of ProtBert as the ProtBert_random
model. We compared the prediction performances
of the pretrained ProtBert and the ProtBert_random
models to extract the sequence features and evaluated
the prediction performances using the softmax layer
for classification. The experimental data, depicted in
Figure 3, showed that the pretrained ProtBert model
outperformed the ProtBert_random model on all the
performance metrics.

So the pretraining process of the ProtBert model under
a large number of the full-length protein sequences is
beneficial for the prediction tasks of the HLA-A-binding
peptides.
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Figure 2. Loss evaluation of the model hyperparameters. The changes of the model loss were evaluated for the different values of the hyperparameters
(A) Epoch and (B) BatchSize. The horizontal axis gave the value choices of the two hyperparameters and the vertical axis gave the loss values.

Figure 3. The effect of the pretrained model weight parameters. ProtBert
is the model starting with the pretrained model weight parameters, and
ProtBert_random is the model initialized with random parameters.

Evaluation of different models based on the
self-attention mechanism
This section evaluated the contribution of the self-
attention mechanism to the overall prediction perfor-
mance. The pretrained ProtBert model was based on
the Transformer architecture with the self-attention
mechanism [17]. The ALBERT model shared the param-
eters between attention layers in the original BERT
model so that the model complexity was significantly
reduced [46]. Both ProtBert and ALBERT utilized the self-
attention mechanism. The two models were used as
the sequence feature encoders and the softmax layer
was used for classification. The experimental data,
depicted in Figure 4, showed that the ProtBert-based
framework outperformed the ALBERT-based model in all
the five performance metrics. So both the self-attention
mechanism and the fine-tuning on the protein data
served as important contributions to the HLA-I-binding
peptide prediction tasks.

Evaluation of the module combinations
Qiao et al. recently proposed a new model BERT-Kcr for
the prediction task of the protein lysine crotonylation
sites [47]. They loaded the features extracted by the
BERT model into different machine learning and deep
learning classifiers. The investigated machine learning

Figure 4. Comparison of the prediction performance of different models
based on the self-attention mechanism. The two models ProtBert and
ALBERT were evaluated. Both models used the self-attention mechanism.
The horizontal axis listed the five investigated performance metrics, i.e.
AUC, Sn, Sp, ACC and MCC. The vertical axis gave the metrics values.

classifiers included SVM, RF and XGBoost, and the
deep learning models included BiLSTM, CNN and fully
connected neural network (FCNN). The 10-fold cross-
validation experiments showed that the BERT model
followed by the BiLSTM network achieved the best AUC
value. The authors recommended the extraction of the
latent features from the peptide sequences by using the
cascaded high-dimensional encoders.

Based on this observation, this study constructed the
feature extraction layer by different cascaded combina-
tions of the network modules for the prediction tasks
of HLA-I-binding peptides. We evaluated the prediction
performances of four different end-to-end module com-
binations, including the ProtBert model alone, the Prot-
Bert cascaded with BiLSTM, the ProtBert model cascaded
with the convolutional neural network (CNN) and the
ProtBert model with BiLSTM and Attention mechanism.
The training set was used for the model training, and the
validation set was used for model evaluation. Figure 5
shows that the best module combination was ProtBert +
BiLSTM. First, an additional module BiLSTM to ProtBert
outperformed the module ProtBert alone with 0. 08%
in AUC. If we replaced BiLSTM with CNN, the module
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Figure 5. Average performances of the combinations of different HLAB
modules on all the HLA-I prediction tasks. The performance metrics are
averaged over all the prediction tasks. The performances are calculated
on the validating dataset.

combination ProtBert + CNN performed even worse than
the ProtBert module alone. The attention layer did not
improve the module combination ProtBert + BiLSTM in
the performance metric AUC.

Based on the ablation experiments and the observa-
tion from the literature, the following sections used the
module combination of ProtBert + BiLSTM.

The necessity of feature dimension reduction
module
This study investigated a total of 360 different HLA-
binding peptide prediction tasks, and the total number
of samples was nearly 890 000. The feature extraction
step used the ProtBert and BiLSTM cascade modules
and generated the feature vector with the dimension
1536. We anticipated that it would be particularly time-
consuming to conduct the model training for the large
datasets with high-dimensional features. We designed
the following experiment to estimate the overall model
training time.

We selected the binding prediction task between HLA-
A∗02:01 and 9-mer peptides as an example dataset.
This prediction task has 23 435 samples. We randomly
selected 1000, 2000, 3000, . . . , 10 000 samples as the sub-
datasets to train the models without using the feature
dimensionality reduction step. The experimental results
are shown in Figure 6. According to the model training
times for the 10 example datasets, we fit the functional
relationship between the size of the dataset and the time
of the model training and used a quadratic polynomial
function to approximate the nonlinear relationship. The
fit function was y = 2.58e−7 ∗ x2 − 3.54e−4 ∗ x + 1.91,
where x and y were the sizes of the dataset and the model
training time in hour, respectively.

Figure 6 shows that the training time increased very
fast as the number of the training sample increased.
We used the fit function to estimate that the total time
required for the model training for all the tasks was about
1382.89 hours, or about 57 days. So we conducted the
feature dimensionality reduction step before the feature
selection step to further reduce the model training time.

Figure 6. The correlation between the training time and the dataset size.
The fit function was illustrated as the curve.

Figure 7. Percent of the times that a feature selection algorithm achieving
the best performances by collaborating with seven classifiers for all the
HLA-I-binding prediction tasks. The seven classifiers are Dtree, Bagging,
XGBoost, NB, SVM, LR and KNN. The five feature selection algorithms, T-
test/W-test/RF/LR-RFE/SVM-RFE, are evaluated.

Performances of different feature selection
algorithms and the rates of the selected features
Figure 7 shows the number of times a feature selection
algorithm achieving the best prediction performances by
collaborating with the seven classifiers on all the HLA-
I-binding prediction tasks. Some prediction tasks may
have more than one feature selection algorithms achiev-
ing the best performance using the same classifier. The
detailed data are provided in the Supplementary Table S2
available online at http://bib.oxfordjournals.org/. T-test
selects the feature subsets with the best classification
performances for >60% of 2121 prediction tasks (1275),
while the second-ranked feature selection algorithm RF
performs the best on only 26.78% (568) of the prediction
tasks. Although T-test performs very well on many of the
HLA-I-binding prediction tasks, the remaining 39.89% of
the prediction tasks rely on the other feature selection
algorithms to find the best feature subsets. So this study
evaluates the five feature selection algorithms using the
training and validating datasets for each prediction task,
and the best feature selection algorithm on the validating
dataset is used on the testing dataset.

We evaluated the impact of the different rates of
the selected features in the feature selection step on
the model performance, as shown in Figure 8. We
selected four prediction tasks as the datasets for this
experiment. In order to ensure the distinguishability and
integrity of the features after the feature selection step,
five values, 0.15/0.35/0.55/0.75/0.95, were evaluated for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac173#supplementary-data
http://bib.oxfordjournals.org/
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Figure 8. Evaluation of the different rates of the selected features for the four subtasks. The evaluation experiments were conducted for the prediction
tasks of (A) HLA-A∗02:01 and 8-mer peptides, (B) HLA-A∗03:01 and 8-mer peptides, (C) HLA-B∗27:09 and 13-mer peptides and (D) HLA-B∗35:01and 13-mer
peptides. The horizontal axis gave the five evaluated values, including 0.15, 0.35, 0.55, 0.75 and 0.95. The vertical axis gave the calculated AUC values of
the experiments.

how they impacted the prediction performances. The
experimental results, depicted in Figure 8, showed that
the AUC values of the values 0.15 and 0.35 achieved
significantly lower AUC values than the other three
values 0.55, 0.75 and 0.95 for all the four prediction tasks.
Furthermore, the four prediction tasks reached the best
AUC values using different rates of the selected features
among the three choices 0.55/0.75/0.95. So this study
used the best choice of the three rates of the selected
features, 0.55/0.75/0.95, for each prediction task.

Classifiers perform differently on different
datasets
The seven classifiers demonstrate different predic-
tion performances on the seven prediction tasks of
the allele HLA-A∗01:01, as shown in Figure 9A. The
detailed data may be found in the Supplementary
Table S3 available online at http://bib.oxfordjournals.
org/. All the classifiers achieve reasonable predic-
tion AUC values ≥ 0.9264 for the seven prediction
tasks of the allele HLA-A∗01:01, as shown in Sup-
plementary Table S3 available online at http://bib.
oxfordjournals.org/. The four classifiers, Bagging/KN-
N/Dtree/NB, tend to be ranked the lowest among the

seven classifiers, as shown in Figure 9A. The remaining
three classifiers, LR/SVM/XGBoost, show comparable
prediction AUC values. All the three classifiers are ranked
the best on some of the seven datasets. Since no classifier
achieves the best AUC value on all the datasets, the
following sections deliver the prediction values on the
testing datasets using the best models of the finally
chosen features evaluated on the validating datasets.

The seven classifiers are further evaluated on all the
HLA-I alleles, as shown in Figure 9B. The classifier LR
achieves the best average AUC ranks on four (8/10/12/13)
out of the seven k-mers of the HLA-I-binding prediction
tasks. While the classifier XGBoost achieves the best AUC
ranks on only two k-mers (9 and 14). But the average
AUC ranks of the two classifiers LR and XGBoost on all
the k-mers of all the HLA-I alleles are 2.9000 and 2.7728,
respectively. Another classifier SVM achieves the overall
average AUC rank 2.9245, which is slightly worse than
those (2.9000 and 2.7728) of the two classifiers LR and
XGBoost.

So the following sections of this study deliver the
best models for the seven k-mers of the HLA-I alle-
les using different feature selection and classification
algorithms.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac173#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac173#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 9. The performance metric AUC values of the seven classifiers on the HLA-I-binding prediction tasks. (A) The rankings of the seven classifiers
on the seven k-mers (k = 8, 9, . . . , 14) of the allele HLA-A∗01:01. (B) The average rankings of the seven classifiers on all the HLA-I alleles. The heatmap
colors red and blue represent the maximum and minimum values of each column, respectively.

Performance evaluation of the FCNN
We compared the model performances of the FCNN
and the machine learning classifiers on the engineered
features in this study, as shown in Figure 10. Five
prediction datasets were chosen for this comparison
experiment. Figure 10 suggests that the fully connected
layer for the deep neural network usually performed
very good prediction performances, while the supervised
machine learning classifiers may deliver better predic-
tion results on the same set of the extracted features
by the deep neural networks. So this study used the
classifier algorithms for the binary classification tasks.

Performance comparison on the testing dataset
of HLA-A∗01:01
Multiple studies have been published for predicting
the peptides binding the HLA-I alleles, which are
compared with the proposed HLAB framework in
this study, as shown in Figure 11. These studies are
Anthem [9], MixMHCpred2.0.2 [33], NetMHCpan4.1 [32],
NetMHCcons1.1 [34], NetMHCstabpan1.0 [35], ACME
[36], MHCSeqNet [37] and DeepSeqPan [38]. A fair
comparison is carried out on the testing dataset using
the HLAB models with the best performances on the

Figure 10. The performance comparison between the FCNN and the
machine learning classifiers. The FCNN used the fully connected layer
to generate the predictions. The machine learning classifiers (Classifier)
generated the predictions using the engineered features in this study. The
horizontal axis listed the datasets and the vertical axis gave the AUC
values.

validating datasets for the specific predicting tasks. Five
performance metrics are evaluated, i.e. AUC, Sn, Sp, ACC
and MCC.
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Figure 11. Performance comparison with the existing studies on predicting the peptides binding to the HLA-A∗01:01 allele. (A) A comparison is first
carried out for the five performance metrics, AUC/Sn/Sp/ACC/MCC, on predicting the 8-mer peptides binding to the HLA-A∗01:01 allele. The vertical
axis gives the values of the five performance metrics. (B) The AUC values are compared between the proposed HLAB with the existing studies for
predicting the k-mer peptides binding to the HLA-A∗01:01 allele, where k = 8, 9, . . . , 14. The study MHCSeqNet was not evaluated on the 13-mer and
14-mer peptides in the original study.

First, the proposed HLAB outperforms all the seven
studies on predicting the 8-mer peptides binding to
the HLA-A∗01:01 allele, as shown in Figure 11A. HLAB
improves the seven algorithms by at least 0.0230 in AUC
and by at least 0.0560 in ACC.

Second, the AUC values of all the seven peptide lengths
are evaluated for these eight prediction algorithms, as
shown in Figure 11B. The algorithm NetMHCpan-4.1
achieves the best prediction AUC values on four peptide
lengths, while the proposed HLAB algorithm achieves
the best AUC on three. The averaged rank (2.4286) of
NetMHCpan-4.1 is slightly better than that (2.8571) of
the proposed algorithm HLAB. But if we calculate the

average AUC value, HLAB achieves 0.9891, which is better
than that (0.9869) of NetMHCpan-4.1. So the proposed
algorithm HLAB outperforms all the existing studies on
predicting the peptides binding to the HLA-A∗01:01 allele
in the performance metric AUC.

The ROC curve has been widely used to illustrate how
a binary classification model performs [48, 49]. We visu-
alized the ROC curves for six prediction tasks, including
(i) HLA-A∗01:01 and 8-mer peptide, (ii) HLA-A∗01:01 and
9-mer peptide, (iii) HLA-A∗01:01 and 10-mer peptide, (iv)
HLA-A∗01:01 and 11-mer peptide, (v) HLA-A∗01:01 and
12-mer peptide and (vi) HLA-A∗01:01 and 13-mer pep-
tide, as shown in Figure 12. The areas under the ROC



10 | Zhang et al.

Figure 12. ROC curves of HLAB for the HLA-I peptide binding prediction on the independent datasets. The illustrative datasets were (A) HLA-A∗01:01(8-
mer), (B) HLA-A∗01:01 (9-mer), (C) HLA-A∗01:01(10-mer), (D) HLA-A∗01:01(11-mer), (E) HLA-A∗01:01 (12-mer) and (F) HLA-A∗01:01 (13-mer).

Figure 13. Performance comparison with the existing studies on the testing datasets of all the HLA-I alleles. For each k-mer (k = 8, 9, . . . , 14), the average
AUC of multiple binary classification tasks is calculated. The average AUC are compared between the proposed HLAB and the existing studies.

curves for all the six prediction tasks were at least 0.98.
The ROC curves and the AUC values suggested that
the proposed HLAB algorithm achieved good prediction
performances for the HLA-I-binding peptides of different
lengths.

Performance comparison on the testing dataset
of all the HLA-I alleles
The performances of HLAB on predicting the peptides
binding to all the HLA-I alleles are summarized in

Figure 13, and the detailed data may be found in the
Supplementary Table S4 available online at http://bib.
oxfordjournals.org/. Figure 13 shows that the proposed
framework HLAB proposed achieved the best average
AUC value on the six out of the seven k-mers (except
for the 9-mer prediction tasks). HLAB improved the
prediction tasks of 13-mer and 14-mer by at least 0.0663
in the average AUC values. HLAB achieved a slightly
worse average AUC (0.9769) than that (0.9826) of Anthem
for the prediction tasks of 9-mers.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac173#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Conclusions
This study proposed the feature extraction algorithm
HLAB for the HLA-I-binding peptide prediction problem.
The experimental data demonstrated the necessity of
the cascaded peptide encoding by two NLP networks,
ProtBert and BiLSTM. The extracted features may be fur-
ther refined by feature selection algorithms for different
prediction tasks.

The unsupervised cascaded ProtBert + BiLSTM model
may be pretrained for the other protein sequence pre-
diction tasks in the future studies. For example, the pre-
diction of the class II HLA-binding peptides may utilize
the framework in this study. The potential challenge is
that the class II HLA-binding peptides have a wider range
of lengths, and the publicly available dataset has fewer
samples [50, 51]. Therefore, it is necessary to further
explore how the proposed framework may be tuned to
achieve the best performances for predicting the class
II HLA-binding peptides. And, it is also feasible to apply
the unsupervised cascaded ProtBert + BiLSTM model to
the prediction tasks of the post-translationally modified
peptides [52–54].

Key Points

• Contextual information in peptides may be encoded by
NLP models.

• BERT and BiLSTM are two popular NLP models to encode
peptide sequences.

• The ProtBert-encoded peptide features may be further
enriched by BiLSTM.

• The ProtBert-BiLSTM cascade framework efficiently
encodes the HLA-I-binding peptides.

• Feature selection is also important to improve the pre-
diction of HLA-I-binding peptides.

Supplementary data
Supplementary data are available online at http://bib.
oxfordjournals.org/.
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