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Abstract

Transformation by tyrosine kinase oncogenes in myeloid malignancies, including BCR-ABL in 

chronic myeloid leukemia, FLT3ITD in acute myeloid leukemia (AML) or JAK2V617F in 

myeloproliferative neoplasms (MPN), is associated with increased growth and cytoskeletal 

abnormalities. Using targeted approaches against components of the superoxide-producing 

NADPH-oxidases, including NOX2, NOX4 and the common p22phox subunit of NOX1-4, 

myeloid cells were found to display reduced cell growth and spontaneous migration. Consistent 

with a role of NOX as regulators of membrane proximal signaling events in non-phagocytic cells, 

NOX2 and NOX4 were not involved in the excess production of intracellular reactive oxygen 

species and did not significantly increase oxygen consumption. All NOX family members are 

controlled in part through levels of the rate-limiting substrate NADPH, which was found to be 

significantly elevated in tyrosine kinase oncogene transformed cells. Also, reduced 

phosphorylation of the actin filament crosslinking protein MARCKS in response to suppression of 

p22phox hints at a novel effector of NOX signaling. MARCKS was also found to be required for 

increased migration. Overall, these data suggest a model whereby NOX links metabolic NADPH 

production to cellular events that directly contribute to transformation.
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Introduction

Constitutive activation of tyrosine kinase oncogenes (TKOs) due to mutations is frequently 

associated with myeloid leukemias and myeloproliferative disorders. For example, the BCR-

ABL oncogene is associated with enhanced proliferation and viability of myeloid cells in 

chronic myelogenous leukemia (CML),1 the JAK2V617F point mutation is an activating 

mutation in patients with myeloproliferative disorders including polycythemia vera, 

essential thrombocythemia, idiopathic myelofibrosis, and myelodysplastic syndromes2 and 

activating mutations of the FMS-like receptor tyrosine kinase 3 (FLT3), such as internal 

tandem duplications (ITD), are frequently linked to acute myeloid leukemia (AML).3 Cells 

transformed by these and other TKOs are associated with elevated levels of intracellular 

reactive oxygen species (ROS), defined here specifically as superoxide radicals, hydrogen 

peroxide and hydroxyl radicals.4-6 This effect of TKOs on ROS is not limited to these 

specific oncogenes and can also be found in other cancers, such as through oncogenic forms 

of the receptor tyrosine kinase MET in lung cancer7 or in normal cells in response to chronic 

stimulation with growth factors.8 Even though it is appreciated that elevated ROS are found 

in many different types of cancers, their exact contribution to disease initiation, maintenance 

or progression is not well understood. In proliferating cells, increased ROS are required for 

growth and viability.9

In metabolically active cells, mitochondria are a major source of ROS, mostly as a 

byproduct of the electron transport chain10, but cellular processes, such as enzymatic 

reactions involving cytoplasmic NADPH reductase and others, may also nonspecifically 

contribute to the pool of ROS. The role of NADPH oxidases (NOX) in the excess 

production of ROS and their function in myeloid leukemia cells is not well understood. In 

contrast to mitochondria, the primary function of NOX is the production of superoxide 

radicals from molecular oxygen.11 Vast amounts of ROS can be produced in phagocytic 

cells for respiratory burst function but only small amounts may be required for the 

modulation of signaling mechanisms. NOX are multi-subunit transmembrane enzymes and 

their expression varies in different cell types.12 The family of human NOX proteins consists 

of five members (NOX1 to 5) and two related dual oxidases (DUOX1 and 2). NOX1, 2 and 

3 show a high degree of homology and require p40phox, p47phox and p67phox subunits and 

activation by Rac. In addition, p22phox subunit is important for the stability and functioning 

of NOX1 to 4.11,13,14 On the other hand, NOX5 (absent in mice) does not require p22phox.11

Our current study was designed to determine the role of NOX in various cellular processes 

including ROS generation, cell growth and migration in hematologic malignancies 

transformed by TKOs. Using patient derived myeloid cell lines dependent on activated 

tyrosine kinases for transformation, including KU812 (BCR-ABL), HEL (JAK2V617F) and 

Molm13 (FLT3ITD), the function of NOX proteins was determined. shRNA knockdown of 

p22phox, NOX2 and NOX4 demonstrated that these proteins are crucial regulators of cell 

growth and migration but may not be involved in the excess production of intracellular ROS 

levels. NOX proteins can be regulated at different levels and we found that tyrosine kinase 

oncoproteins were associated with increased amounts of the rate-limiting substrate NADPH. 

NOX signaling may be mediated through MARCKS (Myristoylated alanine-rich C-kinase 

substrate) phosphorylation at its regulatory site. Since NOX2 and NOX4 do not appear to be 
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required for the excess production of ROS, the biological and biochemical effects are 

expected to be through proximal effectors that depend on a localized increase in intracellular 

ROS.

Materials and Methods

Cells

The murine BaF3 cells expressing BCR-ABL, JAK2V617F or FLT3ITD were maintained as 

described.15 For ROS measurements cells were starved in medium without interleukin 3 

(IL3). Human cell lines KU812 (Ph+; CML) and Molm13 (FLT3ITD+; AML) were grown 

in RPMI 1640 (Mediatech, Manassas, VA) containing 10% fetal bovine serum (FBS; Lonza, 

Walkersville, MD). HEL cells (JAK2V617F+; erythroleukemia) were grown in medium 

containing sodium pyruvate (1mM; Invitrogen, Carlsbad, CA). In some experiments, cells 

were treated with metabolic analogs, including 2-deoxyglucose (dose response or 

4.5mg/mL, Sigma, St. Louis, MO) and 3-bromopyruvate (100μM, Sigma), the flavoprotein 

inhibitor diphenyleneiodonium (DPI, 5μM, Sigma) or kinase inhibitors, including imatinib 

(1μM; Novartis, Basel, Switzerland), Jak inhibitor (1μM; Calbiochem, Gibbstown, NJ), and 

midostaurin (50nM; Novartis). 293T cells were grown in Dulbecco's Modified Eagle 

Medium (DMEM; Mediatech) supplemented with 10% FBS.

Semi-quantitative real-time PCR

NOX and DUOX gene expression was measured by semi-quantitative real-time PCR using 

specific primers (Invitrogen) (Supplementary Table 1) and the products confirmed by DNA 

sequencing (not shown). Total RNA was extracted (RNeasy kit, Qiagen, Valencia, CA) to 

synthesize cDNA (Taqman Reverse Transcription Reagents, Applied Biosystems, Foster 

City, CA) for semi-quantitative real-time PCR (Power SYBR green PCR master mix) using 

a 7500 Real-Time PCR System (both Applied Biosystems).

Targeted knockdown using lentiviral approaches

Knockdown of NOX2, NOX4 or p22phox was done using an shRNA method. Three different 

constructs (RNAi Screening Facility, Dana-Farber Cancer Institute) were used (A-C) out of 

a pool of up to five. Lentiviruses containing shRNA were generated by co-transfecting 293T 

cells with viral packaging vectors, pMD2.GVSV-G and pCMVΔ8.91 (RNAi Screening 

Facility) and shRNAs using the TransIT (Mirus, Madison, WI) reagent. Cells were infected 

in the presence of polybrene (5μg/mL; Millipore, Temecula, CA) and selected in medium 

containing puromycin (3μg/mL; Sigma). The efficiency of knockdown was confirmed by 

semi-quantitative real-time PCR and immunoblotting.

Immunoblotting

Immunoblotting was performed as described previously.15 The antibodies used were as 

follows: Polyclonal rabbit antibodies against NOX2 (Millipore), NOX4 (recognizes the 32 

kDa isoform 4; Novus Biologicals, Littleton, CO), p22phox (Santa Cruz Biotechnology), 

pMARCKS (phospho-Ser152/156; Cell Signaling, Danvers, MA), pERK1/2 (phospho-

Thr202/Tyr204; Cell Signaling) and pGSK3β (phospho-Ser9; Cell Signaling); monoclonal 

rabbit antibodies against β1 integrin (EP1041Y; Abcam, Cambridge, MA) and pAkt 
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(C31E5E, phospho-Thr308; Cell Signaling); mouse monoclonal antibodies against β-actin 

(AC-15; Sigma).

Isolation of membrane fractions

Knockdown of NOX2 was confirmed by immunoblotting of the proteins in the enriched 

membrane fractions. Briefly, cells were incubated in hypotonic lysis buffer containing Tris 

(10mM, pH 8.0; Invitrogen), EDTA (1mM; Sigma), Na3VO4 (1mM; Sigma), and protease 

inhibitor cocktail (Complete; Roche Diagnostics) for 10 min and homogenized. Nuclei were 

separated by centrifuging at 1500g for 5 min. Supernatant was separated and 

ultracentrifuged at 100,000g for 1h at 4°C. The proteins in the membrane pellet were used 

for immunoblotting.

Measurement of intracellular and extracellular ROS

The relative levels of intracellular ROS were measured using the redox-sensitive dye 2′,7′-

dichlorofluorescein diacetate (DCF-DA; Calbiochem, La Jolla, CA)8 or by MitoSOX Red 

(Invitrogen) staining. Cells (1×106) were washed with PBS (Mediatech), incubated with 

DCF-DA (20μM) for 5 min at 37°C or with MitoSOX Red (5μM) for 10 min at 37°C, 

subsequently washed twice in PBS and analyzed on a FACSCanto II flow cytometer (BD 

Biosciences, San Jose, CA). In control experiments, extracellular superoxide production was 

measured using a chemiluminescence assay (Diogenes Cellular Luminescence Enhancement 

System, National Diagnostics, Atlanta, GA). Cells (10×106) were washed twice with PBS 

before treatment with 50 μM phorbol 12-myristate 13-acetate (PMA, Sigma) at 37°C for 10 

min. Diogenes reagent was added and superoxide measured (Monolight 3010 luminometer, 

Pharmingen, San Diego, CA) continuously for 100s to verify a linear increase in 

luminescence.

Oxygen consumption

A Clark-type oxygen electrode connected to a Mitocell MT200A respirometer and a Model 

782 oxygen meter (Strathkelvin Instruments, North Lanarkshire, Scotland) was used to 

measure oxygen consumption. The amount of oxygen consumed was continuously recorded 

for 30 min at 37°C in cells pretreated with tyrosine kinase inhibitors or in cells with p22phox 

knockdown. The rate of oxygen consumption was compared to starved, untreated or control 

shRNA transfected cells.

Migration assay

Migration of HEL and Molm13 cells with p22phox knockdown was measured using 

Transwell inserts (8μm) (Corning Incorporated, Corning, NY). Matrigel invasion chambers 

(8μm) (BD Biosciences) were used to measure migration of KU812 cells with p22phox 

knockdown. The relative number of migrated cells in the bottom chamber was counted after 

6-8 h and compared to control cells.
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Measurement of NADPH levels

Cellular NADPH levels (106 cells) were measured using an NADPH assay kit (Abcam) 

according to the manufacturer's instructions without modifications and relative levels were 

quantified on a SpectraMax 190 microplate reader (Molecular Dynamics, Sunnyvale, CA).

Targeted knockdown using siRNA

Knockdown of MARCKS was done using specific siRNA and compared to scrambled 

siRNA (Santa Cruz Biotechnology Inc., Santa Cruz, CA). HEL cells were transfected with 

siRNAs in 100 μL Nucleofector solution V (Amaxa, Gaithersburg, MD) according to the 

manufacturer's instructions using the Nucleofector device. Expression of MARCKS was 

analyzed by real-time PCR 24h after transfection.

Statistical analysis

For statistical comparison between groups, the Student's t-test was used. p values of less 

than 0.05 were considered significant. Error bars represent SEM (standard error of the mean) 

of at least three independent experiments.

Results

NOX proteins are expressed in cell lines transformed by oncogenic tyrosine kinases

Hematopoietic cells expressing TKOs associated with these diseases, including BCR-ABL, 

JAK2V617F and FLT3ITD, have been found to display elevated levels of intracellular 

ROS.4-6 Recently, NOX have been implicated in various cancers, however, their role in 

hematologic malignancies is not well understood. Using patient-derived KU812 (BCR-

ABL), HEL (JAK2V617F) and Molm13 (FLT3ITD) cells, we determined the expression of 

the various NOX components. Semi-quantitative real-time PCR detected expression of 

NOX2, NOX4, and NOX5 as well as p22phox, p40phox, p47phox, and p67phox in these cells 

(Figure 1A). The results also indicated that NOX4 and NOX5 were expressed with a Ct 

value at least 3-fold higher compared to NOX2 (not shown). We did not observe expression 

of NOX1, NOX3, DUOX1 and DUOX2 in these cells. Interestingly, murine BaF3 cells 

expressing BCR-ABL, JAK2V617F and FLT3ITD only expressed NOX1, NOX2 and 

NOX4 (data not shown). The gene for NOX5 is absent in the murine genome. NOX proteins 

are dependent on reduced NADPH, which is oxidized for the production of superoxide 

radicals and this process can be inhibited by diphenyleneiodonium (DPI). In initial 

experiments, DPI (5μM) was found to strongly reduce ROS levels in KU812 (69.6±0.4%), 

HEL (77.1±0.5%) and Molm13 (72.2±0.9%) cells (Suppl. Fig. 1). Nevertheless, this small 

molecule drug was originally identified as an inhibitor of mitochondrial respiration, may 

have additional effects on carbon metabolism and is now considered to be a flavoprotein 

inhibitor.16 We therefore sought to determine the role of NOX proteins in ROS production 

and transformation by using a specific genetic approach with lentiviral-based shRNA 

knockdown. The expression of NOX2 and NOX4 was targeted since it is common to both 

murine and human cells. In addition, p22phox which is required for stability and functioning 

of NOX1 to 4 was stably knocked down, therefore also controlling for functional 

redundancy between the NOX genes.11,13,14 The efficiency of knockdown using three 
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different shRNA constructs was confirmed by real-time PCR (data not shown) and most 

importantly, the efficient reduction in protein levels was confirmed by immunoblotting 

(Figure 1B). Since KU812 and HEL cells are not respiratory burst competent,17 we 

confirmed that NOX proteins were functionally silenced in Molm13 cells with p22phox 

knockdown. Superoxide production in response to the respiratory burst activator PMA was 

found to be reduced by 76.9% to 89.1%, using three different lentiviral constructs targeting 

p22phox in these cells (Figure 1C).

Tyrosine kinase oncogenes increase oxygen consumption

Univalent reductions of molecular oxygen by stepwise electron transfer is required for the 

production of various ROS, generating sequential intermediates starting with superoxide 

radicals (O2•-), to hydrogen peroxide (H2O2) and to hydroxyl radicals (•OH). Thus, changes 

in oxygen consumption are an indirect measurement of potential changes in ROS. In BaF3 

cells transformed by TKOs, the oxygen consumption was significantly increased (BCR-

ABL: 182.1±14.8%; JAK2V617F: 210±15.8%; FLT3ITD: 125.7±6.8% increase) (Figure 

2A). Consequently, in KU812, HEL and Molm13 cells, oxygen consumption was reduced in 

a dose dependent manner in response to their respective tyrosine kinase inhibitors, including 

imatinib (1μM; 70.6±6.5%), Jak inhibitor (2μM; 62.5±2.9%) and midostaurin (100nM; 

57.3±2.5%) (Figure 2B). Oxygen consumption was also measured in KU812, HEL and 

Molm13 cells with p22phox knockdown. We did not observe significant difference in oxygen 

consumption between control cells and cells with targeted knockdown, suggesting that NOX 

do not consume a significant amount of molecular oxygen (Figure 2C). We had previously 

demonstrated that mitochondria are a significant source of intracellular ROS in cells 

transformed by BCR-ABL, using electron transport chain inhibitors to block mitochondrial 

ROS production18 and similar data were obtained in cell line models used here (not shown).

Mitochondrial ROS are increased in tyrosine kinase oncogene-transformed cells

Next, we measured intracellular levels of ROS directly using redox-sensitive fluorochromes. 

In murine BaF3 cells, intracellular levels of ROS are elevated in the presence of BCR-ABL 

(129.4±21.9%), JAK2V617F (145.7±20.7%) and FLT3ITD (193.1±20.6%), when compared 

to the parental cell line (Figure 3A). Also, in KU812, HEL and Molm13 cells, the presence 

of their respective kinase inhibitor led to a reduction in ROS levels, including imatinib 

(1μM; 29.1±2.6%), Jak inhibitor (1μM; 33.2±1.9%) and midostaurin (50nM; 23.0±1.1%) 

(Figure 3B). These data confirm previous findings suggesting that TKOs are sufficient and 

required for the increase in ROS4,19. Our previous data using the hexokinase inhibitor 2-

deoxyglucose suggested that elevated ROS in BCR-ABL transformed cells are dependent, at 

least in part, on cellular glucose (carbon) metabolism18 and similar results were found in 

TKO transformed BaF3 cells as well as KU812, HEL and Molm13 cells (Suppl. Fig. 2). In 

order to further confirm the role of mitochondria in ROS production, we also used the 

mitochondrial redox sensitive fluorochrome MitoSOX Red. Consistent with the above data, 

KU812, HEL and Molm13 cells, displayed reduced MitoSOX Red fluorescence in response 

to tyrosine kinase inhibitors, including imatinib (1μM; 38.9±2.5%), Jak inhibitor (1μM; 

31.4±1.8%) and midostaurin (50nM; 41.9±1.1%), respectively (Figure 3C). In additional 

control experiments, we confirmed that elevated ROS indeed require an active electron 

transport chain using CML, AML and polycythemia vera patient specimens (not shown). 
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Next, using DCF-DA staining, the amount of intracellular ROS was measured in control and 

NOX-targeted shRNA containing cells. Consistent with a lack in change of oxygen 

consumption in p22phox knockdown cells, there was no significant reduction in ROS levels 

in cells with NOX2, NOX4 and p22phox knockdown compared to control cells (Figure 3D). 

In order to evaluate clonal effects as a result of stable integration and selection for cells with 

targeted knockdown, transient knockdown with the p22phox construct was also performed. 

Also in these experiments, we did not observe a significant reduction in intracellular ROS 

(not shown). The data imply that NOX proteins do not significantly participate in the excess 

production of intracellular ROS in TKO transformed cells.

NOX proteins regulate growth and migration

Finally, the effect of the knockdown on cell growth and migration using cells with p22phox 

knockdown was tested. We found significant reduction in cell growth (72 h culture) in 

KU812 (17.1-31.6%, p<0.05), HEL (27.9-50.9%, p<0.05) and Molm13 (32.0-54.0%, 

p<0.05) cells compared to control shRNA-transfected cells (Figure 4A). Significant changes 

in viability were not detected under these experimental conditions (not shown). Similar to 

cell growth, a drastic reduction in migration compared to control cells was observed in 

KU812 (74.3-87.6%, p<0.05), HEL (47.1-67.6%, p<0.05) and Molm13 (51.0-75.6%, 

p<0.05) cells (Figure 4B). These data did not indicate whether growth and migration were 

regulated through NOX2 or NOX4. Using the same approach, we first measured potential 

changes in cell growth in single population with NOX2 and NOX4 knockdown. Consistent 

with p22phox knockdown, NOX2- and NOX4-targeted approaches in the cell lines tested led 

to a significant reduction of growth by 34.2-52.8% and 41.2-56.5% (p<0.05), respectively 

(Figure 4C). We also found that in these cells both NOX2 (55.3-86.1% reduction, p<0.05) 

and NOX4 (56.5-85.6% reduction, p<0.05) were required for optimal migration (Figure 4D). 

We did not detect a significant change in cell growth during the migration assays. 

Interestingly, BaF3 cells that are transformed by the TKOs tested are fully dependent on the 

transforming tyrosine kinase activity for growth and spontaneous migration, in contrast to 

parental BaF3 cells, which do not proliferate or migrate under identical experimental 

conditions (not shown). These data suggest that NOX proteins play an important role in 

growth and migration of hematopoietic cells transformed by TKOs.

Tyrosine kinase oncogenes increase NADPH levels but not NOX expression

The functional regulation of NOX proteins in cells has been well characterized and might 

depend in part on the cellular context and the NOX isoforms expressed. NOX2 and NOX4 

activities can be both regulated through changes in expression and through the availability of 

their main substrate NADPH. The regulation of NOX2 is more complex than NOX4 and 

may be influenced by additional factors and signaling molecules, which are not measured 

here. Initially, we looked for changes in the expression of NOX components in KU812, HEL 

and Molm13 in response to tyrosine kinase inhibition (Figure 5A). We did not observe a 

significant reduction in NOX components, suggesting that the associated tyrosine kinase 

oncoproteins are not likely to regulate NOX through elevated levels. Moreover, some NOX 

components were even found to be increased, suggesting that the oncogenic tyrosine kinase 

activities lead to a reduction in the levels of some components, depending on the cellular 

background. Next, cellular NADPH levels were measured, which are in particular critical for 
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the regulation of the constitutively active NOX420 but are also rate-limiting for NOX2.21,22 

The cellular NADPH levels were significantly increased in BaF3 cells transformed by 

TKOs, (BCR-ABL: 427.9±54.2%; JAK2V617F: 453.1±70.9%; FLT3ITD: 743.5±108.7% 

increase) (Figure 5B). Similarly, in KU812, HEL and Molm13 cells, NADPH levels were 

reduced in response to imatinib (1μM; 70.6±0.8%), Jak inhibitor (1μM; 62.5±6.1%) and 

midostaurin (50nM; 57.3±5.5%), respectively (Figure 5C). Thus, changes in NADPH levels 

may constitute an important mechanism for the regulation of NOX proteins by TKOs. 

Additional experiments would be required to determine whether the observed changes in 

NADPH levels are sufficient to effectively alter NOX activities and cause changes in 

biological phenotypes.

p22phox is required for phosphorylation of MARCKS, a regulator of migration

In an attempt to identify signaling mechanisms regulated through NOX, we looked at 

proteins known to be involved in the regulation of cytoskeletal reorganization in cells with 

p22phox knockdown. We found that phosphorylation of the actin cross-linking protein 

MARCKS at the regulatory Ser152/156 was specifically reduced in KU812, HEL and 

Molm13 with p22phox knockdown (Figure 6A, top panel). As a negative control, we did not 

detect changed phosphorylation at the activation sites of AKT (Thr308), ERK1/2 (Thr202/

Tyr204) or GSK3β (Ser9) (Figure 6A, bottom panels). To test whether MARCKS would be 

required for migration in transformed cells, we knocked down expression of this protein 

with siRNA pools targeting MARCKS and compared them to non-targeting siRNA. HEL 

cells were used due to their high degree of transfectability. Initially, knockdown of 

MARCKS was confirmed by real-time PCR and led to a 55.0±3.0% (n=3; p<0.05) reduction 

in expression levels compared to control transfected cells (Figure 6B, left panel). Consistent 

with the above data, knockdown of MARCKS also led to a 35.2 ±5.7% (n=3; p<0.05) 

reduction in migration of HEL cells (Figure 6B, right panel). Similar data were obtained in 

KU812 cells with MARCKS knockdown (not shown). Molm13 cells, however, were found 

to be difficult to transfect. In order to confirm the regulation of MARCKS phosphorylation, 

we treated HEL cells with the flavoprotein inhibitor DPI, which is expected to block NOX 

activity (Figure 6C), as well as an inhibitor of the oncogenic JAK2 kinase (Figure 6D). As 

expected, treatment with both inhibitors significantly reduced migration (DPI, 47.7% 

reduction; Jak inhibitor, 35.3% reduction) as well as MARCKS phosphorylation. Overall, 

these data suggest an important role for NOX in MARCKS phosphorylation and a 

requirement for this protein in cell migration. Future experiments would be necessary to 

define a link between MARCKS phosphorylation and disease development.

Discussion

ROS are important signaling intermediates that participate in the regulation of different 

biological activities, including cell signaling, growth, angiogenesis and differentiation, but 

ROS can also be involved in processes that are detrimental to normal growth, such as 

apoptosis and DNA damage.9 In phagocytic cells the role of superoxide-producing NOX 

proteins has been well established as crucial effectors of host defense mechanisms. 

Mutations that lead to loss of NOX function result in the impaired ability of phagocytic cells 

to defend against pathogens.23 The expression of NOX in non-phagocytic cells would imply 
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additional functions and their role in myeloid neoplasms or other malignancies is just 

beginning to emerge. Our experiments in cells with targeted knockdown of NOX2, NOX4 

and p22phox indicate that these proteins are not significantly involved in the excess 

production of ROS. Consistent with our data, Naughton et al. did not observe changes in 

ROS in response to targeting NOX2 using murine BaF3 cells, but found NOX4 to be 

required for BCR-ABL induced ROS and growth.24 However, NOX4 knockdown data also 

demonstrated that ROS were still reduced when no changes in NOX4 protein levels were 

observed at a later time point. In the absence of additional off target effects, this would 

imply that subliminal changes in NOX4 are sufficient to effect oxidative stress. Our data 

using three patient derived cell lines and p22phox as well as NOX4 knockdown, do not 

support a role of NOX4 in the regulation of the excess production of ROS in human models. 

It has been hypothesized that small amounts of ROS produced by NOX proteins may 

regulate membrane proximal signaling events through redox-sensitive proteins in a variety 

of cells.25 Woo et al. have also recently demonstrated that inactivation of detoxifying 

peroxiredoxins in proximity to the membrane may restrict elevated ROS to the site of 

production26, thus conveying specificity to this process without significantly increasing 

intracellular ROS.

We observed significant growth reduction in KU812, HEL and Molm13 cells with p22phox, 

NOX2 and NOX4 knockdown. NOX activity has previously been shown to be involved in 

transformation, such as by overexpression of NOX1 in Ras transformed NIH3T3 fibroblasts, 

causing increased cell growth and tumor formation in athymic mice.27 In pancreatic 

adenocarcinoma, NOX4 showed a prosurvival role and knockdown resulted in apoptosis, 

likely through AKT and apoptosis signal-regulating kinase 1 dependent mechanisms.28 

Similarly, inhibition of NOX4 was also shown to suppress cell growth in melanoma cells 

associated with partial G2-M cell cycle arrest.29 In addition to growth, our data also 

suggested that NOX proteins are required for migration. Interestingly, we also found in data 

not shown that inducible expression of active Rac (a component of the functional NOX2 

complex) can regulate migration independent of excess production of ROS. Also, NOX can 

show specific subcellular localization, such as membrane ruffles, lipid rafts, and 

lamellipodia, leading to localized production of ROS that is likely to be required for cell-

matrix adhesions, cytoskeletal reorganization and cell migration.25

The primary targets of NOX-produced superoxide are not well characterized and may 

include Rho family GTPases, protein tyrosine phosphatases or other proteins with redox-

sensitive cysteines.9 Our data demonstrate that knockdown of p22phox leads to reduced 

phosphorylation of MARCKS in transformed cells. Also, MARCKS phosphorylation 

required the active JAK2V617F kinase in HEL cells, suggesting a link between the 

transforming kinase activity and NOX function. MARCKS was originally described as 

myristoylated protein kinase C substrate. Phosphorylation of MARCKS is thought to disrupt 

its interaction with acidic phospholipids, resulting in translocation to the actin cytoskeleton, 

where it regulates actin function.30 Cells containing oncogenic tyrosine kinases are already 

associated with spontaneous migration but the regulatory mechanisms are not well 

understood.31 Whereas MARCKS is shown here to be a crucial regulator of this biological 

effect, the potential role of MARCKS kinases, including protein kinase C isoforms, and the 

redox mechanisms involved are not known. Preliminary data suggest that knockdown of 
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p22phox does not affect global activation of PKC isoforms (not shown) and it is therefore 

likely that p22phox specifically targets individual kinases or phosphatases to regulate the 

phosphorylation of MARCKS. Our data do not exclude a potential role of MARCKS in cell 

growth but suggest that there may be different molecules involved that mediate a growth 

advantage through NOX signaling pathways.

Growth and migration in cells transformed by TKOs depends on their active kinase activity 

but it is not known how this is linked to NOX. Our data suggest that in the leukemic cell 

lines tested that all NOX2 and NOX4 components are readily expressed and that this 

expression does not depend on the oncogenic tyrosine kinase activity. NOX2 and NOX4 can 

be regulated at different levels. For example, NOX2 requires active RAC, which has already 

been associated with transformation by BCR-ABL.32 In contrast, NOX4 is constitutively 

active and may be regulated in part through changes in its expression levels. Our data hint at 

a potential regulation of NOX activities at the substrate level. NOX activity depends on the 

presence of molecular oxygen and NADPH, which is the rate-limiting substrate for the 

generation for superoxide, in particular for NOX4.20 We show that the relative levels of 

NADPH in cells transformed by TKOs are elevated. Consequently, treatment with tyrosine 

kinase inhibitors limits the availability of the major NOX substrate NADPH. There are 

multiple sources of NADPH in the cell, but a major mechanism includes the catabolic 

pentose phosphate pathway. Further characterization of changes in this and related catabolic 

pathways in myeloid malignancies will provide a better understanding of the regulation of 

NOX.

Our previous data suggested that glucose metabolism and mitochondrial ROS are important 

for cell growth and survival in BCR-ABL transformed cells.4,18 Here we expand this finding 

and suggest that the superoxide-producing NOX are important regulators of migration in 

myeloid cells transformed by TKOs. It is not known whether this phenotype is specific for 

these diseases and it would be interesting to see whether cells transformed by other 

mechanisms or different types of cancer display a similar dependency on NOX for increased 

migration. NOX effectors are expected to be specifically regulated through NOX-induced 

ROS for the regulation of processes such as invasion and metastasis. Therefore, NOX and 

downstream effectors would make ideal drug targets and blocking NOX mediated biological 

functions could have beneficial effects in leukemia therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression and targeting of NOX proteins in cells transformed by tyrosine kinase 
oncogenes
A-B. Patient derived KU812, HEL and Molm13 cells were used to determine the expression 

of NOX proteins and their functional components. A. Gene expression of NOX2, NOX4, 

NOX5, p22phox, p40phox, p47phox, p67phox and actin was determined by RT-PCR. B. 
Cellular expression of NOX2, NOX4, and p22phox proteins was determined in response to 

targeted knockdown with specific or control shRNA, as indicated. C. Superoxide production 
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in response to PMA (50 μM) treatment was measured using a chemiluminescence method in 

Molm13 cells containing control shRNA or p22phox-targeting shRNA (n=3, *p<0.05).
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Figure 2. Oxygen consumption in cells transformed by tyrosine kinase oncogenes
A Clarke-type electrode and temperature-controlled chamber were used to measure cellular 

oxygen consumption. A. BaF3 cells expressing either BCR-ABL, JAK2V617F or FLT3ITD 

were compared to the parental cell line. B-C. KU812, HEL and Molm13 cells were treated 

with tyrosine kinase inhibitors (B) or cells with p22phox knockdown were used (C). (n=3, 

*p<0.05).
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Figure 3. ROS in cells transformed by tyrosine kinase oncogenes
Intracellular ROS levels were measured by DCF-DA (A, B, D) or MitoSox (C) staining in 

tyrosine kinase transformed cells or in response to targeted approaches. A. BaF3 cells 

expressing either BCR-ABL, JAK2V617F or FLT3ITD were compared to the parental cell 

line (left panel). B-D. KU812 (BCR-ABL), HEL (JAK2V617F) and Molm13 (FLT3ITD) 

cells were compared to kinase inhibitor treated cells (18h), as indicated (B-C) or control 

cells were compared to cells with NOX2, NOX4 and p22phox knockdown (D). (n=3, 

*p<0.05).
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Figure 4. p22phox, NOX2 and NOX4 are required for optimal growth and migration
KU812, HEL and Molm13 cells were used to determine the biological consequences of 

p22phox, NOX2 and NOX4 knockdown. Growth (A, C) and relative migration (B, D) were 

determined in KU812, HEL and Molm13 cells with p22phox knockdown (A-B) and NOX2 

or NOX4 knockdown (C-D) as well as in control cells (n=3, *p<0.05).

Reddy et al. Page 17

Leukemia. Author manuscript; available in PMC 2014 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Tyrosine kinase oncogenes increase NADPH levels but not NOX expression
A. Changes in gene expression of NOX and their components in response to imatinib (1μM; 

●) in KU812 cells, Jak inhibitor (1μM; ◆) in HEL cells and midostaurin (50nM; ▲)) in 

Molm13 cells were determined by real-time PCR relative to their respective p-values 

(volcano plot). Open symbols indicate changes in expression of Pim1. The horizontal dashed 

line indicates the p=0.005 significance level and the vertical dotted lines indicate 3-fold 

changes. B-C. NADPH levels were measured in whole cell extracts. BaF3 cells expressing 

BCR-ABL, JAK2V617F and FLT3ITD were compared to parental BaF3 cells (B). 

Untreated KU812, HEL and Molm13 cells were compared to cells treated with imatinib 

(1μM), Jak inhibitor (1μM) and midostaurin (50nM), respectively (C).
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Figure 6. Functional MARCKS expression is required for migration
A. KU812, HEL and Molm13 cells with p22phox knockdown were used to determine 

phosphorylation of MARCKS, Akt, ERK1/2, or GSK3β and compared to control shRNA-

expressing cells. B. HEL cells were transfected with either control siRNA or MARCKS-

specific siRNA. Relative expression (left panel) and migration (right panel) were determined 

24h after transfection. C-D. HEL cells were left untreated or treated for 6h with DPI (5μM) 

(C) or for 18h with Jak inhibitor (1μM) (D) and relative migration (top) or MARCKS 

phosphorylation (bottom) were determined. (n=3, *p<0.05).
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