
February 2018 | Volume 5 | Article 81

Review
published: 13 February 2018

doi: 10.3389/fcvm.2018.00008

Frontiers in Cardiovascular Medicine | www.frontiersin.org

Edited by: 
Peter Simon Macdonald,  

St Vincent’s Hospital, Australia

Reviewed by: 
Franklin L. Rosenfeldt,  

Baker Heart and Diabetes  
Institute, Australia  

Pasquale Pagliaro,  
Università degli Studi di  

Torino, Italy  
Serban C. Stoica,  

University Hospitals Bristol NHS 
Foundation Trust, United Kingdom

*Correspondence:
Darren H. Freed  

dhfreed@ualberta.ca

Specialty section: 
This article was submitted  

to Heart Failure  
and Transplantation,  

a section of the journal  
Frontiers in Cardiovascular  

Medicine

Received: 05 September 2017
Accepted: 19 January 2018

Published: 13 February 2018

Citation: 
White CW, Messer SJ, Large SR, 

Conway J, Kim DH, Kutsogiannis DJ, 
Nagendran J and Freed DH (2018) 
Transplantation of Hearts Donated 

after Circulatory Death.  
Front. Cardiovasc. Med. 5:8.  

doi: 10.3389/fcvm.2018.00008

Transplantation of Hearts Donated 
after Circulatory Death
Christopher W. White1, Simon J. Messer 2, Stephen R. Large2, Jennifer Conway3,  
Daniel H. Kim3, Demetrios J. Kutsogiannis4, Jayan Nagendran1 and Darren H. Freed 1,5,6*

1 Cardiac Surgery, University of Alberta, Edmonton, AB, Canada, 2 Papworth Hospital NHS Foundation Trust, Cambridge, 
United Kingdom, 3 Cardiology, University of Alberta, Edmonton, AB, Canada, 4 Critical Care Medicine, University  
of Alberta, Edmonton, AB, Canada, 5 Department of Physiology, University of Alberta, Edmonton, AB, Canada, 6 Department 
of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada

Cardiac transplantation has become limited by a critical shortage of suitable organs from 
brain-dead donors. Reports describing the successful clinical transplantation of hearts 
donated after circulatory death (DCD) have recently emerged. Hearts from DCD donors 
suffer significant ischemic injury prior to organ procurement; therefore, the traditional 
approach to the transplantation of hearts from brain-dead donors is not applicable to 
the DCD context. Advances in our understanding of ischemic post-conditioning have 
facilitated the development of DCD heart resuscitation strategies that can be used to 
minimize ischemia-reperfusion injury at the time of organ procurement. The availability 
of a clinically approved ex situ heart perfusion device now allows DCD heart preser-
vation in a normothermic beating state and minimizes exposure to incremental cold 
ischemia. This technology also facilitates assessments of organ viability to be under-
taken prior to transplantation, thereby minimizing the risk of primary graft dysfunction. 
The application of a tailored approach to DCD heart transplantation that focuses on 
organ resuscitation at the time of procurement, ex situ preservation, and pre-transplant 
assessments of organ viability has facilitated the successful clinical application of DCD 
heart transplantation. The transplantation of hearts from DCD donors is now a clinical 
reality. Investigating ways to optimize the resuscitation, preservation, evaluation, and 
long-term outcomes is vital to ensure a broader application of DCD heart transplanta-
tion in the future.

Keywords: donation after circulatory death heart transplantation, donation after circulatory death cardiac graft, 
Ex vivo heart perfusion, ex situ heart perfusion, ischemic post-conditioning

Cardiac transplantation is the “gold-standard” treatment for eligible patients with advanced heart 
failure. Despite adverse changes in the donor and recipient populations, posttransplant outcomes 
continue to improve with a median survival of 11 years (1). While the number of potentially eligible 
transplant recipients is increasing, the number of transplants performed each year in Canada has 
remained static (2). Over the last 10 years the annual mortality rate for patients awaiting cardiac 

Abbreviations: ATP, adenosine triphosphate; DBD, donation after brain death; DCD, donation after circulatory death; 
DPP, direct procurement and perfusion; ECMO, extracorporeal membrane oxygenation; ESHP, ex situ heart perfusion; IRI, 
ischemia-reperfusion injury; MPT, mitochondrial permeability transition; NCX, sodium–calcium exchanger; NHE, sodium–
hydrogen exchanger; NRP, normothermic regional perfusion; OCS, organ care system; RISK, reperfusion injury salvage kinase; 
ROS, reactive oxygen species; PRSW, preload-recruitable stroke work; SAFE, survivor activating factor enhancement; SR, 
sarcoplasmic reticulum; WLST, withdrawal of life-sustaining therapy.
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FiGURe 1 | Pathways for deceased organ donation. (A) Patients donating organs after brain death have intact cardiorespiratory function that allows donor heart 
evaluation to be undertaken before organ procurement. (B) Patients donating organs after circulatory death have suffered a hypoxemic cardiac arrest following 
withdrawal of life-sustaining therapy and donor heart evaluation can only be undertaken after organ resuscitation has occurred.
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transplantation was 16% (3, 4). Overall, the clinical impact of 
cardiac transplantation is limited by a critical shortage of suitable 
donor organs (5, 6).

Following the first publication of brain death criteria in 
1968 (7–9), cardiac transplantation has been performed almost 
exclusively with organs procured from donors that have been 
declared dead based on neurologic criteria [donation after 
brain death (DBD), Figure 1A]. In addition to improving the 
utilization rate of DBD hearts, exploration of alternative donor 
sources is warranted to mitigate the growing disparity between 
the number of eligible transplant recipients and available 
organs.

DONATiON AFTeR CiRCULATORY  
DeATH (DCD)

Donation after circulatory death describes the procurement 
of organs from donors that have been declared dead based on 
circulatory criteria (Figure 1B) (10). Early transplant programs 
utilized organs from DCD donors, including the first heart 
transplants performed by Christiaan Barnard (11, 12); however, 
this practice was largely abandoned following the acceptance of 
brain-death criteria (7–9). Today, a critical shortage of suitable 
organs from DBD donors and the expansion of DCD programs 

have prompted a renewed interest in DCD heart transplantation. 
The DCD pathway for organ donation is increasing in many 
countries around the world, and in some countries accounts for 
more than one-third of all deceased organ donation (13–16). 
DCD accounted for 42% of kidney, 19% of liver, and 19% of 
lung transplants from deceased donors in the UK in 2012 (17), 
while DCD accounted for 21% of all deceased organ donation in 
Canada in 2015 (18).

The Maastricht classification system is used to describe four 
different categories of DCD donors according to the circum-
stances of the donor’s death (Table  1) (19, 20). Uncontrolled 
DCD (Maastricht Category I, II, and IV) refers to donors 
having suffered an unexpected cardiac arrest and unsuccessful 
resuscitation. Controlled DCD (Maastricht Category III and 
IV) refers to donors that undergo a planned withdrawal of life-
sustaining therapy (WLST) and progression to circulatory arrest. 
Experimental and clinical transplantation of DCD hearts have 
been restricted to Maastricht Category III donors. These donors 
typically have a non-recoverable neurologic injury, are depend-
ent on advanced life support therapies, but do not meet formal 
brain-death criteria. If ongoing medical care is deemed futile and 
a decision to WLST is made, consent for organ donation may 
be obtained. In this scenario, life-sustaining therapies are with-
drawn and palliative care is provided according to institutional 
practices. The patient is monitored for progression to apnea and 
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TABLe 1 | Modified Maastricht classification of donation after circulatory death 
(19, 20).

Uncontrolled Description

Category 1 Found dead

Sudden unexpected circulatory arrest without any attempt of 
resuscitation by a medical team

Category IA: out-of-hospital, Category IB: in-hospital

Category II Witnessed cardiac arrest

Sudden unexpected irreversible circulatory arrest with 
unsuccessful resuscitation by a medical team

Category IIA: out-of-hospital, Category IIB: in-hospital

Category IV Cardiac arrest while brain dead

Sudden circulatory arrest after brain-death diagnosis during 
donor management but prior to planned

Organ retrieval; donation proceeds after unsuccessful 
resuscitation by a medical team

Controlled Description

Category III Withdrawal of life-sustaining therapy (WLST)

Planned WLST and expected circulatory arrest

Category IV Cardiac arrest while brain dead

In countries where legislation does not accept brain death 
criteria or patient will never meet the neurologic criteria for the 
diagnosis of brain death, the procedure for this potential DBD 
can be converted to a DCD

FiGURe 2 | Process of heart transplantation. (A) The traditional approach to transplantation of a heart procured from a donation after brain death donor. Donor 
heart evaluation is carried out in the donor with intact cardiorespiratory function. Viable organs are arrested with a cardioplegic solution and stored in a profoundly 
hypothermic state (cold-static storage) until transplantation. Organ ischemia is limited to the time between procurement and transplantation (cold ischemic time).  
(B) The traditional approach to transplantation if it were utilized for a heart procured from a donation after circulatory death donor. The donor progresses to 
circulatory arrest following withdrawal of life-sustaining therapy (WLST). An ethically mandated standoff period must then be observed before circulatory death can 
be declared. Consequently, the heart has sustained a significant warm ischemic insult before organ procurement can proceed. Subsequent preservation using 
cold-static storage subjects the heart to an additional cold ischemic injury and does not provide an opportunity for organ resuscitation and evaluation. The traditional 
approach is unlikely to facilitate successful transplantation of hearts donated after circulatory death. (C) The tailored approach to transplantation of a heart procured 
from a donation after circulatory death donor. Following WLST and declaration of circulatory death, the heart is resuscitated using an approach tailored to minimize 
ischemia-reperfusion injury. The heart is then preserved using ex situ heart perfusion, which minimizes exposure to cold ischemia and facilitates organ evaluation. 
Organ ischemia can be limited to the time between WLST and organ resuscitation (warm ischemic time).
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circulatory arrest, which is declared when a pulse pressure is no 
longer present on an arterial pressure tracing (mechanical asys-
tole) (20). However, some jurisdictions require progression to 
electrical asystole before circulatory arrest can be declared (21). 
An ethically mandated 5-min standoff period (may vary from 2 
to 20 min depending on institutional protocols) is then observed 
before circulatory death is declared and organ procurement can 
proceed (Figures 2B,C) (21). Therefore, the diagnosis of death 
is based on the cessation of cardiorespiratory function (20). 
This differs in many respects from DBD, where the declaration 
of death is based on neurologic criteria in a donor that still has 
intact cardiac function.

Donation after circulatory death hearts experience a period 
of warm ischemia during the progression to circulatory arrest 
and declaration of death (Figures 2B,C), the duration of which 
is an important criterion in the selection of hearts for trans-
plantation (22, 23). The warm ischemic time (WIT) officially 
refers to the time between WLST and organ reperfusion (20); 
however, some Maastricht category III donors maintain a stable 
cardiorespiratory status for a prolonged time before eventual 
progression to circulatory arrest. Thus, the functional warm 
ischemic time (FWIT) refers to the time from when the systolic 
blood pressure decreases below 50 mmHg for at least 2 min until 
organ reperfusion (20). The FWIT is meant to provide a more 
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FiGURe 3 | Alternative approaches to the resuscitation, preservation, and 
evaluation of hearts donated after circulatory arrest. (A) Direct procurement 
and preservation. Hearts are resuscitated with a cardioplegic solution tailored 
to minimize ischemia-reperfusion injury, then preserved ex situ in a 
normothermic beating state. Organ evaluation is carried out during ex situ 
preservation to identify viable organs for transplant. (B) Normothermic 
regional perfusion. Hearts are resuscitated in vivo on veno-arterial 
extracorporeal membrane oxygenation (ECMO). The donor is subsequently 
weaned from ECMO, in vivo assessments of heart function are carried out, 
and then viable organs are procured and preserved ex situ in a normothermic 
beating state until transplant. Supplementary organ evaluation can be carried 
out during ex situ preservation.
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accurate estimate of the actual ischemic injury sustained by 
donor organs following WLST. However, insufficient end-organ 
oxygen delivery and the onset of organ ischemia (evidenced 
by rising systemic lactate concentrations) may occur before a 
significant decline in blood pressure has occurred (24). Oxygen 
desaturation may be a more sensitive indicator of end-organ 
ischemia and should be included in the FWIT definition (24).

Potential impact of DCD in Heart 
Transplantation
Multiple authors have attempted to describe the potential impact 
of DCD on the numbers of heart transplants that could be per-
formed. Noterdaeme et al. examined deceased donor data from 
a single center in Belgium (25). Over a 6-year period, there were 
247 deceased donors, 28% of whom were Maastricht Category 
III donors. The authors applied the same inclusion criteria used 
for DBD heart donors, and required that the WIT not exceed 
30 min. This approach identified 8 potential DCD hearts with a 
WIT of 15.1 ± 0.5 min. During the same time period, 82 patients 
were listed for heart transplantation, 53 were transplanted,  
9 were still waiting, 11 were removed from the list, and 9 died 
while waiting. The authors conclude that the transplantation 
of eight additional hearts could have significantly reduced the 
waiting list mortality and increased heart transplant activity by 
15%. Messer et  al  examined 3,073 DCD donors referred over 
a 3-year period in the UK and found 149 (5%) to be suitable 
heart donors (26), which could have grown transplant activity 
by 30%. In the US and Australia, DCD heart transplantation 
could increase transplant activity by 4–17% (27–29). Overall, 
DCD heart transplantation has the potential to significantly 
increase the annual transplant volume in many countries with 
an attendant reduction in waitlist mortality.

DCD HeART TRANSPLANTATiON

The approach to DBD heart transplantation displayed in 
Figure 2A represents the current standard of care for the procure-
ment and preservation of DBD hearts. Following the declaration 
of brain death, heart function is evaluated to determine suitability 
for donation. At the time of organ procurement, the donor has 
intact cardiac function and the heart is not ischemic. Hearts 
are electromechanically arrested using a cold, hyperkalemic 
cardioplegic solution and undergo cold-static storage until they 
are transplanted. The DBD heart is only exposed to ischemia 
in the time between organ procurement and transplantation 
(Figure 2A).

Simply applying the standard DBD approach for heart pro-
curement and preservation to the DCD context is unlikely to 
allow for adequate resuscitation of the DCD heart to provide a 
viable organ (Figure 2B). The DCD heart has already sustained 
significant warm ischemia following WLST in the donor (dur-
ing the progression to circulatory arrest and the warm ischemic 
standoff period) and would not tolerate the additional ischemic 
injury during cold-static storage. Therefore, an approach tai-
lored specifically to the DCD context is required to facilitate 
successful transplantation (Figure 2C). Such an approach must 

include (1) organ resuscitation at the time of procurement to 
minimize the detrimental effects of warm ischemia following 
donor extubation, (2) a preservation strategy that minimizes 
additional ischemic injury and provides an opportunity for 
organ reconditioning, and (3) the ability to assess organ viability 
prior to transplantation (Figures 2C and 3).

Part 1: DCD Heart Resuscitation
Ischemia–Reperfusion Injury
Understanding the physiologic impact of donor extubation and 
warm ischemia on the DCD heart is fundamental to developing 
a successful resuscitation strategy (24). After extubation, the 
DCD heart is forced to function in an increasingly hypoxemic 
environment while attempting to maintain systemic oxygen 
delivery (24). Progressive hypoxemia and hypercarbia cause 
constriction of the pulmonary vasculature and distention of the 
right ventricle. These changes prompt a catecholamine surge and 
a transient hyperdynamic circulatory phase; however, myocardial 
energy stores are rapidly depleted, cardiac output declines, and 
the donor progresses to circulatory arrest (24). The donor heart 
remains in a warm, distended, and ischemic state during the 
ethically mandated standoff period (24); therefore, at the time 
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FiGURe 4 | (A) Ionic changes during ischemia. Anaerobic metabolism results in the production of hydrogen ions that activate the sodium–hydrogen exchanger  
and the accumulation of sodium ions inside the myocyte. The sodium–potassium ATPase is not able to extrude the excess sodium ions and maintain the normal 
membrane potential due to a lack of available adenosine triphosphate (ATP). Consequently, as ischemia progresses there is an accumulation of sodium and 
hydrogen ions inside the myocyte and depolarization of the membrane potential. (B) Ionic changes during reperfusion. Reperfusion washes out the hydrogen ions 
that have accumulated in the interstitial space and creates a large gradient for sodium–hydrogen exchange. The influx of sodium ions into the myocyte during early 
reperfusion forces the sodium–calcium exchanger (NCX) to function in reverse mode and import calcium ions across the sarcolemma. Intracellular ionic homeostasis 
cannot be restored until the sodium-potassium ATPase is able to reestablish the resting membrane potential and normal intracellular sodium levels, which will allow 
the NCX to return to a forward mode of operation and extrude excess calcium from the cytoplasm [adapted with permission (34)].
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of organ procurement the DCD heart has withstood exposure to 
a catecholamine surge and sustained significant ischemic injury 
(Figures 2B,C).

The ischemic injury sustained by the DCD heart results in the 
depletion of adenosine triphosphate (ATP) stores and anaerobic 
metabolism, which cause intracellular acidosis, activation of the 
sodium–hydrogen exchanger (NHE), and sodium influx into 
the myocyte (30, 31). The sodium-potassium ATPase normally 
functions to extrude sodium ions entering the myocyte via 
the NHE. In the DCD context, however, intracellular acidosis 
develops concurrently with the depletion of ATP stores. The 
combined effect of increased NHE activity and inhibition of the 

sodium–potassium ATPase produces a pathological accumula-
tion of intracellular sodium (Figure  4A) (31, 32). Subsequent 
reperfusion at the time of organ procurement rapidly normalizes 
the extracellular pH and creates a large hydrogen ion gradient 
across the plasma membrane that causes further sodium influx 
via the NHE (33). This increase in intracellular sodium forces the 
sodium–calcium exchanger (NCX) to function in reverse mode 
and import calcium ions across the sarcolemma (Figure  4B). 
The resultant intracellular calcium overload propagates myocyte 
death through the development of hypercontracture, generation 
of reactive oxygen species (ROS), activation of the mitochondrial 
permeability transition (MPT) pore, and initiation of apoptotic 
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FiGURe 5 | Pathogenesis of ischemia–reperfusion injury. Intracellular calcium overload and the production of ROS cause opening of the MPT pore and the 
propagation of cell death. The normalization of intracellular pH during reperfusion is an important modulating factor in the pathogenesis of ischemia–reperfusion 
injury. Abbreviations: MPT, mitochondrial permeability transition; ROS, reactive oxygen species; SR, sarcoplasmic reticulum [adapted with permission (31)].
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pathways (Figure  5) (30, 31, 33). Limiting the severity of 
ischemia-reperfusion injury (IRI) at the time of organ procure-
ment represents the cornerstone of DCD heart resuscitation.

Approach to DCD Heart Resuscitation
With the aim of minimizing IRI and optimizing functional recov-
ery, two methods of DCD heart resuscitation have emerged and 
have been successfully utilized in the clinical context (Table 4) 
(35). The first approach has been termed Direct Procurement 
and Perfusion (DPP). This approach involves delivery of a car-
dioplegic solution during organ procurement that is designed 
to promote ischemic post-conditioning and limit the detrimen-
tal effects of IRI. With this approach, a rapid cardiectomy is 
performed, the heart is connected to an ex situ heart perfusion 
(ESHP) device and preserved in a normothermic and beating 
state until eventual transplantation (Figure 3A) (22, 36). The 
second approach is Normothermic Regional Perfusion (NRP) 
(35). Following declaration of circulatory death, a median 
sternotomy is performed and the cerebral circulation is iso-
lated (a clamp is placed across the arch vessels). With the brain 
excluded from the circulation, the donor is placed on veno-
arterial extracorporeal membrane oxygenation (ECMO) and 
reperfused for 60 min. The donor is subsequently weaned from 
ECMO, which facilitates the assessment of donor heart func-
tion in vivo. Viable organs are then arrested with a traditional 
cardioplegic solution, connected to an ESHP device, and pre-
served in a normothermic, beating state until transplantation  
(Figure 3B) (23, 35).

Part 1A: DCD Heart Resuscitation: DPP
Initial Reperfusion Solution
At the time of organ procurement, the DCD heart is energy 
deplete and vulnerable to the influx of sodium and calcium upon 
reperfusion. The reactivation of ATP production in the calcium- 
overloaded myocyte after prolonged ischemia can propagate 
calcium oscillations and the development of hypercontracture 
(Figure 5) (37, 38). However, initial reperfusion with a cardio-
plegic solution inhibits myocardial contraction at the onset of re-
oxygenation. This facilitates the repletion of myocardial energy 
stores and the restoration of intracellular calcium homeostasis 
before activation of the myofibrillar contractile unit, thereby pre-
venting hypercontracture (39, 40). Previous research has demon-
strated that hearts subjected to a period of ischemia exhibit better 
functional recovery when reperfused with a cardioplegic solu-
tion compared to reperfusion with unmodified blood (41–44). 
Therefore, initial reperfusion of the DCD heart should maintain 
cardiac arrest to provide an opportunity for the restoration of 
intracellular ion homeostasis and limit hypercontracture.

Cardioplegia Composition
In 1986, Murry et al. first demonstrated that repetitive periods of 
brief ischemia could protect the myocardium from a subsequent 
period of prolonged ischemia and established the concept of 
ischemic pre-conditioning (45). In 2003, Zhao et  al. demon-
strated that repeated cycles of ischemia and reperfusion following 
a prolonged index ischemic insult (ischemic post-conditioning) 
could attenuate reperfusion-induced myocardial injury to the 
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same extent achieved with ischemic pre-conditioning (46). 
Subsequent research has demonstrated that common molecular 
pathways are involved in these two processes (47). These land-
mark discoveries have tremendous implications for DCD heart 
transplantation because the delivery of therapeutics to the donor 
prior to the declaration of death (ischemic pre-conditioning) is 
ethically prohibited in the majority of jurisdictions. However, the 
activation of ischemic post-conditioning pathways at the time of 
organ procurement provides an opportunity to mitigate IRI and 
resuscitate the DCD heart. The therapeutic window is narrow and 
optimal success is realized in the first minutes of organ reperfu-
sion (48); therefore, enhancing the composition of the initial 
reperfusion cardioplegia to activate ischemic post-conditioning 
pathways and inhibit mediators of IRI is the primary focus of 
DCD heart resuscitation.

The activation of prosurvival kinases at the time of reperfu-
sion confers powerful cardioprotection against IRI through 
inhibition of the MPT pore, and activation of the reperfusion 
injury salvage kinase (RISK) and survivor activating factor 
enhancement (SAFE) pathways (47, 49, 50). The delivery of 
erythropoietin, adenosine, and insulin during reperfusion 
has been shown to activate the RISK pathway and mitigate 
myocardial IRI (49, 51, 52). Erythropoietin-supplemented 
cardioplegia has also been shown to activate the SAFE pathway 
and inhibit mitochondrial permeability pore transition (53–55). 
Additionally, insulin causes vasodilation, inhibits apoptosis, 
limits the inflammatory response, and reduces ROS generation 
(56). Adenosine inhibits apoptosis through upregulation of the 
antiapoptotic protein Bcl-2 and has anti-inflammatory proper-
ties that attenuate neutrophil infiltration into endothelial cells 
and ROS production (57–63). The nitric oxide donor glyceryl-
trinitrate has been shown to activate prosurvival kinases and 
Bcl-2 (64). Overall, a variety of pharmacologic activators of the 
RISK and SAFE pathways confer protection against IRI and hold 
great promise in optimizing DCD heart resuscitation.

The influx of sodium and calcium into the myocyte play a 
central role in the pathogenesis of IRI. Reperfusion at the time 
of organ procurement normalizes the extracellular pH, and cre-
ates a large hydrogen ion gradient across the plasma membrane 
that causes sodium influx via the NHE and calcium influx via 
reverse NCX (Figure 4B). Inhibiting these ionic fluxes early in the 
reperfusion period represents an important opportunity to limit 
hypercontracture and activation of the MPT pore (Figure 5) (49).

The cardioprotective effects of NHE inhibition in IRI are well 
documented. Cariporide has been shown to limit myocardial IRI 
in clinical trials (65–67) and translational animal models of DCD 
heart transplantation (32, 68–70). Zoniporide is a recently devel-
oped NHE inhibitor that possesses greater potency and selectivity 
toward the cardiac NHE (71), and has potent cardioprotective 
effects through activation of prosurvival kinase pathways and 
inhibition of apoptosis (72). Unfortunately, NHE inhibitors are 
no longer available for clinical use and enthusiasm for further 
development has been limited by the results of the Expedition 
trial (67). However, drug delivery in the context of DCD heart 
resuscitation is isolated to the heart in a deceased donor and 
the potential detrimental impact on other organ systems is 
irrelevant. Therefore, NHE inhibitors may still have an important 

role in DCD hearts resuscitation. Alternatively, delaying pH 
normalization at the onset of reperfusion by delivering an acidic 
cardioplegic solution inhibits NHE, and limits calcium overload 
and IRI (Figures 4 and 5) (73–75). We have recently shown that 
initial reperfusion with a moderately acidic solution optimizes 
the functional recovery of DCD hearts (34). Therefore, modifying 
the cardioplegic solution composition may provide an avenue to 
realize the clinical benefit of NHE inhibition without relying 
on pharmacologic inhibitors that are not currently available for 
clinical use.

Pharmacologic inhibitors of reverse-mode NCX have also 
been investigated as a means of minimizing calcium influx into 
the myocyte during reperfusion (Figure  4). NCX inhibitors 
minimize calcium overload, hypercontracture, infarct size, and 
contractile dysfunction following ischemia in animal models 
(76–80), and may be more cardioprotective than NHE inhibitors 
(81). While there are no clinically approved NCX inhibitors at 
present, calcium influx during reperfusion can be limited if the 
initial reperfusion solution is rendered hypocalcemic. This serves 
to minimize the calcium gradient that favors reverse NCX activ-
ity during early reperfusion, thereby limiting calcium overload 
(82–86). We have recently demonstrated that initial hypocal-
cemic reperfusion optimized the functional recovery of DCD 
hearts (34). Therefore, utilizing a hypocalcemic cardioplegic 
solution may provide a simple avenue achieve NCX inhibition 
and minimize IRI.

Conventional cardioplegic solutions rely on hyperkalemia to 
depolarize the membrane potential and achieve diastolic arrest; 
however, membrane depolarization is associated with an increase 
in intracellular sodium via non-activating sodium currents 
that may exacerbate calcium overload during reperfusion (72). 
Alternatively, normokalemic adenosine-lidocaine cardioplegic 
solutions have been proposed, in which lidocaine blockade of 
sodium fast channels causes a diastolic arrest and adenosine 
maintains a polarized membrane potential (87–89). Ischemic 
rat hearts reperfused with an adenosine-lidocaine cardioplegia 
exhibit improved myocardial function compared to traditional 
hyperkalemic cardioplegia (88). Similarly, polarized arrests using 
potassium channel openers minimize calcium overload and 
improve myocardial function (90–92). Mohri et al. have applied 
this concept in a large animal model of DCD heart transplanta-
tion and demonstrated improved posttransplant outcomes in 
hearts treated with a potassium channel opener (93). Further, 
we have utilized normokalemic adenosine-lidocaine based solu-
tions in our translational models of DCD heart transplantation 
(34, 94, 95). Further research is required to determine the role 
of such alternative cardioplegic solutions in clinical DCD heart 
transplantation.

A wide variety of strategies have demonstrated efficacy in miti-
gating IRI; however, it is likely that the delivery of a cardioplegic 
solution containing a cocktail of complementary pharmacologic 
post-conditioning agents that target a variety of pathways 
involved in the pathogenesis of IRI will further improve DCD 
heart resuscitation. For example, the synergistic beneficial effects 
of glyceryl-trinitrate, erythropoietin, and zoniporide have been 
demonstrated in animal models of DCD transplantation (96, 97). 
We have utilized a cardioplegic solution containing the ischemic 
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post-conditioning agents, adenosine and insulin, and rendered 
the solution acidic and hypocalcemic to minimize calcium 
overload during reperfusion (34). ROS scavengers have been 
shown to limit IRI in DCD hearts (98); however, ROS signaling 
in the early reperfusion period is essential for the activation of 
post-conditioning pathways and the role of ROS scavengers in 
DCD heart resuscitation requires further research (99–101). 
Calpain inhibitors and MPT pore inhibitors may represent other 
pharmacologic strategies to further optimize DCD heart resusci-
tation (102, 103). Further research in this area will undoubtedly 
contribute to improved posttransplant outcomes in the future.

Cardioplegia Delivery
Optimizing the conditions of the initial reperfusion may further 
improve DCD heart resuscitation. Initial cardioplegic reperfu-
sion provides an opportunity to restore myocardial energy stores 
and intracellular ion homeostasis prior to myocardial contrac-
tion; however, hypothermia markedly lowers the activity of the 
ion pumps that restore intracellular ionic homeostasis (104–106). 
The delivery of hypothermic cardioplegia at the time of organ 
procurement is standard practice when procuring hearts from 
DBD donors, to minimize metabolic demands during the subse-
quent period of cold-static storage (Figure 2A). In the context of 
DCD; however, the benefit of inducing a profoundly hypothermic 
state in the short period of time between procurement and initia-
tion of normothermic ESHP may be outweighed by the negative 
impact of hypothermia on the reparative processes essential for 
resuscitation of the DCD heart (95).

Previous work has demonstrated that delivery of warm 
car dioplegia following ischemia improves functional recovery  
(44, 107–109). These results have been confirmed in clinical tri-
als of patients undergoing cardiac surgery, which demonstrated 
that terminal warm cardioplegia limits myocardial injury and 
improves function postoperatively (110, 111). Since DCD hearts 
have sustained significant ischemic injury, application of the 
terminal warm cardioplegia concept to the initial reperfusion of 
DCD hearts may optimize their resuscitation (41). Translational 
experiments in animal models of DCD have advocated for the 
avoidance of profound hypothermia during the initial reperfu-
sion (41, 94, 98, 112–114), and we recently confirmed that the 
avoidance of profound hypothermia during initial reperfusion 
minimizes injury and improves the functional recovery (95).

Interventions to limit IRI must be administered at the 
onset of reperfusion to be effective; however, the duration of 
the cardioplegic reperfusion is another variable that impacts 
DCD heart resuscitation. The initial reperfusion must be of 
sufficient duration to facilitate repletion of myocardial energy 
stores, restore ionic homeostasis, and activate ischemic post-
conditioning pathways. Cohen et  al. have demonstrated that 
initial reperfusion with an acidic solution for 1 min was not pro-
tective; however, when the reperfusion was extended to 2 min it 
afforded protection against IRI equivalent to that achieved with 
post-conditioning protocols (115). In contrast, studies have 
demonstrated that initial reperfusion with an inhibitor of GSK-
3β must be extended over 15 min to be effective (116) and initial 
reperfusion with adenosine required an infusion extended over 
40 min to achieve a post-conditioning effect (117). Osaki et al. 

found that posttransplant outcomes were optimized when initial 
reperfusion of DCD hearts with a blood-based cardioplegia at 
20°C was continued for 20 min (39). These results suggest that 
the optimal initial reperfusion duration may depend on the 
composition of the reperfusion solution, the conditions of its 
delivery, and the means by which activation of the ischemic 
post-conditioning pathways occur.

Part 1B: DCD Heart Resuscitation: NRP
Current protocols for NRP involve reperfusion with donor blood 
following initiation of veno-arterial ECMO (35). Donor blood 
at the time of reperfusion may have beneficial properties that 
would facilitate DCD heart resuscitation. Following donor extu-
bation a mixed respiratory and metabolic acidosis develops (24). 
As previously discussed, initial acidic reperfusion of ischemic 
myocardium limits IRI (Figure 5) (73–75). The DCD heart also 
has reduced antioxidant capacity in the early reperfusion period, 
and exposure to high oxygen partial pressures may propagate 
ROS production (118). Therefore, initial reperfusion with the 
hypoxemic and acidic blood of the DCD donor may actually be 
beneficial. The energy substrates and buffers that exist in donor 
blood may facilitate restoration of myocardial energy stores. 
In these regards, NRP may serve to resuscitate the DCD heart. 
Proponents also believe that it provides a more expeditious 
reperfusion and minimizes the WIT compared to DPP (35).  
A potential downside of the NRP method, however, is the high 
levels of catecholamines and pro-inflammatory cytokines that 
are present within the DCD donor that may have detrimental 
effects on myocardial resuscitation (119, 120).

Despite divergent approaches to DCD heart resuscitation, 
(Table 4) both DPP and NRP protocols have been successfully 
implemented in clinical programs with excellent results (22, 
23). Further research is required to determine if one approach is 
superior to the other.

Part 2: DCD Heart Preservation
Cold-static storage represents the current standard method of 
DBD heart preservation prior to transplantation (Figure  2A); 
however, the DCD heart has withstood a significant ischemic 
insult and exposure to incremental cold ischemia during the 
preservation interval is unlikely to facilitate successful organ 
resuscitation (Figure 2B) (121). It is also necessary to confirm 
organ viability prior to transplantation given the severity of 
injury sustained by the DCD heart; however, static storage 
under hypothermic conditions prohibits such assessments from 
being undertaken (122). ESHP has been investigated as a means 
to minimize exposure to cold ischemia and support aerobic 
metabolism during organ preservation, thereby extending the 
safe preservation interval (39, 122–131). Two methods of ESHP 
for DCD heart preservation have emerged: (1) normothermic 
perfusion and (2) hypothermic perfusion.

Part 2A: DCD Heart Preservation: 
Normothermic Perfusion
Normothermic ESHP has been shown to maintain aerobic 
metabolism and limit exposure to cold ischemia during organ 
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preservation. It also facilitates the delivery of pharmaceuticals to 
recondition dysfunctional organs, including stem cell and gene 
therapies (132–136). Finally, normothermic ESHP provides an 
opportunity to perform metabolic and functional assessments 
during the preservation interval in order to identify organs that 
are suitable for transplantation (Figures 2C and 3) (22, 137, 138).

The Transmedics organ care system (OCS) is the only clinically 
available ESHP device, and the results of the Ex vivo perfusion 
of donor hearts for human heart transplantation (PROCEED II) 
trial that describe the clinical outcomes of standard criteria DBD 
hearts preserved using the OCS have been recently published 
(137). The OCS is primed with 1.5 L of leukocyte-depleted whole 
blood obtained from the donor during organ procurement. This 
is combined with 0.5 L of proprietary priming solution contain-
ing a physiologic salt solution, heparin (10,000  IU), mannitol 
(12.5  g), methylprednisolone (250  mg), multivitamins (1  U), 
insulin (80  IU), ciprofloxacin (100  mg), and cefazolin (1  g). 
During perfusion, a maintenance solution containing dextrose, 
amino acids, adenosine, and epinephrine, is titrated to achieve a 
desired aortic perfusion pressure and coronary blood flow. The 
perfusate solution circulates through an oxygenator and heat 
exchanger such that the coronaries are perfused with an oxygen-
ated solution. The left ventricle is preserved in an unloaded and 
beating state; therefore, assessments of organ viability are limited 
to metabolic profiles (lactate metabolism) and perfusion param-
eters (137). The PROCEED II trial randomized 130 transplant 
patients to receive a standard criteria donor heart preserved with 
either the OCS or using conventional cold-static storage. The 
primary endpoint of 30-day patient and graft survival in the OCS 
group [63/67 patients (94%)] was non-inferior compared to the 
cold-static storage group [61/63 patients (97%)] (137); however, 
five standard criteria donor hearts that were randomized to the 
OCS group were deemed non-viable based on their lactate profile 
and not ultimately transplanted. These hearts were not included 
in the final analysis and should be considered in the interpreta-
tion of the study results (139).

Donor heart preservation using ESHP has been utilized in 
numerous pre-clinical studies of DCD heart transplantation 
(39, 94, 97, 98, 140–142). Notably, Iyer et al. demonstrated the 
impact of ESHP in a large animal model of DCD heart trans-
plantation (140). Donor hearts were assigned to conventional 
cold-static storage or preservation using the OCS. None of the 
hearts preserved using cold-static storage could be weaned from 
cardiopulmonary bypass, while all the hearts deemed viable 
following perfusion on the OCS were successfully transplanted. 
These results underscore the importance of minimizing DCD 
heart exposure to cold ischemia during the preservation interval 
and the utility of ESHP in facilitating successful transplantation 
(Figures 2C and 3). The OCS has been subsequently utilized in 
clinical DCD heart transplantation programs in Australia and 
UK (23, 137).

Despite the successful clinical application of donor heart pres-
ervation using the OCS, many questions regarding the optimal 
conduct normothermic ESHP remain unanswered (139). The 
optimal perfusate composition (oncotic pressure, hematocrit, 
metabolic substrates, cardioprotective additives, etc.), coronary 
perfusion pressure, and perfusion temperature are largely 

unknown. Much research is required to optimize the conduct 
of ESHP and realize the potential of this technology in clinical 
transplantation.

The OCS utilizes a whole blood-based perfusate to ensure 
adequate myocardial oxygen delivery. Preservation using a whole 
blood-based perfusate may improve donor heart preservation 
compared to a solution in which the plasma component has been 
removed. This observation may be related to the antioxidant 
and anti-inflammatory properties of albumin and other plasma 
proteins, and the metabolic substrates present in donor plasma 
(143). Previous research has demonstrated that an oxygen carrier 
is required to meet the metabolic demands of a working heart at 
normothermia; however, further studies are required to deter-
mine the optimal hemoglobin concentration (143).

The development of myocardial edema is common during 
ESHP, which may cause diastolic dysfunction and limit the safe 
preservation interval (144). The OCS prime solution is supple-
mented with methylprednisolone in order to minimize myocar-
dial edema. Donor heart exposure to extracorporeal circulation 
during ESHP has been shown to elicit an inflammatory response, 
with a 60-fold increase in pro-inflammatory cytokines observed 
over a 5-h preservation interval (145). Methylprednisolone may 
limit this inflammatory response and minimize the development 
of myocardial edema (145). Oshima et al. have also demonstrated 
that the suppression pro-inflammatory cytokines during ESHP 
improves posttransplant myocardial function (146).

Another important variable impacting the development of 
myocardial edema is the perfusate solution oncotic pressure. 
The OCS priming solution contains mannitol as an oncotic 
agent; however, the oncotic pressure of this solution has not been 
reported. We have utilized a perfusate solution comprised of 
STEEN Solution™ (XVIVO Perfusion, Goteborg, Sweden) and 
whole donor blood (34, 95, 138, 143). STEEN solution™ is a 
buffered extracellular-type salt solution containing human serum 
albumin and dextran 40 for oncotic pressure, and when combined 
with donor blood the oncotic pressure of the perfusate solution 
is 33 ±  1  mmHg (143). This is supra-physiologic compared to 
the normal human oncotic pressure of 25 mmHg (147); however, 
normal hearts may still gain up to 12% of their initial heart weight 
and DCD hearts up to 24% over a 6-h preservation interval (95). 
Sufficient oncotic pressure must be maintained to minimize the 
development of myocardial edema (123), yet neither the optimal 
oncotic pressure or impermeant (albumin, mannitol, lactobionic 
acid, dextran, hydroxyethyl starch, succinylated gelatin) have 
been established.

The coronary perfusion pressure may also impact the devel-
opment of myocardial edema. Inadequate perfusion pressure 
may compromise myocardial oxygen delivery, while excessive 
pressure may damage endothelial cells (148). The target OCS 
perfusion pressure is 65–90  mmHg (149); however, we have 
observed that myocardial energy stores can be maintained with 
aortic pressures as low as 40 mmHg (143). Coronary perfusion 
pressure is delivered in a pulsatile fashion on the OCS, and 
previous authors have demonstrated that biologically variable 
perfusion may reduce myocardial edema (121). Further research 
is required to determine the optimal coronary perfusion pres-
sure during ESHP.
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Previous studies have demonstrated that myocardial function 
declines in a linear fashion during ESHP, even when normal 
hearts undergo prolonged perfusion (95, 143). Such a functional 
decline limits the safe preservation time and the potential of 
resuscitating dysfunctional hearts. Fatty acids and carbohydrates 
represent the primary metabolic substrates for ATP production 
under normal conditions, and the respective contribution of 
each substrate to oxidative metabolism is tightly regulated (150). 
Pathological states can alter these pathways, and optimizing 
metabolic substrate utilization during ESHP may dramatically 
improve the preservation of myocardial function. Current ESHP 
protocols include amino acids, glucose, and insulin as exogenous 
substrates (137); however, there is a paucity of research inves-
tigating the optimal substrate provision. Interestingly, previous 
authors have demonstrated that the oxidation of glucose during 
ESHP is limited, while pyruvate is rapidly incorporated into 
the tricarboxylic acid cycle and improves myocardial function 
(151, 152). While amino acids are not generally used as primary 
substrates for energy production, they play important roles in 
the intermediary metabolism of the cardiomyocytes and may 
regulate substrate utilization (118). Free fatty acids are rapidly 
depleted during ESHP (153); however, the impact of exogenous 
supplementation on myocardial function has not been investi-
gated. It appears that the perfusate substrate composition may 
impact myocardial energy metabolism during ESHP and the 
preservation of donor heart function. Further research in this 
area may dramatically improve donor heart preservation during 
ESHP.

Part 2B: DCD Heart Preservation: 
Hypothermic Perfusion
Hypothermic perfusion has been investigated as an alterna-
tive means of supporting aerobic metabolism and minimizing 
DCD heart exposure to cold ischemia during the preservation 
interval. The myocardial oxygen demand of a hypothermic and 
arrested heart is only 0.14  mL/100  g/min (154), and oxygen 
delivery to meet myocardial energy requirements in this state 
can be achieved with an oxygenated crystalloid perfusate solution 
delivered at approximately 20 mL/min and an aortic pressure of 
5 mmHg (155, 156). Consequently, hypothermic perfusion can be 
achieved using a simple and less expensive perfusion apparatus 
compared to the technology required to perfuse a normothermic 
beating heart with a blood-based perfusate solution (155, 156).

Continuous cold oxygenated perfusion of DCD hearts has 
consistently been shown to provide superior preservation and 
improved functional recovery compared to cold-static storage 
(157–159). Recently, Choong et al. have demonstrated that hypo-
thermic perfusion supported aerobic metabolism during DCD 
heart preservation and facilitated superior functional recovery 
compared to cold-static storage (155). Rosenfeldt et  al. subse-
quently demonstrated that initial reperfusion with a cardioplegic 
solution designed to minimize IRI followed by hypothermic 
perfusion could facilitate successful DCD heart transplantation 
(156). This group has also demonstrated that this technique is 
effective in the reanimation and preservation of a human DCD 
human heart (160).

Hypothermic perfusion appears to improve DCD heart pres-
ervation compared to cold-static storage; however, a significant 
limitation of this method is that assessments of organ viability 
are limited to evaluating the metabolic (lactate metabolism) and 
biomarker profile of the organ. Since the heart is preserved in 
a hypothermic and arrested state, assessments of organ func-
tion are not possible. Future research is required to determine 
if hypothermic perfusion provides myocardial preservation 
equivalent to that of normothermic perfusion, and clarify the role 
of hypothermic perfusion in DCD heart transplantation.

Part 3: DCD Heart evaluation
The traditional approach to cardiac transplantation involves 
evaluation of heart structure and function within the donor 
following declaration of brain death (Figure 2A). Similar assess-
ments may be undertaken in the DCD context prior to WLST 
in order to identify unsuitable organs; however, the heart is 
subsequently exposed to a profound ischemic insult following 
donor extubation (24). Consequently, it is necessary to evaluate 
the DCD heart prior to transplantation in order to identify viable 
organs.

The DPP approach relies on ex situ assessments of organ 
viability during the preservation interval (Figure 3A). The Trans-
medics OCS preserves the heart in a non-working mode that 
prevents assessments of myocardial function to be undertaken; 
however, this device enables monitoring of oxygen saturation, 
lactate concentration, aortic pressure, and coronary blood flow. 
In addition, assessments of coronary anatomy using angiogra-
phy during ESHP have been reported (161). In the PROCEED II 
trial, organs were deemed viable and transplanted if the venous 
lactate level was lower than the arterial level, and the lactate 
concentration at the completion of ESHP was <5 mmol/L (137). 
Similar criteria were utilized by Dhital et  al. to identify viable 
DCD hearts for clinical transplantation (22). This protocol is 
based on previous work that identified an ending lactate con-
centration <4.96 mmol/L as the best predictor of 30-day graft 
failure (63% sensitivity and 98% specificity) following DBD heart 
transplantation (162). These results suggest that a high lactate 
concentration could accurately identify hearts at risk of post-
transplant graft failure; however, a low concentration does not 
necessarily rule out the possibility of a high-risk heart (139). This 
is exemplified by a recent case report describing the preservation 
of a DBD heart on the OCS over an 8.4-h period (144). Despite 
a normal lactate profile and perfusion parameters, primary graft 
dysfunction occurred following transplantation that necessitated 
support with ECMO. Such outcomes emphasize the importance 
of assessing myocardial function to confirm organ viability 
before transplantation, particularly when extended criteria or 
DCD hearts are being evaluated (23, 149). Unfortunately, there 
are no clinically approved ESHP devices capable of evaluating 
myocardial function in a physiologic working mode.

Previous research in large animal models has demonstrated 
the feasibility of utilizing ex situ assessments of myocardial func-
tion to predict posttransplant graft function (141). Reproducible, 
reliable, and easily acquired metrics are required to assess myo-
cardial function prior to transplant. Conductance catheters have 
been used extensively and provide a broad range of myocardial 
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functional parameters that can identify dysfunctional organs 
with a high sensitivity and specificity (138); however, conduct-
ance catheters are expensive, cumbersome, and difficult to utilize 
clinically. Interventricular balloons have also been used to assess 
ventricular developed pressure during ESHP (160). The ideal 
index of contractility should be sensitive to the inotropic state 
of the heart, but insensitive to loading conditions, heart rate, and 
heart size (163). Preload-recruitable stroke work (PRSW) is one 
such parameter that provides a preload-independent assessment 
of myocardial function (164), and can be measured during ESHP 
in a physiologic working mode in a non-invasive and automated 
fashion (165). Two-dimensional echocardiography has also been 
used to obtain non-invasive assessments of PRSW, fractional area 
change, and ejection fractions (EFs) as markers of myocardial 
contraction (142, 166, 167); however, a standardized approach to 
echocardiography in the ex situ perfused heart has not been devel-
oped. Overall, such non-invasive approaches could eliminate the 
need for conductance catheter assessments and facilitate transla-
tion of donor heart functional evaluation in the ex situ setting 
to clinical practice. Further advancements in ESHP technology 
may provide the ability to perform comprehensive functional and 
metabolic assessments of the donor heart in the future.

The NRP approach to donor heart evaluation involves wean ing 
from veno-arterial ECMO and facilitates assessments of organ 
function to be carried out within the donor by measuring cardiac 
output using a pulmonary artery catheter. A comprehensive 
transesophageal echocardiographic evaluation can also be per-
formed. The NRP approach, therefore, provides an opportunity 
to directly assess myocardial function and suitability for trans-
plantation following organ resuscitation, rather than relying on 
metabolic surrogates of organ viability during ESHP. Acceptability 
criteria for clinical transplantation following NRP include a cardiac 
index (CI) ≥2.5 L/min/m2, central venous pressure ≤12 mmHg, 
pulmonary capillary wedge pressure (PCWP) ≤12  mmHg, and 
a left-ventricular EF  ≥  50% on transesophageal echocardiogra-
phy (23). Interestingly, 3/9 donor hearts that were accepted and  
transplanted based on these in vivo functional criteria exhibited 
lactate profiles during ESHP that would have deemed the organ 
non-viable. Further, 1/5 donor hearts that exhibited acceptable 
lactate profiles required mechanical circulatory support post-
transplant (23). These results underscore the value incorporating 
metrics of myocardial function into pretransplant viability assess-
ment algorithms.

Part 4: DCD Heart Transplantation
Experimental Transplantation
Early investigators sought develop techniques for the resuscita-
tion, preservation, and transplantation of hearts from donors that 
had suffered an anoxic arrest, in an era when little was known 
about IRI, immunosuppression, or extracorporeal perfusion 
(168–171). Christiaan Barnard confirmed the clinical impact of 
such research, by resuscitating hearts from human DCD donors 
on cardiopulmonary bypass and subsequently transplanting them 
(11, 12). However, enthusiasm for research regarding DCD heart 
resuscitation and transplantation waned over the next 20 years, 
following the acceptance DBD transplantation (7–9). Heart 

transplantation soon became limited by a shortage of suitable 
donor organs and the number of transplants performed annually 
plateaued (1), which prompted a renewed interest DCD. A num-
ber of investigators subsequently published studies describing the 
successful transplantation of hearts subjected to 17–60  min of 
warm ischemia following donor exsanguination (70, 172–179). 
In 2009, however, it was demonstrated that an exsanguination 
model of donor warm ischemia significantly reduced the sever-
ity of myocardial injury sustained by the heart compared to the 
more clinically relevant model of donor extubation (112). In 
this context, the clinical translation of studies that employed an 
exsanguination model of donor warm ischemia is difficult.

Gundry et  al. utilized a more clinically relevant model of 
hypoxemic cardiac arrest in lambs and demonstrated that donor 
pretreatment with dextrose, methylprednisolone, prostaglandin 
E1, and nifedipine could facilitate successful transplantation 
following 40  min of warm ischemia (180). They employed the 
same protocol in baboons and reported posttransplant survival 
ranging from 1 to 34  days (181). Donor pretreatment with an 
endothelin-A receptor antagonist and an ATP-sensitive potas-
sium channel opener have also been shown to facilitate success-
ful DCD transplantation in dogs (93, 182). While these studies 
provided experimental evidence that hearts sustaining significant 
periods of warm ischemia following donor extubation could be 
transplanted, donor pretreatment is ethically prohibited in most 
jurisdictions.

In 2006, Osaki et al. utilized a clinically relevant model of DCD 
(donor extubation and no pretreatment) and demonstrated that 
controlled reperfusion with a tepid blood cardioplegia could facili-
tate successful transplantation in pigs (39). To minimize donor 
heart exposure to additional ischemia following procurement, the 
hearts were continuously perfused in a beating state during pres-
ervation and implantation. The same group demonstrated that 
the addition of a ROS scavenger to the initial reperfusion solution 
minimized lipid peroxidation and improved posttransplant func-
tion (98). Iyer et al. reported successful transplantation of DCD 
pig hearts exposed to 30-min of warm ischemia following donor 
extubation (140). These hearts were resuscitated with Celsior 
solution supplemented with erythropoietin, glyceryl-trinitrate, 
and zoniporide, and then preserved on the Transmedics OCS. 
We have also demonstrated the importance of a cardioprotec-
tive resuscitation strategy and ESHP to minimize incremental 
ischemic injury during preservation and transplantation (94). 
Finally, Ali et  al. demonstrated that DCD hearts resuscitated 
using NRP could be successfully transplanted, with outcomes 
comparable to hearts from DBD donors (183). These translational 
studies provided evidence to suggest that DCD heart transplanta-
tion could be successfully performed when an approach to donor 
heart resuscitation, preservation, and transplantation is tailored 
to the DCD context (Figures 2C and 3).

Clinical Transplantation
The first report of clinical DCD heart transplantation in the mod-
ern era was published by Boucek et  al., describing three pedi-
atric transplants performed between 2004 and 2007 at Denver 
Children’s Hospital (184). Each donor had suffered birth asphyxia 
and a decision to WLST was made based on the futility of ongoing 
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care. The donor was monitored for progression to cardiorespira-
tory arrest and mechanical asystole. A 3-min standoff period was 
observed in the first donor; however, this was shorted to 1.25 min 
in the subsequent donors based on the recommendations of the 
ethics committee. The mean time from extubation to declaration 
of death was 18 ± 8 min. Cold preservation fluid was then infused 
though a balloon catheter placed in the ascending aorta and 
venous exsanguination was undertaken. Posttransplant inotropic 
support, rejection episodes, ventricular function, and 6-month 
survival were comparable to control infants who underwent 
DBD heart transplantation during the same period. This report 
prompted vigorous ethical debate in the transplant community 
regarding the definition of circulatory death, whether cardiac 
transplantation from DCD donors violates the “dead donor 
rule,” and the minimum standoff period duration that must be 
observed before death can be declared (185–187).

Ali et al. reported on a DCD donor with a 23-min WIT that 
was resuscitated using normothermic cardiopulmonary bypass, 
following exclusion of the cerebral circulation (188). After 5 min 
of reperfusion the heart spontaneously reverted to sinus rhythm. 
The patient was re-intubated and 190 min later was weaned from 
cardiopulmonary bypass. Following insertion of a pulmonary 
artery catheter, a CI of 2.4 L/min/m2 was measured with a pul-
monary artery capillary wedge pressure of 13 mmHg. The authors 
suggested that hearts from Maastricht category III donors might 
be suitable for use in clinical transplantation. This report again 
prompted ethical debate surrounding the postmortem restoration 
of mechanical cardiac function using cardiopulmonary bypass in 
a donor that had been declared dead based on cardiorespiratory 
criteria (189). However, the technique of NRP has become an 
accepted means of facilitating multi-organ DCD retrievals in 
some countries (190).

Iyer et al. utilized the DPP approach to DCD heart resusci-
tation in a donor that had suffered a 32-min WIT (191). The 
heart was reperfused with a resuscitative cardioplegia and then 
transferred to a modified Transmedics OCS device for ESHP 
and functional assessment in a physiologic working mode. 
The heart produced a cardiac output of >5  L/min with a left 
atrial pressure of 14 mmHg. Rosenfeldt et al. also reported on 
a DCD donor heart that was reperfused with a resuscitative 
cardioplegia after 32  min of warm ischemia, and preserved 
using hypothermic ESHP during transport (160). The heart 
subsequently underwent ESHP and functional evaluation over 
a 12-h period. Messer et al. utilized the NRP approach in three 
CD donors with a mean time WIT of 28 min, and demonstrated 
that in  vivo measurements of myocardial function correlated 
with assessments conducted ex situ on a modified Transmedics 
OCS device (192). Finally, Osaki et al. compared the myocardial 
function of four DCD hearts with five DBD hearts that had 
been declined for clinical transplantation due to the presence 
of coronary artery disease, advanced age, and donor social his-
tory (193). The DCD hearts sustained a WIT of 34 ±  3 min, 
were reperfused with a standard cardioplegic solution, and 
then underwent cold-static storage for 152  ±  55  min before 
evaluation in an ESHP device. The DBD hearts were arrested 
with the same cardioplegic solution and underwent cold-static 
storage for 211 ± 31 min before ex situ evaluation. Despite the 

additional cold ischemic insult sustained by the DCD hearts, 
the recovery of myocardial function was not significantly dif-
ferent compared to the DBD hearts. These reports provided 
early clinical evidence that hearts from DCD donors could be 
successfully resuscitated, and formed a foundation on which 
clinical transplant programs could be developed.

Dhital et  al. reported the first clinical adult DCD heart 
transplants in the modern era (22). These three transplants 
represented direct clinical translation of the groups’ research 
in pharmacologic post-conditioning in large animal models 
(32, 53, 64, 72, 96, 97, 140). Based on these studies, the authors 
considered Maastricht category III donors <40 years of age with 
a WIT <30 min (97). WLST occurred in the intensive care unit, 
an anesthetic bay, or an adjacent operating room, with standoff 
periods ranging from 2 to 5  min depending on the jurisdic-
tion of donation within Australia. The WITs ranged from 
22 to 28 min, with FWITs between 11 and 21 min (Table 2). 
Donor hearts were resuscitated using the DPP approach and 
St. Thomas’ cardioplegia supplemented with erythropoietin 
and glyceryl-trinitrate (97). Unfortunately, zoniporide is not 
approved for clinical use and could not be included in the cardi-
oplegia. Donor hearts were preserved on the Transmedics OCS 
for 245–260  min prior to transplantation. A perfusate lactate 
concentration <5 mmol/L and evidence of myocardial lactate 
extraction were used as evidence of myocardial viability. Two 
recipients required temporary mechanical circulatory support 
posttransplant; however, all patients were weaned from support 
and discharged from hospital after 21–28  days. Two patients 
experienced a rejection episode, but all patients demonstrated 
normal biventricular function at follow-up (Table 3). A fourth 
donor failed to progress in the pre-determined time frame and 
demonstrated a rising lactate concentration during preserva-
tion on the OCS; therefore, this heart was not considered for 
transplantation. This report represented the first clinical 
evidence that hearts from DCD donors could be resuscitated, 
preserved using ESHP while being transported from a distant 
site, and transplanted.

García-Saez et  al. described two adult clinical DCD heart 
transplants into recipients who were bridged to transplant 
using a durable left-ventricular assist device (194). The authors 
considered Maastricht category III donors <50 years of age. The 
WITs ranged from 14 to 36  min, with FWITs between 13 and 
21 min (Table 2). Donor hearts were resuscitated using the DPP 
approach and Custodial cardioplegia supplemented with eryth-
ropoietin and glyceryl-trinitrate. Donor hearts were preserved 
on the Transmedics OCS for 307–360 min prior to transplanta-
tion. Neither recipient required mechanical circulatory support 
postoperatively. At hospital discharge both recipients displayed 
normal left-ventricular function and moderate right ventricular 
dysfunction (Table 3). This report demonstrated that hearts from 
DCD donors could be successfully transplanted into recipients 
bridged to transplant with an implantable left-ventricular assist 
device.

Finally, Messer et al. described nine adult clinical DCD heart 
transplants performed using the NRP approach (23), clinical 
translation of previous research in large animal models (183). The 
authors considered Maastricht category III donors <50 years of 
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TABLe 3 | Recipient and posttransplant characteristics for clinical transplants performed with hearts donated following circulatory death.

Recipient and posttransplant characteristics

Messer  
et al. (23)

Dhital  
et al. (22)

García-Saez 
et al. (194)

Summary

Age (years) 59 23 61 58 58 64 55 51 41 57 43 57 52 26 50 ± 13
Sex (M/F) M M M M F M M M F M F M M M M 79%
BSA (m2) 2.08 2.03 1.89 2.00 1.73 1.94 1.84 1.98 1.72 1.77 1.86 1.91 1.89 1.66 1.9 ± 0.1
Diagnosis DCM HCM DCM HCM DCM DCM DCM DCM RVC DCM DCM AVRD DCM DCM DCM 71%
VAD No No No No No No No Yes No No No No Yes Yes Yes 21%
TPG (mmHg) 7 4 7 8 8 5 8 8 7 7 5 8 7 8 6.9 ± 1.3
PVR (Woods Units) 1.9 1.3 1.9 2.2 3.0 1.3 2.8 2.1 2.2 1.0 1.7 2.2 1.8 1.5 1.9 ± 0.6
IABP (days) 1 0 0 9 0 0 0 0 0 1 0 2 0 0 1 ± 2
VA ECMO (days) 0 0 0 7 0 0 0 0 0 4 0 0 0 0 1 ± 2
ICU LOS (days) 4 5 4 29 5 5 7 5 4 7 9 6 8 32 9 ± 9
Hospital LOS (days) 20 15 19 80 17 38 17 29 26 26 28 21 62 46 32 ± 19
LV function N N N 40% N N N N N N N N N N N 93%
RV function N N N N N N N N N N N N MOD MOD N 86%

AVRD, arrhythmogenic right ventricular dysplasia; BSA, body surface area; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; IABP, intra-aortic balloon pump; ICU, 
intensive care unit; LOS, length of stay; LV, left ventricle; MOD, moderate dysfunction; N, normal; PVR, pulmonary vascular resistance; RVC, right ventricular cardiomyopathy; RV, 
right ventricle; TPG, transpulmonary gradient; VAD, ventricular assist device; VA ECMO, veno-arterial extracorporeal membrane oxygenation.

TABLe 2 | Donation and pre-transplant characteristics for clinical transplants performed with hearts donated following circulatory death.

Donation and pretransplant characteristics

Messer  
et al. (23)

Dhital  
et al. (22)

García-Saez 
et al. (194)

Summary

Age (years) 33 28 38 29 38 43 32 36 44 26 26 27 39 21 33 ± 7
Sex (M/F) M M M M M M F M F M M M M F 79% M
BSA (m2) 1.88 2.00 2.35 2.38 1.92 2.08 1.80 1.94 1.68 2.14 1.83 2.00 2.22 1.75 2.0 ± 0.2
WIT (min) 60 18 29 17 28 24 21 146 23 28 25 22 14 36 35 ± 34
FWIT (min) 17 12 25 16 24 18 19 16 13 21 20 11 13 21 18 ± 4
NRP Duration (min) 52 52 190 61 34 27 45 29 40 – – – – – 59 ± 50
In vivo CI (L/m2) 3.2 2.8 2.9 4.1 3.6 3.5 2.9 4.5 2.8 – – – – – 3.4 ± 0.6
In vivo HR (beats/min) 85 122 92 135 105 125 118 100 148 – – – – – 114 ± 21
In vivo PCWP (mmHg) 12 9 11 8 11 8 10 6 8 – – – – – 9.2 ± 1.9
In vivo EF (%) 58 66 70 60 68 70 59 67 66 – – – – – 65 ± 5
OCS Duration (min) 170 173 0 170 184 166 139 428 209 257 260 245 360 307 219 ± 104
Initial A lactate (mmol/L) 8.7 2.1 – 5.1 4.4 6.8 3.5 12.1 2.5 8.3 6.8 7.6 5.3 6.2 6.1 ± 2.8
Initial V lactate (mmol/L) 12.5 1.9 – 5.1 5.9 7.3 3.6 12.6 2.9 8.1 6.5 7.4 4.9 6.0 6.5 ± 3.2
Final A lactate (mmol/L) 7.3 1.3 – 4.5 0.2 7.6 4.2 10.3 3.3 3.6 2.8 2.7 2.5 4.0 4.2 ± 2.8
Final V lactate (mmol/L) 7.2 1.2 – 4.4 0.2 6.9 3.4 10.3 3.3 3.6 2.3 2.5 2.5 4.0 4.0 ± 2.7

BSA, body surface area; CI, cardiac index; EF, ejection fraction; FWIT, functional warm ischemic time; HR, heart rate; NRP, normothermic regional perfusion; OCS, organ care 
system; PCWP, pulmonary capillary wedge pressure; WIT, warm ischemic time.
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age; however, donors with WITs extending beyond 30 min were 
considered. The WITs ranged from 17 to 146 min, with FWITs of 
12–25 min (Table 3). Hearts were resuscitated using veno-arterial 
ECMO and weaned from support after 27–190 min. A CI ≥ 2.5 L/
min/m2, with a CVP ≤ 12 mmHg, PCWP ≤ 12 mmHg, and an 
EF ≥ 50% were used as evidence of viability. Donor hearts were 
then preserved on the Transmedics OCS for 0–428 min prior to 
transplantation (one local donor heart underwent a brief period 
of cold-static storage prior to transplant and was not preserved on 
the OCS). Hearts preserved on the OCS underwent continuous 
perfusion during transplantation to further minimize exposure 
to ischemic injury.

Two recipients required mechanical circulatory support post-
transplant; however, all patients were weaned from support and 
discharged from hospital after 15–80 days (Table 3). Interestingly, 

three of the hearts displayed lactate profiles during preservation 
on the OCS that suggested non-viability (22, 137); however, these 
hearts were deemed viable based on in  vivo functional assess-
ments and transplanted (one heart required intra-aortic balloon 
pump support for 1  day). Conversely, the heart that required 
veno-arterial ECMO following transplant displayed an accept-
able lactate profile during preservation on the OCS. These results 
highlight the need for further research regarding assessments of 
organ viability prior to transplant. Importantly, this study also 
demonstrates that DCD hearts with extended WITs may still 
be considered for transplantation, provided the FWIT remains 
<30  min and acceptable myocardial function is demonstrated. 
Finally, the authors utilized continuous myocardial perfusion 
during transplantation. In the PROCEED II trial, donor hearts 
were exposed to 83  min of additional cold ischemia during 
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TABLe 4 | Alternative approaches to the resuscitation of hearts donated after 
circulatory death.

Direct procurement and perfusion

Pro Composition of initial reperfusion cardioplegia can be tailored to minimize 
ischemic reperfusion injury

Conditions of initial reperfusion cardioplegia delivery can be tailored to 
minimize ischemic reperfusion injury

Ex vivo reanimation associated with fewer ethical objections

Repeated assessments of organ viability can be performed during the 
preservation interval

Con Ex vivo perfusion required for all procured organs to assess viability prior 
to transplant

Unable to assess myocardial function prior to transplant (with currently 
available technology)

Normothermic regional perfusion

Pro Expeditious reperfusion

Ability to assess heart function in vivo prior to organ procurement

Ex vivo perfusion only required for organs deemed viable

May reduce ischemic organ injury and increase the number of usable 
organs from a donor

Con Additional equipment and personal required to manage extracorporeal 
membrane oxygenation circuit

Exposure to high levels of catecholamines present in donor blood during 
reperfusion

Isolation of cerebral circulation required prior to reperfusion

Ethical objections in some countries/regions
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implantation (137). Therefore, utilizing continuous perfusion 
during implantation may significantly improve posttransplant 
outcomes.

These recent clinical reports have demonstrated encourag-
ing short-term outcomes following DCD heart transplantation; 
however, the impact of the warm ischemic insult sustained 
following WLST on long-term outcomes is unknown. Ischemic 
injury occurring during DBD heart transplantation has been 
linked to the development of graft vasculopathy and myo-
cardial fibrosis (195–197), and further research is required 
to determine if similar sequelae will be observed with DCD 
hearts.

CONCLUSiON

The recent clinical reports of DCD heart transplantation 
have demonstrated encouraging short-term outcomes using 
Maastricht category III donors, with 100% hospital survival 
following a mean hospital length of stay of 32 days. The limited 
data currently available suggest that 29% of DCD heart trans-
plant recipients will require temporary mechanical circulatory 
support; however, all patients have been successfully weaned 
from support and the majority exhibit normal biventricular 
function on follow-up echocardiogram. As the experience with 
DCD heart transplant grows, assessments of organ viability may 
improve and the need for posttransplant mechanical circulatory 
support may be reduced. It appears that both the DPP and NRP 
approaches to organ resuscitation can be used successfully to 
facilitate DCD heart transplantation; however, further research 
is required to determine if one approach is superior to the other. 
While these short-term results are encouraging, the impact of the 
warm ischemic insult sustained following WLST on long-term 
outcomes is unknown. Ischemic injury occurring during DBD 
heart transplantation has been linked to the development of 
graft vasculopathy and myocardial fibrosis (82–84), and further 
research is required to determine if similar sequelae will be 
observed with DCD hearts.

Advances in our understanding of pharmacologic post-
conditioning have facilitated the development of controlled 
reperfusion strategies that can successfully resuscitate the DCD 
heart. The clinical availability of the Transmedics OCS now allows 
donor heart preservation in a beating state and a means to limit 
exposure to additional cold ischemia prior to transplantation. As 
technology evolves, the ability evaluate DCD hearts during EHP 
will improve our ability to identify viable organs. Investigating 
ways to optimize the resuscitation, preservation, evaluation, and 
long-term outcomes of these hearts is vital to ensure a broader 
application of DCD heart transplantation in the future.
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