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Over the past decade, the use of probiotics to modify the gut microbiome has become a
public spotlight in reducing the severity of a number of chronic diseases such as
autoimmune disease, diabetes, cancer and cardiovascular disease. Recently, the gut
microbiome has been shown to play an important role in regulating bone mass. Therefore,
targeting the gut microbiome may be a potential alternative avenue for those with
osteopenia or osteoporosis. In this mini-review, we take the opportunity to delve into
how the different components of the gut work together and how the gut-related diseases
impact on bone health.
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INTRODUCTION

Over a century ago, Metchnikoff had discovered that complex living organisms, now known as
microbes, were living symbiotically within the human gut (1). However, their contribution to
human health and disease remained understudied. Fast-forward to the past decade and we have seen
the gut microbiome taking center stage in various diseases. This has been due to the advance in
cutting-edge technologies such as 16S ribosomal RNA sequencing and shotgun metagenomics.
Numerous pre-clinical studies now demonstrate that the diversity of the gut microbiome influences
a wide range of diseases including autoimmune disorders (2–4), diabetes (5, 6), obesity (7, 8),
cardiovascular disease (9, 10), and cancer (11, 12). Interestingly, a growing body of evidence
suggests that reintroducing ‘good’ bacteria to the microbiome in the form of probiotics can dampen
the severity of disease (13, 14). Recently, a new interdisciplinary field bridging the study of gut
microbiome and bone biology, known as ‘osteomicrobiology’ has emerged. Over the past couple of
decades, various groups have documented the influence of the gut microbiome on bone health
and disease.

The skeletal bone is an essential organ that provides the human body with both structural
(mobility and support) and a reservoir (storage for minerals such as calcium and phosphorus)
function. Bones are composed of minerals deposited around protein, which allows the bone to
absorb without breaking (15). The minerals within the bone consist mostly of calcium and
phosphorus, important for providing ‘hardness’ to the bone. On the other hand, proteins, which
are made up of a dense network of collagen are important for adding ‘softness’ to the bone.
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Together, they form a scaffold allowing the bone to sustain some
degree of mechanical pressure without easily breaking. During
childhood to adolescence, the bone predominantly undergoes a
process known as ‘modeling’ where new bones are formed at one
site of the bone while on the other side old bones are removed,
allowing the bone to change its size/shape. Modeling in humans
typically reaches its peak by 20-30 years of age, after which, a
different process known as ‘remodeling’ occurs (16). This is when
old bones are removed and replaced with new bones, which is
important especially when bone fractures occur or when old bones
become brittle and needs replacing. In addition, remodeling can
alsobeactivatedwhenthebody isdeficientor inneedofcalciumand
phosphorus for other cellular or tissue functions.

Bones are formed by non-hematopoietic cells known as
osteoblasts (OBs), which are derived from stromal cells within
the bone marrow (BM). OBs produce collagen that forms a
scaffold for calcium and phosphorus to be deposited into, thus
laying down new bone (17). On the other hand, osteoclasts (OCs)
resorb bone and are derived from hematopoietic stem cells also
located within the BM. OCs adhere and secrete hydrogen ions to
the surface of the bone, which dissolves and releases the mineral
deposits from the bone. Consequently, constant interaction
between OBs and OCs are essential during bone remodeling to
maintain bone homeostasis (18). Unfortunately, when bone
homeostasis is not maintained, osteopenia or debilitating bone
diseases such as osteoporosis can occur. This is mainly due to an
over activation of OC activity, which degrades more bone than
OBs can form new bones, or, when OB activity is inhibited.
Osteoporosis is a global health crisis and primarily occurs within
the aging population worldwide (19). As such, the need for deeper
understanding on how to maintain bone health and how to treat
those with osteopenia is vital as the human lifespan continues to
increase thanks to modern medicine.

While the lion’s share of the research on bone biology has
focused on therapeutics that can directly target the bone to
prevent or treat osteoporosis, such as bisphosphonates, it is
becoming apparent that the gut may have indirect effects in
maintaining bone health. Thus, targeting the gut may be an
attractive alternative therapy. In this brief review, we briefly
discuss the importance of the gut in maintaining body
homeostasis. Next, we discuss in more detail the interactions
between the gut and the bone by exploring emerging
mechanisms that have come to light in recent years.
THE GUT MICROBIOTA CAN INFLUENCE
INTESTINAL PERMEABILITY IN GUT-
RELATED DISEASES

The gut is one of the largest organs in the body. As part of the
digestive tract, its main goal is to absorb vital nutrients into the
bloodstream in order to maintain energy for cellular and body
functions. However, in addition to resident gut microbiota (GM),
the foodanddrinksweconsumeconsist ofmany foreignpathogens/
toxins; therefore, without a defense barrier within the gut, critical
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and complex functions in the bodybecomes compromised. Thus, to
protect the body, there are multiple defense barriers inside the gut.
One of the most important barriers of the gut is a single layer of
tightly-packed intestinal epithelial cells (IECs), which act as a
physical barrier that separates the outside environment from the
inside ‘sterile’ organs of the body (20, 21). These IECs are connected
via intercellular junctions composed of three junctions; tight
junctions (TJs), adherens junctions (AJs), and desmosomes.
These junctions work together to assist with selective transport of
ions across the epithelial layer and to also protect the integrity of the
epithelial layer. To further aid the integrity of IECs, specialized cells
among the epithelial layer known as goblet cells secrete mucin to
add and maintain a layer of mucus (22). This acts as a biochemical
barrier preventing GM and pathogens from directly interacting
with the epithelium. The mucus layer is subdivided into an inner
and outer mucus layer, in which the GM exist in the outer layer
consisting of ~104 bacterium from over 100 species resides (23).
Despite the detrimental effects the GM potentially poses to body,
when kept at homeostasis, the GM plays an essential role in gut
functionality by aiding the digestion of foods that the gut itself
cannot process (23). Finally, below the epithelium is a host of
immune cells, which act as a third line of defense to prevent theGM
from entering the systemic circulation. These gut immune cells,
including macrophages, dendritic cells, T cells and B cells, are
housed within gut associated lymphoid tissues such as Peyers
Patches or scattered throughout the lamina propria (24, 25)
(Figure 1).

During inflammatory disease states, the intestinal barrier can
become compromised, increasing intestinal permeability. This
makes the body susceptible to foreign particles or GM entering
into circulation thereby exacerbating inflammation (26–28). This
term is also commonly known as a ‘leaky gut’. It was recently
demonstrated in a pre-clinical model of RA that the TJ protein,
zonula occludens (ZO)-1, which is known to stimulate the
opening of TJs, was significantly increased, leading to
inflammation. When ZO-1 was inhibited using a zonulin
antagonist, inflammation in RA was markedly dampened (29).
In addition, increased intestinal permeability has also been
associated with inflammatory bowel disease (IBD) due to
dysregulation of the pre-dominant AJ protein, E-cadherin (30).
Metabolic diseases such as diabetes and obesity have also been
linked to increased intestinal permeability, which again is
involved in further increasing inflammation (31, 32). Besides
direct dysregulation of intercellular junctions, a reduction in the
protective mucus layer secreted by goblet cells is also known to
cause a breakdown of the barrier integrity allowing for GM to
interact and pass through the IECs, which is one of the hallmarks
of IBD (33). Interestingly, it was recently shown that the diversity
of GM can also affect the integrity of the intestinal barrier and
inflammation. With accumulating evidence over the years,
restoring or balancing the GM has become an attractive
therapeutic avenue in preventing increased intestinal
permeability and dampening inflammation. Reintroducing
‘good’ bacteria by supplementing diets with probiotics has
been heavily investigated in both mice and human, in which
the supplementation of probiotics has been shown to restore the
February 2021 | Volume 11 | Article 620466
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GM and reduce disease severity. For example, increased dietary
choline (9) (obtained from foods such as eggs) and carnitine (34)
(from red meats) can cause atherosclerotic-cardiovascular
disease via the gut microbiota-derived metabolite TMA which
converts into TMAO in the liver. By administrating
Lactobacillus, TMAO levels were reduced, thereby reducing the
development of atherosclerosis (35). Furthermore, diabetes has
been shown to shift the abundance of two dominating bacterial
phyla, Firmicutes and Bacteroidetes that leads to increased
disease severity. Supplementation with Lactobacillus was shown
to reduce inflammation (36, 37). However, with a biased focus
now on the effects of probiotics and how it may reduce
inflammation, many studies now fail to also investigate
whether administering probiotics reduces inflammation due to
a restoration in intestinal permeability and immune cells in the
gut. Thus, it would be beneficial to measure all three components
(GM, immune cell, and intestinal permeability) when
intervening with probiotics in gut-related diseases.
POTENTIAL MECHANISMS OF HOW
THE GUT MICROBIOTA INFLUENCES
BONE MASS

In the past two decades, gut-related inflammatory diseases have
been linked to a decrease in bone mass, suggesting that the gut
may be interlinked with the bone. Recently, it was shown that
people with osteoporosis had significantly higher microbiome
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diversity compared to healthy individuals, specifically in the
abundance of Firmicutes (38). In line with this, another clinical
study comparing healthy individuals, people with osteopenia and
patients with osteoporosis, showed that the severity of bone loss
was correlated to the diversity of the gut microbiome (39). In
addition, a clinical study conducted in elderly women with low
bone mineral density proposed that restoring the microbiome
with supplementation of probiotics reduced bone loss (40).
Although, the use of probiotics may be a viable therapeutic
option, more investigation on how they influence bone biology is
warranted for any major changes for treating bone defects. For
example, in a recent clinical trial, it was shown that probiotics
had no effect on hip bone mineral density, but rather showed a
reduction in femoral neck bone mineral density (41). Therefore,
studies in pre-clinical mouse models are critically important to
directly test how changes in the GM mechanistically impacts
the bone.

The Ohloson group was the first to discover in mouse models
that germ-free (GF) mice had significantly increased trabecular
bone volume compared to conventionally raised (CONV-R)
mice (42). In support of this, depletion of the gut microbiota,
through antibiotic administration, has also been shown to restore
bone mass (43, 44). Despite these findings, it is still unknown
exactly why total deletion of GM would be beneficial for bone
health. One reason may be that there is a slow or oscillating
penetrance of microbial products through the gut that through
any number of pathways result in the activation of OCs or
suppress OBs. Whether this occurs during development when
FIGURE 1 | Healthy vs. Inflamed Gut During intestinal homeostasis (BLUE) the biochemical barrier contains a mucus layer that helps to prevent GM from contacting
the epithelial layer. The physical barrier consists of tightly-packed single layer of epithelial cells connected by intercellular junctions. The immunological barrier consists
of innate and adaptive immune cells that help to surveillance the gut for any foreign entry of GM (gram positive/negative bacteria). During gut-related inflammation
(RED), the physical barrier can become compromised, increasing intestinal permeability, making it susceptible for unwanted GM to pass through and activating an
immune response.
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the gut is not fully formed to prevent unwanted bacterial
translocation into bloodstream of the body is also a potential
mechanism. However, once the body (and gut) is developed, the
GM is clearly beneficial for a number of biological functions
central to human health. The symbiotic relationship between the
gut and the microbiome is important in the absorption of
nutrients that the gut itself cannot process. The GM is also a
source for vitamin K2, which is required for the function of
osteocalcin and can influence bone formation by stimulating
OBs (45, 46). Moreover, studies have shown that decreased levels
of vitamin K2 due to antibiotic-induced microbiome depletion is
associated with a reduction in osteocalcin and bone strength in
mice (47). Based on the relationship between the gut and bone,
re-introducing beneficial strains of bacteria in the form of
probiotics has recently garnered interest in the bone field. Pre-
clinical mouse studies have found that administering probiotics
such as VSL#3 and bacterial strain Lactobacillus rhamnosus GG
can be beneficial for bone health via restoring GM and intestinal
permeability (48). In estrogen deficient mice, in which estrogen
dampens cytokines involved in stimulating osteoclastogenesis
and bone loss (49, 50), it was found that the administration of
Lactobacillus reuteri protected against bone loss. Moreover, other
studies have demonstrated that in mice with glucocorticoid-
induced microbial dysbiosis or post-antibiotic-induced gut
dysbiosis, supplementation of Lactobacillus reuteri could
dampen trabecular bone loss by reducing gut dysbiosis and
intestinal barrier dysfunction (51–53).

Despite the potential therapeutic approach in using probiotics
to reduce intestinal permeability and bone loss, the question still
remains as to how exactly changes in the GM influences bone
homeostasis. Obviously, increased intestinal permeability could
result in the translocation of bacteria or its microbial products to
the bone, increasing and prolonging osteoclastogenesis. In
addition, to prevent systemic infection, immune cells within
the bone and in other organs express toll-like receptors (TLRs)
which recognize pathogen associated molecular patterns. TLR4,
one of the most well studied TLRs, is highly expressed on
immune cells and is activated by lipopolysaccharides (LPS) and
damage-associated molecular pattern ligands. Once activated,
TLR4 promotes innate immune responses and the production of
inflammatory cytokines. In addition, an increase in
inflammatory cytokines, particularly IL-23 can promote the
maturation of pathogenic TH17 cells in the BM, which in turn
can stimulate osteoclastogenesis, leading to increased bone loss
(54). TLR4 has also been shown to be expressed on mesenchymal
stromal cells (MSCs) which plays a critical role in bone
formation (55–57). The activation of TLR4 on MSCs has been
shown to promote the differentiation of osteoblasts through
Wnt3a and Wnt5a signaling (55). While osteoblasts promote
bone formation, some studies have suggested that when
stimulated by LPS they can promote the differentiation of OCs
and bone degradation (Figure 2A) (56, 57).

Metabolites, in particular short chain fatty acids (SCFA),
produced by GM can play essential roles in regulating immune
responses (58, 59). Interestingly SCFA have been linked to
improving bone health (60–62). A series of studies by the Pacifici
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group explored the cross talk between the gut and the bone. Firstly,
they demonstrated that promoting the production of butyrate with
the administration of lactobacillus or directly supplementing mice
with butyrate promoted bone formation via an increase in the
expression of osteogenicWnt ligandWnt10b fromTreg cells in the
BM. This activates the Wnt signaling pathway in osteoblasts to
increase bone formation (61). In a separate study, to further
elucidate how the gut communicates with the bone, the Pacifici
group investigated how butyrate influences bone formation in
response to parathyroid hormone treatment. To determine
whether butyrate signals via T cells in the BM, they adoptively
transfer splenic T cells fromGpr43+/+ and Gpr43-/-mice into Tcb-/-

mice, a mouse model that lacks T cells (62). After donor T cell
reconstitution, they supplementedmicewithbutyrate inmodel that
recapitulates bone loss via administering parathyroid hormone
inhibitors (iPTHx) and confirm that butyrate does not directly
signal through GPR43 on T cells to increase bone formation. Next,
they hypothesized that butyrate may be acting on GPR43 on
myeloid cells particularly dendritic cells. To do this, they co-
cultured BM isolated dendritic cells from Gpr43+/+ or Gpr43-/-

mice withWTT cells and discovered that GPR43 on dendritic cells
was required todifferentiate T cells intoTreg cells, which then goon
to expressing Wnt10b to stimulate bone formation (Figure 2B).

The dysregulation of gut homeostasis can result in an
inflammatory immune phenotype. This includes an increase in
interleukin IL-17 producing TH17 cells. Studies have shown that
an increase in TH17 cells and IL-17 in the BM promotes bone
degradation by stimulating the differentiation of OCs in the BM
(63, 64). The Pacific group investigating the role intestinal
immune cells play in bone remodeling in the setting of
hyperparathyroidism (65). They demonstrated that in mice
with microbiomes enriched with segmented filamentous
bacteria, parathyroid hormones expanded the population of
gut TH17 cells which egressed out of the gut, into circulation,
migrating into the BM to cause bone degradation (65). To show
egress of intestinal TH17 cells, they inhibited sphingosine 1
phosphate (S1P) receptor-1 with an FTY720 antagonist, which
prevents the egress of lymphocytes from the mesenteric lymph
nodes and showed a decrease in BM TH17 cells and bone
degradation. Furthermore, to show specifically the importance
of TH17 cell migration into the BM, they showed that the
chemoattractant CCL20 was upregulated in the BM, which acts
to guide TH17 cells. When they administered neutralizing anti-
CCL20 antibody, the number of intestinal TH17 cells were
unaltered but it prevented the increase in TH17 cells in the BM
as well as a reduction in bone loss. Furthermore, they also
differentiated TH17 cells from isolated splenic T cells from IL-
17A-eGFP reporter mice, transplanted into recipient mice and
counted GFP+TH17 cells after inducing bone loss with infusion
of parathyroid hormones (Figure 2C).
CONCLUDING REMARKS

The inter-disciplinary roles between gut and bone has
increasingly garnered attention in those in the field of bone
February 2021 | Volume 11 | Article 620466
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A B C

FIGURE 2 | Potential mechanisms connecting the gut to the bone. (A) A leaky gut can result in bacteria translocating to other organs such as the bone where
lipopolysaccharides (LPS) are recognized by toll-like receptor (TLR) 4 on hematopoietic stem cells (HSC) and mesenchymal stromal cells (MSC). (B) Increasing the
production of butyrate in the intestine promotes bone formation via an increase in the differentiation of regulatory T cells (Treg). Tregs stimulate CD8+ T cells to
secrete Wnt10b promoting the differentiation of osteoblasts and bone formation. (C) An expansion of T Helper (TH) 17 cells in the gut can result in the migration of
TH17 cells to the bone. Additionally, the upregulation of the chemoattractant CCL20 in the bone marrow can aid the migration of intestinal TH17 cells to the bone
where the production of interleukin (IL) 17 can promote the differentiation of osteoclasts thereby promoting bone destruction.
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biology. From knowledge gathered so far, it seems that restoring
the balancing in GM using probiotics or prebiotics may be
beneficial in restoring bone health. However, there are still
many questions to be answered before the use of probiotics
should be recommended to the aging community who are
more susceptible to osteopenia. This will require a multi-
disciplinary approach where microbiologists, immunologists,
gastroenterologists, computational scientists, and the respective
disease experts to work together to find the best approach to cure
gut-related diseases.
Frontiers in Endocrinology | www.frontiersin.org 6
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