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Abstract: Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation- 
induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. 
The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the 
targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview 
of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and 
their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting 
chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this 
review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new 
targets, improving selectivity, and reducing toxic and side effects. 
Keywords: ferroptosis inducers, small molecules, PROTACs, PDT, SDT, nanomaterials

Introduction
The latest data released by the International Agency for Research on Cancer (IARC) indicates that there were 20 million 
new cancer cases globally in 2022, resulting in 9.7 million deaths. This data highlights the increasing global burden of 
cancer.1 However, the effectiveness of existing cancer treatments is concerning, as tumor cell resistance is reducing the 
efficacy of conventional therapies like radiotherapy and chemotherapy.2 Additionally, refractory cancers like small cell 
lung cancer (SCLC),3 triple-negative breast cancer (TNBC),4 and pancreatic cancer5 present significant challenges in 
oncology treatment due to their resistance to existing therapies. Ferroptosis, a novel iron-dependent form of programmed 
cell death first proposed by Dr. Brent R. Stockwell in 2012, is distinct from apoptosis, necrosis, and autophagy.6 It is 
triggered by glutathione (GSH) depletion, decreased activity of glutathione peroxidase 4 (GPX4), failure of lipid oxides 
to be metabolized by GPX4, and Fe2+-mediated oxidation of lipids leading to the generation of reactive oxygen species 
(ROS) that promote ferroptosis.7 Ferroptosis provides a new way of thinking about cancer treatment. Ferroptosis 
induction therapy has several natural advantages for cancer treatment. Firstly, the unique metabolism of cancer cells, 
the high load of ROS, and their specific mutations make some of them sensitive to ferroptosis,8 eg, clear cell renal cell 
carcinoma (ccRCC),9 pancreatic ductal adenocarcinoma,10 and TNBC.11 Cancer cells typically require more iron than 
normal cells to proliferate, and this iron dependence makes them more susceptible to ferroptosis.12 Cancer cells with 
a high mesenchymal state were found to be more resistant to a wide range of cancer treatments but were particularly 
susceptible to ferroptosis inducers.13 Also, ferroptosis induction therapy can be used in combination with conventional 
tumor treatments to enhance their therapeutic effects in certain malignancies.14

Ferroptosis-inducing therapies have emerged as a crucial strategy in oncology, with ongoing advancements in the 
development and study of various small molecule drugs targeting ferroptosis-regulating pathways.15 This review 
provides an overview of the regulatory mechanisms of ferroptosis and delves into the mechanisms of traditional small 
molecule ferroptosis inducers and their effects on various tumors. It also highlights the recent progress in inducing 
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ferroptosis through innovative methods such as PROTACs, PDT, SDT, and nanomaterials. Furthermore, the review 
addresses the challenges and opportunities in developing ferroptosis-inducing agents, including the exploration of new 
targets, enhancement of selectivity, and mitigation of toxic and side effects (Figure 1).

Ferroptosis Mechanism
Ferroptosis is a new form of cell death characterized by iron-dependent accumulation of lipid peroxidation to lethal 
levels.16 It has been shown that in mammalian cells, ferroptosis is mainly regulated by iron homeostasis, lipid 
metabolism, and glutathione-dependent redox homeostasis (Figure 2).

Iron Homeostasis
Iron is a trace element essential for maintaining the life of living organisms. It is involved in various metabolic 
pathways and exists in the human body mainly in Fe2+ and Fe3+.17 Two molecules of Fe3+ can bind to a transferrin 
(TRF) for transport in vivo and transport iron into the cell by binding to the transferrin receptor TFR1 on the cell 
surface to form the TF-Fe3+-TFR1 complex.18 Fe3+ is reduced to Fe2+ by the Six-Transmembrane Epithelial Antigen of 
Prostate 3 (STEAP3),19 which accumulates in cells to form the labile iron pool (LIP).20 SLC11A2 regulates this 
process. Fe2+ in LIP participates in the Fenton reaction to generate reactive oxygen species (ROS) substances 
represented by hydroxyl radicals (·OH).21 Accumulated ROS will undergo lipid peroxidation, resulting in loss of 
cellular function and cellular ferroptosis.22 Autophagic ferritin degradation in lysosomes mediated by nuclear receptor 
coactivator 4 (NCOA4) can induce ferroptosis by releasing free iron from ferritin.23 In iron metabolism, the Feature 
Pyramid Network (FPN) is the only protein that can translocate iron from the cell, thereby reducing the intracellular 
Fe2+ concentration.24

Figure 1 Ferroptosis in cancer therapy.
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Lipid Metabolism
Lipid metabolism is strongly associated with ferroptosis.25 Lipid peroxidation, a process in which oxygen combines with 
lipids to form peroxyl radicals to produce lipid peroxides, is critical to the onset of ferroptosis.26 Polyunsaturated fatty 
acids (PUFAs) containing two or more double bonds are involved in the lipid oxidation process of ferroptosis.27 

Arachidonic acid (AA) or adrenaline (AdA) was acylated to AA/AdA-CoA by Abstract Long-chain acyl-coenzyme 
A (CoA) synthase 4 (ACSL4) and then by Lysophosphatidylcholine acyltransferase 3 (LPCAT3) to PE-AA/AdA.28 PE- 
AA/AdA is involved in downstream ferroptosis’s non-enzymatic and enzymatic oxidation reactions.29 Non-enzymatic 
reactions refer to the reaction of ·OH produced by the Fenton reaction with lipids to form lipid peroxides, which 
eventually undergo lipid peroxidation, leading to ferroptosis.30 Enzymatic reactions include two kinds. One is that PE- 
PUFA is catalyzed by lipoxygenase (LOX) to form toxic products such as Malondialdehyde (MDA) and 
4-Hydroxynonenal (4-HNE), which react with DNA bases, proteins, and other nucleophilic molecules to cause severe 

Figure 2 Ferroptosis mechanisms and their associated inducers of ferroptosis. 
Abbreviations: TF, Serum Transferrin; TFR1, The membrane protein Transferrin Receptor1; NCOA4, Nuclear receptor coactivator 4; STEAP3, Six-Transmembrane 
Epithelial Antigen of Prostate 3; DMT1, Divalent Metal Transporter 1; PE-PUFA, Phosphatidyl Ethanolamine-Polyunsaturated Fatty Acids; LOX, Lipoxygenase; Ferroportin1, 
FPN1, Ferritin; Membrane iron transport protein 1; PL-PUFA-OOH, Lipid hydroperoxide; ACSL4, Acyl-CoA Synthetase Long-Chain Family Member 4; SLC3A2, 
Recombinant Solute Carrier Family 3, Member 2; MDA, Malondialdehyde; 4HNE, 4-hydroxynonenal; POR, Cytochrome P450 oxidoreductase; FMN, Flavin mononucleotide; 
FAD, Flavin adenine dinucleotide; SLC7A11, Recombinant Solute Carrier Family 7, Member 11; GCL, Glutamate-cysteine ligase; GSS, Glutathione synthase; GSH, 
Glutathione; GPX4, Glutathione Peroxidase 4; GSSG, Oxidized glutathione; Glu, Glutamic acid; Nrf2, Nuclear factor E2-related factor 2; tumor suppressor, p53; Keap1, 
Recombinant Kelch-like ECH Associated Protein 1; ARE, Antioxidant response element; HO-1, Heme oxygenase-1; FSP1, Ferroptosis Inhibitory Protein 1; CoQ10, 
Coenzyme Q10; CoQ10H2, Panthenol; NADPH, Nicotinamide Adenine Dinucleotide Phosphate; Ipp, Isopentenyl pyrophosphate.
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harmful effects.31 The other is Cytochrome P450 reductase (POR), which promotes lipid peroxidation and leads to 
ferroptosis.32 Thus, ACSL4, LOX, and LPCAT3 are compelling targets for the action of ferroptosis inducers.

Antioxidant Pathways
The intracellular antioxidant pathway resists the onset of ferroptosis by neutralizing lipid peroxides and is a critical 
ferroptosis defense system in the body.33 Inhibiting antioxidant pathways disrupts ferroptosis defenses, leading to the 
induction of ferroptosis. Described below are a few of the major pathways involved in the induction of ferroptosis.

Xc−-GSH-GPX4
The Xc−-GSH-GPX4 axis is a central regulatory pathway for ferroptosis.34 The Cystine/Glutamate Antiporter (System Xc−) is 
on the cytoplasmic membrane. It contains solute carrier family 3 member 2 Gene (SLC3A2) and solute carrier family 7 
member 11 Gene (SLC7A11, xCT), which is responsible for the transfer of cysteine(Cys) into the cell and glutamate(Glu) out 
of the cell.35 Cysteine that is moved into the cell by system Xc− can synthesize glutathione (GSH), which has antioxidant 
properties and strong reducing properties, with glutamate and glycine catalyzed by Glutathione synthetase (GSS) and 
Glutamate-cysteine ligase (GCL).36 GPX4 converts GSH in cells to oxidized glutathione (GSSG).37 In this process, GSH 
acts as an electron donor to convert toxic lipid peroxides in the cell to non-toxic Lipid alcohol (PL-PUFA-OH).38 GSH and 
GPX4 are essential for maintaining intracellular redox balance and inhibiting the occurrence of ferroptosis. Inhibition of GSH 
synthesis through inhibition of system Xc− and direct inhibition of GPX4 are important mechanisms of action of ferroptosis 
inducers. Selenocysteine is one of the essential amino acids for the active group of GPX4.39 Thus, selenocysteine is an 
important target for a variety of GPX4 inhibitors.

FSP1-CoQ10-NAD (P) H Pathway
The FSP1-CoQ10-NAD(P)H pathway and the GSH-GPX4 pathway are two parallel lipid antioxidant pathways.40 CoQ10 
(ubiquinone) is a lipophilic free radical trapping antioxidant that blocks the propagation of lipid peroxides and inhibits 
ferroptosis.41 Its reduced form of CoQ10H2 (panthenol) reduces oxidative stress and inhibits lipid ROS accumulation.42 

Ferroptosis suppressor protein 1 (FSP1) reduces CoQ10 to CoQ10H2 in response to NADPH and catalyzes the 
regeneration of CoQ10 via NAD(P)H.43 The FSP1-CoQ10-NAD(P)H pathway exerts antioxidant effects independently 
of the system Xc−-GSH-GPX4 axis and inhibits ferroptosis. Inhibition of FSP1 blocks the antioxidant effects of the 
FSP1-CoQ10-NAD(P)H pathway, thereby inducing ferroptosis.40

Nrf2/ARE-GPX4 Pathway
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular antioxidant capacity. Nrf2 regulates the 
expression of antioxidant and pro-electrical stress genes. It also participates in other important pathways such as lipid 
metabolism, iron homeostasis and energy metabolism.44 Kelch-like ECH-associated protein 1 (Keap1) is an active 
inhibitor of Nrf2. Under normal conditions, Nrf2 binds to Keap1. Under oxidative stress, Nrf2 is detached from the 
Keap1 binding site. It rapidly translocates to the nucleus, interacting with the Antioxidant Response Element (ARE) in 
the promoter region of mRNAs encoding detoxification enzymes and cytoprotective genes to enhance the expression of 
downstream target genes.45 The downstream target genes of Nrf2 include genes related to iron metabolism, genes related 
to NADPH regeneration, and genes related to GSH metabolism.46 Activation of these target genes will effectively 
maintain the redox homeostasis of the cell. Nrf2 also binds to Heme Oxygenase-1(HO-1) and inhibits the occurrence of 
lipid peroxidation.47 Furthermore, activation of Nrf2 reduces cellular iron uptake, increases iron storage, and limits ROS 
production.48 This shows that Nrf2 plays an important protective role against ferroptosis. Inhibition of Nrf2 is also a very 
important mechanism of action for ferroptosis inducers.49

Mevalonate Pathway
The Mevalonate pathway (MVA pathway) includes the generation of isopentenyl pyrophosphate (IPP), squalene and 
CoQ10.50 Selenocysteine is one of the amino acids in the active center of GPX4, and embedding it in GPX4 requires 
a special transporter, selenocysteine tRNA.51 IPP promotes selenocysteine tRNA maturation and GPX4 synthesis. Also, 

https://doi.org/10.2147/DDDT.S472178                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2024:18 2488

Luo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


IPP is a precursor of CoQ10 and can synthesize CoQ10 in the presence of acetyl-coenzyme A (Acetyl-CoA).52 Thus, the 
MVA pathway connects the system Xc−-GSH-GPX4 axis and the NADPH-FSP1-CoQ10 pathway.

p53 Gene
The p53 gene is a classical oncogene. As a transcription factor, p53 activates or represses the transcription of multiple 
downstream target genes to perform its function.53 The p53 can transcriptionally repress SLC7A11 expression at the transcrip-
tional level, thereby promoting the occurrence of ferroptosis in cells.54 Also, p53 releases Arachidonate 12-lipoxygenase 
(ALOX12). Free ALOX12 oxidizes cell membrane phospholipids’ polyunsaturated fatty acid chains, leading to ferroptosis.55

Ferroptosis Inducers
Traditional Small Molecular Compounds
With the increasing research on ferroptosis, more and more inducers targeting ferroptosis have been identified and 
developed. Traditional small molecular compounds are an essential component of the ferroptosis inducer field. The 
following section will summarise these ferroptosis inducers in terms of the pathways of action of these drugs (Table 1).

Table 1 Small Molecular Ferroptosis Inducers

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

Erastin Quinazolinone 
derivatives

Inhibition of the 
expression of SLC7A11

ALL xenograft 
model; Melanoma 
xenograft model; 
Hepatocellular 

carcinoma xenograft 
model

[56–58]

Piperazine erastin 
(PE)

Piperazine fragment- 
containing derivatives 

of Erastin

Inhibition of SLC7A11 
expression

Fibrosarcoma 
xenograft model

[59]

Imidazole ketone 
erastin (IKE)

Carbonyl-containing 
derivatives of Erastin

Inhibition of SLC7A11 
expression

DLBCL xenograft 
model; Lymphoma 
xenograft model; 

CIA mouse model

[60]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

FA16 2-Trifluoromethyl 
benzimidazole 

derivative

Suppression system Xc− Hepatocellular 
carcinoma xenograft 

model

[61]

Lepadin H Natural product 
alkaloid

Suppression of SLC7A11 
expression in a p53- 
dependent manner

Hela cells; Melanoma 
xenograft model

[62]

Lepadin E Natural product 
alkaloid

Suppression of SLC7A11 
expression in a p53- 
dependent manner

Hela cells; 
B16F10 cells

[62]

Sulfasalazine (SAS) Sulfonamide antibiotic Inhibition of SLC7A11 
expression

TE-1 cells; DU-145 
cells; Prostate cancer 

xenograft model; 
Melanoma xenograft 
model; Glioblastoma 

xenograft model

[63–65]

Sorafenib Protein kinase 
inhibitor

Inhibition of SLC7A11 
expression; Inhibition of 

FSP1

Hepatic stellate cell [66]

Olaparib Poly ADP transferase 
inhibitor

Suppression of SLC7A11 
expression in a p53- 
dependent manner

Ovarian cancer 
xenograft model

[66]

Flubendazole Anti-malarial medicine Suppression of SLC7A11 
expression in a p53- 
dependent manner

Prostate cancer 
xenograft model

[67]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

6-Thioguanine 
(6-TG)

Anti-leukemic drug Suppression system Xc− Gastric cancer 
xenograft model

[68]

Metformin Antidiabetic 
medication

Suppression of SLC7A11 
expression; Suppression 

of Nrf2 expression

H1299 cells; A549 
cells; Breast cancer 

xenograft model

[69,70]

Solasonine (SS) Natural product 
alkaloid

Suppression of SLC7A11 
expression in a p53- 
dependent manner

Nasopharyngeal 
cancer xenograft 
model; Pancreatic 
cancer xenograft 

model

[71,72]

Curcumin Natural polyphenols Upregulation of SLC1A5 
expression; Activation of 

autophagy

Breast cancer 
Xenograft model; 

Non-small cell lung 
cancer xenograft 

model

[73,74]

RAS-selective 
lethal 3 (RSL3)

Tetrahydro-β- 
carboline derivative

Covalent inhibition of 
GPX4; increased ROS 

and cellular LAP

Fibrosarcoma 
xenograft model; 
Hepatocellular 

carcinoma xenograft 
model

[75,76]

Compound 26a RSL3 derivative Inhibition of GPX4 Breast Cancer 
Xenograft Model

[77]

Compound 24 RSL3 derivative Inhibition of GPX4 A xenograft model 
of diffuse large 
B lymphoma

[78]

(Continued)

Drug Design, Development and Therapy 2024:18                                                                             https://doi.org/10.2147/DDDT.S472178                                                                                                                                                                                                                       

DovePress                                                                                                                       
2491

Dovepress                                                                                                                                                              Luo et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

ML162 GPX4 covalent 
inhibitor

Covalent inhibition of 
GPX4

HRASG12V cell line [79]

ML210 GPX4 covalent 
inhibitor

Covalent inhibition of 
GPX4

HRASG12V cell line [79]

Compound C18 GPX4 covalent 
inhibitor

Covalent inhibition of 
GPX4

TNBC xenograft 
model

[80]

FIN56 GPX4 inhibitor Induction of GPX4 
degradation; activation of 

SQS

NCI60 cell line; 
Glioblastoma 

xenograft model

[81]

N6F11 GPX4 degradant Induction of GPX4 
degradation

Hs 578T cells; BxPC- 
3 cells; Hela cells

[82]

Metamizole 
sodium

COX inhibitor Inhibition of GPX4-u46c 
- c10a - c66a enzyme 

activity

[83]

LOC1886 GPX4 inhibitor Covalent inhibition of 
GPX4

G401 cell line [84]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

CH004 CBS inhibitor Inhibition of CBS activity Hepatocellular 
carcinoma xenograft 

model

[85]

BSO GCL inhibitor Inhibition of GSH 
synthesis

Breast cancer 
xenograft model; 

M14 cells

[86]

Simvastatin Statin hypolipidemic 
drug

Mevalonate pathway LX-2 cells [87]

Orlistat Lipase inhibitor Induction of lipid 
peroxidation; inhibition 

of GPX4

Lung cancer 
xenograft model; 
Pancreatic cancer 
xenograft model

[88,89]

Tubastatin A HDAC6 inhibitor Inhibition of GPX4 TNBC xenograft 
model

[90]

Gliotoxin Mycotoxins Inhibition of GPX4; 
Targeted protein 

SLC7A11

H1975 cells; MCF-7 
cells

[91]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

Timosaponin AIII Steroidal saponin Promotes GPX4 
ubiquitination and 

degradation; lipophagy

Non-small cell lung 
cancer xenograft 
tumor models

[92]

Compound31 Indirubin derivative Promotes GPX4 
ubiquitination

Colon cancer 
xenograft tumor 

model

[93]

Sulforaphane Natural 
isothiocyanate

GSH depletion; 
decreased GPX4 

expression

U-937 cells [94]

iFSP1 Inhibitor targeting 
FSP1

Inhibition of FSP1 HCC cells [95]

icFSP1 3-phenylquinazolinone Inhibition of FSP1 Melanoma xenograft 
tumor model

[96]

FSEN1 Non-competitive 
inhibitor of FSP1

Inhibition of FSP1 A549 cells; H460 
cells

[97]

ViFSP1 FSP1 inhibitor Inhibition of FSP1 HT-1080 cells; A375 
cells; Huh7 cells

[98]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

NPD4928 FSP1 inhibitor Inhibition of FSP1 PC-3 cells; MKN74 
cells; DU145 cells

[99]

ShtIX Natural novel 
isoflavonoid

Inhibition of the Nrf2/ 
HO-1 signaling pathway

Non-small cell lung 
cancer xenograft 
tumor models

[100]

Trigonelline Natural alkaloid Inhibition of Nrf2 Non-small cell lung 
cancer xenograft 
tumor models

[101]

APAP NSAIDs Inhibition of Nrf2 Non-small cell lung 
cancer xenograft 
tumor models

[102]

Sunitinib Multitargeted tyrosine 
kinase inhibitor

Inhibition of Nrf2 H9c2 cells [103]

Baicalin Natural-derived 
flavonoid

Downregulation of 
FTH1; inhibition of Nrf2

Bladder cancer 
xenograft tumor 

model; 
Osteosarcoma 

xenograft tumor 
model

[104]

Matrine Natural alkaloid Inhibition of x-CT; 
activation of TFR; 
inhibition of Nrf2; 

activation of Piezo1-Ca2 
+ signaling

Cervical cancer 
xenograft tumor 
model; L02 cells

[105]

NCTD Demethylated 
analogue of 
cantharidin

Suppression of NRF2/ 
HO-1/GPX4/xCT Axis

Ovarian cancer 
xenograft tumor 

model

[106]

Wogonin Natural-derived 
Flavonoid

Suppression of Nrf2/ 
GPX4 axes

Pancreatic cancer 
xenograft tumor 

model

[107]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

Glyphosate Organophosphorus 
herbicide

Suppression of Nrf2/ 
GSH/GPX4 axes

Normal mouse 
model

[108]

Pizotifen malate 
(PZM)

5-HT2 receptor 
antagonist

Inhibition of Nrf2 Xenograft tumor 
model of esophageal 
squamous carcinoma

[109]

Brusatol (Bru) Bioactive compound Inhibition of GSH 
synthesis; inhibition of 

Nrf2

Xenograft tumor 
model of esophageal 
squamous carcinoma

[110]

S-3’-hydroxy-7’, 2’, 
4’- 
trimethoxyisoxane 
(ShtIX)

Isoflavans compound Inhibition of Nrf2/HO-1 
pathway

Non-small cell lung 
cancer xenograft 
tumor models

[100]

Lapatinib Tyrosine kinase 
inhibitor

Targeting ELOVL6/ 
ACSL4; Inhibition of 
VEGFR2/Nrf2/Keap1 
pathway; Inhibition of 

GSH

HCT116 cells; 
Glioma xenograft 

tumor model; 
Gastric cancer 

xenograft tumor 
model

[111]

Erianin Bioactive natural 
compound

Blockade of the JAK2/ 
STAT3/SLC7A11 

pathway; promotion of 
N6-Methyladenosine 

modification of ALOX12/ 
P53 mRNA; inhibition of 

Nrf2

Hepatocellular 
carcinoma xenograft 

tumor model; 
Kidney cancer 

xenograft tumor 
model

[112]

Artesunate Artemisia extract Increased lipid 
peroxidation; inhibition 

of GSH

Hepatocellular 
carcinoma xenograft 

tumor model

[113]

QD394 ROS inducer Add ROS PANC-1 cells [114]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

QD394-Me ROS inducer Add ROS PANC-1 cells [114]

Imetelstat Telomerase inhibitor Increased synthesis and 
subsequent oxidation of 
PUFA phospholipids; lipid 

phagocytosis

Patients with (AML) [115]

Disulfiram ALDH1 inhibitor Induction of lipid 
peroxidation

U251 cells; LN229 
cells

[116]

Quercetin Flavonoid compound Increased ROS 
generation; increased 

TFR

MCF-7 cells; MDA- 
MB-231 cells; HEC- 

1-A cells

[117]

Darapladib Lp-PLA2 inhibitor Inhibition of Lp-PLA2 Hs746T cells; SNU- 
484 cells

[118]

Auranofin (AUR) Drug for rheumatoid 
arthritis

Inhibits TXNRD activity; 
increases lipid 
peroxidation

Huh7 cells; 
HEK293T cells; 
Normal mouse 

model

[119]

Fe(hino)3 Redox-active complex Increase in Fe TNBC xenograft 
tumor model

[120]

(Continued)
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Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

SSPH I Natural steroidal 
saponin

Up-regulation of SLC7A5 
expression; up-regulation 
of TFR and FPN protein 

expression

HepG2 cells [121]

Polyphyllin B Natural product Promotes ferric ion 
transport and ferritin 

autophagy; binds GPX4

Orthotopic gastric 
cancer mouse model

[122]

Ochratoxin Mycotoxin Up-regulation of TFR1 
and FTH expression; 

down-regulation of FPN 
expression

HEK-293 cells [123]

BPDE In vivo metabolites of 
BP

Upregulates iron 
metabolism; promotes 

GPX4 catabolism

Swan 71 cells; HTR- 
8/Svneo cells

[124]

Juglone Natural quinone Increased iron 
accumulation; GSH 

depletion

A549 cells [125]

Withaferin A Natural steroidal 
lactone

Increased iron 
accumulation; inhibition 
of GPX4; inhibition of 

Nrf2

Pancreatic cancer 
metastasis model; 

Hepatocellular 
carcinoma xenograft 

tumor model

[126]

10p Urea derivative Add ROS HT-29 cells [127]

(Continued)
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Targeting Antioxidant Pathways
Targeting System Xc− 

The synthesis of glutathione (GSH) heavily relies on the cystine imported into the cell through system Xc−.130 Hence, 
system Xc− significantly influences the progression of ferroptosis. Conversely, the inhibitory function of system Xc− 

hinders cystine uptake, leading to decreased GSH production, cellular stress, and ultimately triggering ferroptosis.131

Erastin, a well-known inducer of ferroptosis, was first discovered in 2003 by Dolma et al.132 This quinazolinone 
derivative inhibits system Xc− by targeting SLC7A11.133 Moreover, erastin promotes oxidation and disruption of the 
mitochondrial permeability transition pore (mPTP) and acts through the Voltage-Dependent Anion Channel (VDAC), 
demonstrating anti-tumour effects.134 Erastin effectively triggers ferroptosis in various cell types, including human 
promyelocytic leukemia cells (HL60),135 endometriotic ectopic cyst cells (EESC),136 and renal tubular cells.137 Not 
only does erastin induce ferroptosis in cancer cells, but it also enhances the efficacy of traditional anticancer drugs like 
adriamycin,138 cisplatin,139 temozolomide,140 and cytarabine141 on specific cancer cell lines. However, Erastin’s limita-
tions in stability, water solubility, and pharmacokinetic properties render it unsuitable for in vivo applications.142

The quinazolinone present in erastin’s structure is crucial for its cell-inhibitory effects. By modifying the structure of 
erastin, researchers have developed several drugs that outperform erastin. Wan Seok Yang et al incorporated a Piperazine 
Fragment into erastin’s aniline to create Piperazine erastin (PE).59 PE exhibits higher water solubility and metabolic 
stability compared to erastin (water solubility: 0.086 × 10−3M for erastin, 1.4 × 10−3M for PE). Imidazole ketone erastin 
(IKE) is an erastin analogue containing a carbonyl group, designed by Marie-Helene Larraufie et al.143 IKE induces 
ferroptosis and demonstrates anti-tumour effects in a diffuse large B cell lymphoma (DLBCL) xenograft model.144 IKE 
shows a superior inhibition rate and metabolic stability when compared to erastin, making it more suitable for in vivo 
assessments and offering promising application prospects.144

Yuying Fang et al utilized phenotypic screening to discover a novel ferroptosis inducer known as 2-(trifluoromethyl) 
benzimidazole derivatives FA-S.61 They further developed 30 derivatives based on this scaffold, with FA16, containing 
the 4-SO2NMe2 group, demonstrating the highest lethality. By inhibiting the Xc− transporter, FA16 effectively triggers 
ferroptosis in various human cancer cell lines.61 The IC50 value of FA16 in HT1080 cells was measured at 1.26 μM. 
Moreover, in the HepG2 xenograft model, FA16 displayed significant inhibition of tumor growth. Both in vivo and 
in vitro studies have confirmed the favorable safety profile of FA16.61

Table 1 (Continued). 

Inducers Structure Types Mechanism of Action Experimental 
Models

Ref.

JB3 Sorafenib derivative Suppression system Xc− Lung cancer 
xenograft model

[128]

GIC-20 ML162 derivative Covalent inhibition of 
GPX4

HT1080 xenograft 
model

[129]
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Lepadins, natural alkaloids derived from the marine didemnum family, exhibit diverse biological activities including 
anti-cancer and anti-malarial properties.145 Wenjun Wang et al introduced a novel synthetic approach to get seven 
compounds within the Lepadins series. Notably, lepadins E and H demonstrated notable cytotoxicity in cellular assays, 
enhancing p53 expression, elevating ROS and lipid peroxidation levels, reducing SLC7A11 and GPX4 expression, up- 
regulating ACSL4, and triggering ferroptosis through the classical p53-SLC7A11-GPX4 pathway.62 In animal studies, 
Lepadin H effectively suppressed melanoma growth. Nevertheless, Lepadins E and H exhibited only modest selectivity 
towards cancer cells over normal cells, necessitating further investigation into their safety profile.62

Solasonine (SS) is a natural alkaloid-like compound extracted from potato tubers with anti-cancer and anti-arthritic 
effects.146 Research has demonstrated that SS exhibits toxicity towards various cancer cell lines, including hepatocellular 
carcinoma,147 lung cancer,148 and gastric cancer cells.149 The induction of ferroptosis in lung adenocarcinoma by SS is 
linked to redox imbalance and mitochondrial dysfunction.150 In pancreatic cancer cells, SS triggers ferroptosis through 
the TFAP2A/OTUB1 SLC7A11 axis,71 while in liver cancer cells, it disrupts the GSH-GPX4 redox system to induce 
ferroptosis.151

Curcumin, a polyphenolic compound derived from turmeric rhizomes, possesses chologogic, antimicrobial, and anti- 
cancer properties.152 Studies have shown that curcumin induces ferroptosis in various tumors such as non-small cell lung 
cancer,73 breast cancer,74 and glioblastoma,153 each with distinct mechanisms. For instance, curcumin inhibits breast 
cancer by up-regulating SLC1A5 expression, a crucial glutamine transporter.74 In follicular thyroid carcinoma, curcumin 
induces ferroptosis by increasing Heme Oxygenase-1 (HO-1) expression.154 The induction of ferroptosis in non-small 
cell lung cancer and hepatic stellate cells involves the activation of autophagy.155

Sulfasalazine (SAS) is an anti-inflammatory agent commonly used to treat chronic inflammatory diseases.156 It is 
a potent inhibitor of system Xc− that characteristically inhibits cystine transport mediated by SLC7A11.54 SAS can 
effectively induce ferroptosis in tumor cells such as Multiple myeloma (MM) cells,157 Esophageal cancer (EC) cells63 

and TNBC cells.158 Sorafenib is a protein kinase inhibitor approved for the treatment of hepatocellular carcinoma and 
advanced renal cell carcinoma.159 It attenuates hepatic fibrosis and liver injury by inhibiting systemic Xc− induced 
ferroptosis in hepatic stellate cells.160 Sorafenib treatment was accompanied by a significant increase in Cyclooxygenase- 
2 (COX2) expression and a decrease in SLC7A11 and GPX4 proteins. Yun-Jeong Kim et al designed and synthesized 
JB3, a derivative compound of sorafenib, which showed significant tumor growth inhibition in both in vivo and in vitro 
experiments.128 However, it has also been suggested that sorafenib fails to trigger ferroptosis in a wide range of cancer 
cell lines.161 Its cytotoxic effects in various cell lines, including HT1080, HEK293T and B16F10 cells, could not be 
prevented by ferroptosis inhibitors. The ability and mechanism of action of sorafenib as an ferroptosis inducer remains 
controversial. Marketed drugs such as the PARP inhibitor olaparib,162 the anti-malarial medicine flubendazole,67 and the 
anti-leukemic drug 6-Thioguanine (6-TG),68 which act on a variety of diseases, have also been found to Anti-tumour 
effect by inhibiting system Xc−-induced ferroptosis in cells. The classic Antidiabetic Drug metformin has also been 
found to inhibit breast cancer by inducing ferroptosis through down-regulation of SLC7A11 expression.69

Targeting GSH-GPX4 
GPX4 is a central regulator of ferroptosis, and inhibition of GPX4 is an important mechanism of action for ferroptosis 
inducers.

RAS-selective lethal 3 (RSL3) is a Tetrahydro-β-carboline (THBC) identified by Wan Seok Yang et al in 2008.163 As 
a well-known inducer of ferroptosis, RSL3 effectively hinders the growth and proliferation of various cancer cells, such 
as those found in lung, breast, and liver cancers. By directly binding to selenocysteine residues in the GPX4 catalytic site, 
RSL3 deactivates them, leading to an increase in ROS and cellular LIP levels. This results in the accumulation of 
intracellular lipid peroxides and triggers ferroptosis.164 It has been observed that while RSL3 alone does not induce 
ferroptosis in glioblastoma, its combination with NF-κB pathway activation does.75 However, the clinical use of RSL3 is 
hindered by side effects and drug resistance, necessitating further research and improvement for its application.165

Congjun Xu et al synthesized a series of novel and efficient GPX4 inhibitors using RSL3 as lead-compound and 
scaffold hopping strategy.77 By determining the compounds’ IC50 values and GPX4 inhibition in various cells, compound 
26a containing Oxazole Fragment was identified as the most superior GPX4 inhibitor. Compound 26a inhibited GPX4 by 
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71.7% at 1.0 μM with an IC50 value of 0.15 μM in HT1080 cells.77 It significantly inhibited tumor growth in a 4T1 
xenograft model without significant toxicity. 26a ameliorates the selectivity and cytotoxicity problems of conventional 
chloroacetamide-based GPX4 inhibitors.77

In addition, John T. Randolph et al designed and synthesized ferroptosis inducer using RSL3 as a lead compound 
24.78 Compound 24 has similar cell-killing activity (IC50 = 0.117 μM) and higher plasma stability (t1/2 >5 h) in mouse 
plasma compared to RSL3, but it has limited efficacy as a single-agent tumor-targeting therapy.78

Michel Weïwer et al identified two novel molecular probes ML162 and ML210 by high throughput screening.79 Both 
ML162 and ML210 are covalent inhibitors of GPX4, inactivating GPX4 selenocysteine residues by covalently binding 
them. ML162 is similar to RSL3 and also has the chloroacetamido group. However, it is now proposed that RSL3 and 
ML162 are not direct inhibitors of GPX4 but Thioredoxin reductase 1 (TXNRD1).166 TXNRD1 is another cytoplasmic 
selenoprotein that regulates intracellular redox and is a newly proposed key regulator and drug target for ferroptosis.167 

ML210 is a compound containing nitroisoxazoles. ML210 has an intact cell-dependent inability to interact with purified 
GPX4 protein. It must be activated in intact cells to produce the critical metabolite JKE-1674 and undergo additional 
cellular activation and dehydration to generate an electrophile JKE-1777 that binds to GPX4.168 GPX4 inhibitors acting 
via nitrile oxide exhibited significant selectivity for GPX4 and reduced off-target effect compared to chloroacetamide- 
based GPX4 inhibitors.168

Conventional chloroacetamide GPX4 inhibitors suffer from off-target effect, poor stability and selectivity, limiting 
their use in in vivo therapy.169 In order to optimize these inhibitors, Tingting Chen et al performed structural optimization 
of RSL3 and ML162 based on a molecular docking model that retained the chloroacetone fragment and introduced 
N-benzylaniline and diphenylamine skeleton and successfully synthesized a series of novel GPX4 covalent inhibitors.80 

Among them, compound C18 covalently binds to Sec46 of GPX4 and inhibits the function of GPX4, leading to 
ferroptosis in TNBC cells. Compound C18 showed a higher inhibition rate, better GPX4 inhibitory activity and 
in vivo antitumor pharmacokinetic properties compared to RSL3 and ML162. At a concentration of 1 μM, C18 almost 
completely inhibited the activity of TNBC cell lines and showed high selective inhibition of these cell lines without 
significant organ toxicity.80

Furong Ma et al used pharmacophore hybridization and bioisosterism strategies to construct a series of ML162- 
quinone conjugates.129 Among them, GIC-20 was identified as the most active compound. The IC50 of GIC-20 in HT- 
1080 cells is 1.6 μM. GIC-20 not only induces ferroptosis through proteasome-mediated GPX4 degradation but also 
induces apoptosis by up-regulating the level of the apoptotic protein Bax and down-regulating the level of the 
antiapoptotic protein Bcl −2.129 Meanwhile, GIC-20 showed no significant toxicity compared with ML162.

Ferroptosis inducers targeting GPX4, also identified by screening, include FIN56,81 N6F11170 and Metamizole 
sodium.83 FIN56 not only promotes GPX4 degradation via Acetyl-CoA carboxylases (ACCs), but also degrades 
GPX4 by binding to and activating squalene synthase, an enzyme involved in cholesterol synthesis, thereby inducing 
ferroptosis.171 FIN56 can effectively exert anti-tumour effects. N6F11 binds to a specific structural domain of the 
ubiquitin E3 ligase TRIM25, predominantly expressed in tumor cells, triggering ubiquitination and degradation of 
GPX4.82 Thus, in contrast to conventional GPX4 inhibitors, N6F11 can selectively induce GPX4 protein degradation 
in tumor cells without causing damage to immune cells.

Unlike traditional GPX4 inhibitors targeting the active site selenocysteine, Hengrui Liu et al identified an unexpected 
variant site C66 on GPX4. They screened the lead compound LOC1886, which covalently binds this allosteric site to 
inhibit GPX4.84 However, LOC1886 showed lower efficacy than RSL3 and ML162 in inducing cellular ferroptosis.

CH004 is a biologically active inhibitor of cystathionine β-synthase (CBS) with in vitro and in vivo effects designed 
and synthesized by Li Wang et al.85 CH004 dose-dependently inhibits CBS activity in cells or in vivo, inhibiting cysteine 
and hydrogen sulfide production. CH004 can effectively inhibit tumor growth in vivo and in vitro with an IC50 value of 1 
μM.85 A compound that also indirectly inhibits GPX4 is Buthionine sulfoximine (BSO). BSO is a fast-acting and 
irreversible inhibitor of glutamate cysteine ligase (GCL), which inhibits glutathione synthesis, indirectly inactivates 
GPX4, induces lipid peroxidation, and thus inhibits cell viability, and has been shown to have an inhibitory effect on 
breast cancer, melanoma, and Others.172 However, its therapeutic effect as an ferroptosis inducer is only seen in tumors 
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with low levels of GSH expression. Simvastatin inhibits hepatic stellate cell (HSC) activation and induces ferroptosis in 
HSC by inhibiting the MVA pathway to downregulate GPX4 expression.87

Orlistat is an anti-obesity drug approved by the US Food and Drug Administration (FDA), and fatty acid synthase 
(FASN) is the main lipomatoses it inhibits.88 Studies have shown that Orlistat induces ferroptosis-like cell death of lung 
cancer cells.89 Orlistat reduces GPX4 expression, upregulates phosphorylated MAPK/ERK, and induces lipid peroxida-
tion in lung cancer cells. Orlistat also promotes lipid peroxidation and ferroptosis in pancreatic neuroendocrine tumors 
(pNETs) cells by inhibiting the expression of xCT and GPX4 and increasing the expression of CD71.173

Tubastatin A, an inhibitor of Histone deacetylase-6 (HDAC6), significantly induces ferroptosis in ferroptosis-sensitive 
cell lines, and this process was not dependent on its inhibition of HDAC6.174 Radiotherapy not only induces ferroptosis 
by promoting ROS generation and ACSL4 expression in cancer cells, but also increases ferroptosis-resistance and radio- 
resistance of cancer cells by activating Nrf2-mediated GPX4 transcription and inhibiting lysosome-mediated GPX4 
degradation.90 Tubastatin A can overcome ferroptosis-resistance and radio-resistance in cancer cells by directly binding 
to GPX4 and inhibiting GPX4 enzyme activity.174 In the xenograft model, it significantly promotes radiotherapy-induced 
lipid peroxidation and effectively improves tumor suppression. However, Tubastatin A is a hydroxamic acid and may 
cause some side effects in subsequent clinical trials.174 Therefore, optimization of the structure of Tubastatin A is 
essential.

Gliotoxin91 and Timosaponin AIII92 are two natural products that induce ferroptosis by targeting GPX4. In addition to 
targeting GPX4, Gliotoxin was found to act on the protein SLC7A11 in H1975 cells.91 Timosaponin AIII promotes 
ferroptosis in NSCLC by targeting and promoting heat shock protein 90 (HSP90)-mediated GPX4 ubiquitination and 
degradation.92 Compound 31 is an indirubin derivative synthesized by Jiang-Min Zhu et al by combining the core of the 
natural product indirubin with the active fragment of a GPX4 covalent inhibitor via a linker.93 The IC50 of compound 31 
in HCT-116 cells was 0.49 μM. It significantly reduced GPX4 levels in HCT-116 cells by promoting GPX4 
ubiquitination.

Sulforaphane (SFN) is a naturally occurring isothiocyanate found in various vegetables that has anti-cancer and anti- 
inflammatory properties.175 Recently, Giulia Greco et al showed that in leukemia cells SFN triggers different patterns of 
cell death in a dose-dependent manner.94 At 25 µM, SFN induced caspase-dependent apoptosis, and at 50 µM, ferroptosis 
was induced through GSH depletion, decreased GPX4 expression and lipid peroxidation. The anti-leukemic activity of 
SFN can be mediated by inducing both ferroptosis and apoptosis.94

Targeting FSP1 
The FSP1-CoQ10-NAD(P)H pathway and the xCT-GSH-GPX4 pathway are two parallel lipid antioxidant pathways.176 

The two pathways act synergistically to inhibit lipid peroxidation and ferroptosis. Inhibition of FSP1 would effectively 
inhibit the antioxidant effects of the FSP1-CoQ10-NAD(P)H pathway, thereby inducing the onset of ferroptosis.177

Sebastian Doll et al conducted a screening of around 10,000 compounds, resulting in the discovery of a potent FSP1 
inhibitor named iFSP1, which is the first targeted FSP1 inhibitor described in the literature.178 iFSP1 induces ferroptosis 
to inhibit cancer cell growth in vitro by inhibiting GPX4. The IC50 value of iFSP1 is 103nM. iFSP1 is specific for hFSP1, 
and residue F360 within hFSP1 is closely related to the binding of iFSP1 and its target. iFSP1 can inhibit the growth of 
hepatocellular carcinoma (HCC) by inducing ferroptosis and potential immunomodulatory effects.95 Up-regulated 
chemokines after iFSP1 treatment promote infiltration of antigen-presenting cells, macrophages and cytotoxic T cells 
into the tumor.

Toshitaka Nakamura et al predicted the physicochemical properties and drug similarities of about 10,000 small 
molecule drugs and finally identified 3-phenylquinazolinones as a class of potent inhibitors of FSP1.96 Of these, icFSP1 
is the most representative. icFSP1 is a specific inhibitor of hFSP1, which triggers the Phase separation of FSP1 by 
inducing the formation of FSP1 condensate in tumor cells to induce ferroptosis in cancer cells.96 In contrast to iFSP1, 
icFSP1 did not show off-target effects even at higher concentrations.

Joseph M. Hendricks et al identified several structurally distinct FSP1 inhibitors through chemical screens. Among 
them, FSEN1, a non-competitive inhibitor of FSP1, showed the highest potency in inducing cell death in NCI-H460 
GPX4KO cells (EC50 = 69.363 nM).97 However, in most cells, FSEN1 could not induce ferroptosis by inhibiting FSP1 
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alone. In vitro experiments showed that FSEN1 synergizes with dihydroartemisinin, an endoperoxide-containing 
ferroptosis inducer, to induce ferroptosis in tumor cells.97

iFSP1, icFSP1, and FSEN1 specifically target hFSP1 and fail to be tested in vivo in tumor transplantation models. 
Whether they inhibit FSP1 in vivo and whether they have an effect on tumor growth remains to be investigated. 
Toshitaka Nakamura et al identified the first non-species-dependent FSP1 inhibitor, versatile inhibitor of FSP1 (viFSP1), 
which targets the NAD(P)H binding pocket.98 Treatment with viFSP1 in Pfa1 cells expressing mouse FSP1 or hFSP1 led 
to significant lipid peroxidation and ferroptosis.

Compound NPD4928, screened from a chemical library by Hiromasa Yoshioka et al, also targets binding to FSP1 and 
inhibits its activity.99 The combination of NPD4928 and GPX4 inhibitors induced ferroptosis; however, using FSP1 alone 
did not induce ferroptosis and was not sensitive in some cells. In addition to these drugs, curcumin179 and sorafenib180 

have been found to induce ferroptosis in cells via the FSP1 pathway.
The study reveals that most FSP1 inhibitors alone are unable to induce ferroptosis in cells, or can only do so in cells 

with low GPX4 expression.181 Instead, these inhibitors primarily act as enhancers of ferroptosis and are often combined 
with other ferroptosis inducers to enhance their effects.182

Targeting Nrf2 
Nrf2 is involved in the regulation of oxidative homeostasis in vivo by acting on downstream target genes.183 Inhibition of 
Nrf2, and thus its antioxidant effects, is also an important pathway of action for ferroptosis inducers.184

S-3’-hydroxy-7’, 2’, 4’-trimethoxyisoxane (ShtIX) is a novel isoflavone compound derived from the heartwood of 
Dalbergia latifolia.100 ShtIX has demonstrated broad-spectrum anticancer activity, with particularly high cytotoxicity 
against NSCLC cells. Research has shown that ShtIX induces ferroptosis in NSCLC cells by targeting the Nrf2/HO-1 
signaling pathway, with an IC50 of 7.9 µM in A549 cells. Importantly, ShtIX selectively eliminates non-small cell lung 
cancer cells.100

Trigonelline, the primary alkaloidal component of the legume herbaceous Trigonella foenum-graecum, exhibits anti- 
HSV-1, antibacterial, and antifungal activities.185 Acting as an Nrf2 inhibitor, trigonelline reduces cellular resistance to 
ferroptosis and shows potential for combination therapy with other ferroptosis inducers.101 In xenograft models, trigonel-
line enhances the anticancer effects of erastin, sorafenib, and RSL3, and increases the chemosensitivity of Etoposide in 
pancreatic cancer.186

Baicalin, a flavonoid extracted from the dried root of Lamiaceae family plants Scutellaria baicalensis Georgi, 
possesses antibacterial, antiallergic, antitumor, and other pharmacological properties.187 Research indicates that baicalin 
can induce ferroptosis in bladder cancer cells by activating Ferritin Heavy Chain 1 (FTH1).104 In osteosarcoma cells, 
baicalein interacts with Nrf2, affecting their stability by promoting ubiquitination and degradation, leading to the 
inhibition of GPX4 and xCT expression, ultimately inducing ferroptosis in osteosarcoma cells.188

Matrine, an alkaloid derived from the roots of Sophora flavescentis Radix (Kushen), exhibits notable antitumor 
properties.105 Research has demonstrated that matrine can trigger ferroptosis in various types of tumor cells, including 
cervical cancer cells,189 rectal cancer cells,190 and hepatocytes.191 The specific mechanisms through which matrine 
induces ferroptosis in different cell types vary. For instance, in cervical cancer, matrine hinders cervical cancer 
progression by activating the Piezo1-Ca2+ signaling pathway to induce ferroptosis.189 Additionally, matrine induces 
ferroptosis in hepatocytes by suppressing the Nrf2/GPX4 antioxidant system.191

Acetaminophen (APAP) is a commonly used antipyretic and analgesic medication that can lead to liver damage in 
a dose-dependent manner when taken in excess, potentially causing acute liver failure in severe cases.192 Research 
indicates that the primary mechanism underlying APAP-induced liver damage is ferroptosis, although the exact process 
by which it triggers ferroptosis in liver cells remains unclear.193 Studies have revealed that NSCLC cell lines exhibit 
reduced sensitivity to erastin-induced ferroptosis, but APAP can enhance this sensitivity by modulating the Nrf2/HO-1 
signaling pathway.102 Similarly, Sunitinib (SUN), a multi-targeted tyrosine kinase inhibitor known for its anti-angiogenic 
and anti-tumor properties, is associated with cardiotoxic effects that limit its clinical utility.103 It has been found that 
Nrf2-dependent ferroptosis plays a critical role in SUN-induced cardiotoxicity.194
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Targeting Lipid Metabolism
Lipid peroxidation is central to the development of ferroptosis, and regulation of lipid metabolism is also a critical action 
pathway for ferroptosis inducers.

Shuai Hua et al developed a series of quinazolinediones (QD)-based ROS inducers and screened the optimal 
compound, QD325, after testing it in pancreatic cancer preclinical models.114 They synthesized a set of QD derivatives 
by making structural modifications to QD325. QD394 was the optimal compound. The transcriptome profile of QD394 
closely resembles that of napabucasin, a cancer stem cell inhibitor. Both small molecules inhibited STAT3 phosphoryla-
tion, increased cellular ROS, and decreased the GSH/GSSG ratio.114 The IC50 value of QD394 in PANC-1 cells was 0.34 
μM. It was optimized to give the derivative QD394-Me, which showed better plasma stability and reduced toxicity in 
mice compared to QD394. The IC50 value of QD394-Me in PANC-1 cells was 0.38 μM. QD394-Me, as ROS-inducing 
drugs, exhibited potent antitumor effects on human pancreatic cancer cells.114

Imetelstat, a telomerase inhibitor, competitively inhibits telomerase activity by targeting the telomerase RNA 
template and is primarily used in the clinical treatment of myelofibrosis and myelodysplastic syndromes.115 Claudia 
Bruedigam et al discovered that imetelstat, a potent inducer of ferroptosis, effectively reduced the burden of acute 
myeloid leukemia (AML) and delayed relapse after oxidative stress-induced therapy.195 Imetelstat increases the synthesis 
and subsequent oxidation of PUFA phospholipids, and its induced lipophagy triggers ferroptosis in AML. Imetelstat 
causes cell death by involving two regulators of fatty acid metabolism (FADS2 and ACSL4), leading to excessive lipid 
reactive oxygen species formation and ferroptosis.196

Tingting Liang et al designed and synthesized a series of novel urea derivatives, among which the compound 10p 
exhibited the most effective antiproliferative activity against HT-29 cells.127 10p could induce both ferroptosis and 
autophagy in cells. It was shown that 10p-induced cell cycle arrest, ferroptosis, and autophagy may be related to the 
accumulation of ROS. 10p is a promising lead compound that can be used for further optimization.

Disulfiram (DSF), a specific inhibitor of aldehyde dehydrogenase type I (ALDH1), is commonly used in the treatment 
of alcoholism due to its acute sensitization to alcohol.197 DSF has been found to possess antitumor properties in various 
tumor types, with induction of ferroptosis being one of its mechanisms.197 DSF triggers lysosomal membrane permea-
bilization in a ROS-dependent manner, a key mechanism for inducing cell death.116 Additionally, DSF enhances cell 
sensitivity to chemotherapy and radiotherapy.198 Furthermore, DSF exhibits copper-dependent anticancer activity, and 
when combined with copper, its ability to induce tumor cell death is significantly enhanced. Studies have shown that 
DSF/Cu effectively induces ferroptosis in TNBC cells.199

Quercetin is a flavonoid that has shown anticancer activity in various cancers, including lung, ovarian, and prostate 
cancers.200 Induction of ferroptosis is one of its pathways of action against cancer. Quercetin increases ROS and 
transferrin receptor production, decreases mitochondrial membrane potential, GPX4 and SLC7A11 levels, and inhibits 
NF-κB and Nrf2.117

Darapladib is an orally active, selective and reversible inhibitor of phospholipase A2s (PLA2s).201 Lp-PLA2 is 
located in the cell membrane and cytoplasm, controls intracellular phospholipid metabolism and contributes to ferroptosis 
resistance.118 In the xenograft model, darapladib, combined with the GPX4 inhibitor PACMA31, sensitized cells to 
ferroptosis and showed antitumor activity that inhibited tumor growth.118

Auranofin (AUR), a therapeutic agent for rheumatoid arthritis, is a novel modulator of hepcidin expression.119 AUR 
can reduce iron overload by upregulating Hepcidin expression through activation of the NF-κB/IL-6/JAK-STAT signaling 
pathway, suggesting that AUR is a potential new drug for the treatment of hereditary hemochromatosis and iron 
overload-associated diseases triggered by hepcidin deficiency. However, when given at high doses (25 mg/kg bw), 
AUR triggered hepatic ferroptosis and 100% mortality by inhibiting TXNRD activity and increasing lipid 
peroxidation.119

Targeting Iron Metabolism
Abnormal iron metabolism plays a significant role in ferroptosis, with iron metabolic pathways being a key target for 
regulation of this process.
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Hinokitiol, a natural compound derived from tropolone, acts as an iron chelator with various beneficial properties 
such as anti-inflammatory, antioxidant, antibacterial, and antifungal effects.202 Research by Hongting Zhao et al revealed 
that the Hinokitiol-iron complex Fe(hino)3, formed by combining hinokitiol and iron in a 3:1 ratio, serves as an inducer 
of ferroptosis.120 This redox-active complex triggers lipid peroxidation and decreases GSH-GPX4 production through the 
generation of ·OH via the Fenton reaction upon cellular entry, ultimately leading to ferroptosis induction in TNBC. 
Notably, serum biochemical indices of Fe(hino)3-treated tumor-bearing mice remained within normal ranges, suggesting 
a favorable safety profile of Fe(hino)3 in vivo.120

Steroidal saponin SSPH I, extracted from plantain herb, has been identified as an anti-hepatocellular carcinoma 
compound.203 Research has demonstrated that SSPH I exhibits significant antiproliferative and antimigratory effects on 
HepG2 cells. In these cells, SSPH I upregulates the expression of SLC7A5, a negative regulator of ferroptosis, while also 
increasing the expression of TFR and FPN proteins, which are positive feedback factors of ferroptosis. This leads to the 
accumulation of Fe2+ and subsequent iron overload, ultimately inducing ferroptosis.121 Additionally, SSPH I induces 
a notable G2/M blockade in HepG2 cells.121

Polyphyllin B (PB) is a dioscin isolated from Paris formosana with antitumor activity and immunomodulatory 
effects.122 Can Hu et al found that PB could effectively inhibit the proliferation of GC cells by inducing ferroptosis 
and apoptosis, and could prevent the migration, invasion and cell cycle of tumor cells in vitro. PB can regulate iron 
metabolism by promoting iron ion transport and ferritin autophagy, directly binding to GPX4 and reducing GPX4 
expression to ultimately induce ferroptosis.122 Its anti-GC function may also be related to its regulation of the MAPK 
signaling pathway, PI3K-AKT signaling pathway, and TNF signaling pathway.

Ochratoxin A (OTA) is one of the fungal toxins, a toxic metabolite produced by toxin-producing strains of 
Aspergillus ochraceus and penicillium, which is severely nephrotoxic.204 It has been shown that ferroptosis is 
a potential mechanism by which OTA causes renal injury OTA disrupts renal cell iron homeostasis and induces 
ferroptosis by up-regulating the expression levels of the iron input genes TFR1 and FTH, down-regulating the expression 
level of FPN, and significantly increasing its negative regulator hepcidin.123

Juglone is a natural product discovered from Juglans regia that has a variety of pharmacological properties, including 
antibacterial, antitumor, antiviral, and anti-inflammatory properties.205 Studies have shown that induction of ferroptosis is 
one of the mechanisms by which juglone is anti-tumor. The IC50 values of juglone in A549 cells and endometrial cancer 
cells were 18.5 µM and 20.81 µM. The mechanism of juglone-induced ferroptosis in A549 cells mainly involves an 
increase in iron accumulation and a decrease in GSH and MDA.125 In endometrial cancer, juglone activates HMOX1, 
which induces ferroptosis. Similar to juglone, strigolactones Bufotalin (BT) isolated from Venenum Bufonis induced 
ferroptosis in A549 non-small cell lung cancer cells by accelerating the degradation of GPX4 and increasing the 
intracellular Fe2+ level.206 The IC50 value for BT in A549 cells was 4.21 μM.

Withaferin A (WA) is a natural product isolated from withania that targets vimentin and has anti-inflammatory and 
anti-tumor properties.207 By inducing ferroptosis, WA inhibited cell viability, invasive ability, vasculogenic mimicry 
(VM) formation, and VE-cadherin promoter levels in HepG2 and SNU449 cells, thereby attenuating hepatocellular 
carcinoma metastatic potential and sorafenib resistance.126 WA has now been found to have multiple pathways for 
inducing ferroptosis. On the one hand, WA reduces the protein level and activity of GPX4. On the other hand, WA 
induces a novel atypical ferroptosis pathway by directly targeting Kelch-like ECH-Associated Protein 1 (Keap1), which 
increases unstable Fe2+ upon HMOX1 overactivation.126 WA also elevates Keap1 expression, attenuating Nrf2 signaling 
activation-mediated Epithelial-Mesenchymal Transition (EMT) and xCT expression.

The environmental pollutant benzo-a-pyrene (BaP) is a carcinogenic Polycyclic aromatic hydrocarbon, and BPDE 
(benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) is the end product of the breakdown of BAP in the human body.124 

BPDE is electrophilic and can covalently bind to the exocyclic amine terminus of guanine (G), a nucleophilic site of 
DNA, to form a BPDE-DNA complex. This complex causes DNA base mutations, thereby activating oncogenes and 
leading to malignant transformation of cells, ultimately resulting in tumorigenesis.124 Studies have demonstrated that 
BPDE induces ferroptosis in human trophoblast cells by upregulating iron metabolism, promoting GPX4 proteasome 
degradation, and increasing intracellular free Fe2+ and excess ROS, leading to lipid peroxidation.124
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Dihydroartemisinin (DHA) in combination with cisplatin synergistically induces ferroptosis in pancreatic ductal 
adenocarcinoma cells by modulating iron metabolism.208 The combination of DHA and DDP significantly increased the 
expression of TFR and the accumulation of unstable free iron in pancreatic ductal carcinoma cells, impairing mitochon-
drial homeostasis. Co-treatment of DHA with DDP also synergistically reduced GPX4 expression. Additionally, the 
combined treatment of lapatinib (LAP) and doxorubicin (Dox) resulted in increased Fe2+ content, suppression of GPX4 
expression, and elevation of ASCL4 levels in cardiomyocytes.209 These synergistic effects of LAP lead to pro-apoptotic, 
pro-mitochondrial dysfunction, pro-oxidative, and ferroptosis effects, resulting in cytotoxicity. Finally, the combination 
of lapatinib and the lysosomal pro-solubility drug siramesine induces ferroptosis by decreasing ferritin expression and 
increasing transferrin expression, ultimately leading to increased iron and ROS levels.111

Others
While research on ferroptosis and related drugs is progressing, there are still some ferroptosis inducers with unclear 
mechanisms of induction. For instance, the natural product ginkgolic acid (GA) inhibits SUMO1-activating enzyme 
subunit 1 (SAE1), a potential anti-fibrotic target protein.210 In both in vivo and in vitro experiments, GA was found to 
induce hepatic stellate cell ferroptosis by targeting SAE1, leading to an anti-hepatic fibrosis effect in a rat model of 
hepatic fibrosis.210 However, the relationship between SAE1 and ferroptosis remains unclear.210 On the other hand, small 
molecules EC330 and EC359 target the Transmembrane Receptor (LIFR) of the Leukemia inhibitory factor (LIF).211 By 
binding to LIFR at specific sites within the ligand-receptor complex, EC330/EC359 inhibit LIFR-induced activation of 
the STAT3 and AKT pathways, ultimately leading to cell death. Treatment with EC330/EC359 results in GPX4 
inactivation and GSH depletion, potentially preventing cells from eliminating toxic lipid peroxides and triggering 
ferroptosis.212 However, the specific targets of EC330/EC359-induced ferroptosis require further investigation.

Statins are widely used, but atropostatin(Atv) administration leads to oxidative stress and cellular damage.213 

Indicators of ferroptosis, such as iron overload, ROS accumulation, and lipid peroxidation, were observed in Atv- 
treated muscle cells, especially in the mitochondria of the cells.214 One study reported that simvastatin causes ferroptosis 
in cancer cells by inhibiting HMGCR expression.215 However, it has been shown that Atv can attenuate myocardial 
dysfunction and remodeling after isoproterenol stimulation through inhibition of ferroptosis, as well as attenuate de- 
ironing-dependent myocardial injury and inflammation after coronary microembolization through the Hif1a/Ptgs2 
pathway.216 The specific role and mechanisms of Atv in ferroptosis continue to be studied.

JQ1, a small molecule inhibitor targeting the BET family protein BRD4, has been shown to inhibit the proliferation of 
cancer cells.217 Studies have shown that ferroptosis is one of the mechanisms by which JQ1 exerts its anticancer effects 
in vivo. JQ1 enhances ferroptosis by increasing ferritin autophagy or suppressing BRD4 regulation of ferroptosis-related 
genes.218 Expression of GPX4, SLC7A11, and SLC3A2 was downregulated under JQ1 treatment and BRD4 knockdown. 
However, the specific mechanism by which BRD4 regulates the expression of GPX4, SLC7A11 and SLC3A2 is 
unknown. JQ1 can induce ferroptosis in senescent cells by decreasing the expression of anti-ferroptosis genes in 
senescent cells,219 thereby selectively eliminating senescent cells. However, JQ1-induced ferroptosis occurred in both 
cancer and normal cells, and therefore, its safety for therapeutic application as an ferroptosis inducer requires further 
consideration.

Artesunate is a water-soluble hemisuccinate derivative of artemisinin used to treat malaria, improve inflammation, 
protect nerves, and treat tumors.220 In 2015, Edna Ooko et al noted that artemisinin and its derivatives induce ferroptosis 
in tumor cells.221 Co-action of artesunate and sorafenib induces ferroptosis in hepatocellular carcinoma cells; the former 
increases lysosomal activity and lipid peroxidation, and synergistically with the latter induces histone B/L activation and 
ferritin degradation.113 In addition, artesunate reduced GSH levels in head and neck cancer cells and ovarian cancer 
cells.222 However, it has also been shown that artesunate may activate the NRF2 antioxidant response element pathway, 
leading to resistance to ferroptosis.223

Proteolysis-Targeting Chimeras
Proteolysis-targeting chimeras (PROTACs) is a drug development technology that leverages the Ubiquitin-Proteasome 
System (UPS) to degrade target proteins.224 A typical PROTACs consists of three key components: E3 ubiquitin ligase 
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ligands, target protein-ligand, and a specially designed “linker” structure that connects the two bioactive ligands.225 The 
application of PROTACs technology in modifying traditional ferroptosis drugs to enhance their targeting and antitumor 
properties represents a promising avenue for developing ferroptosis inducers (Figure 3).

Han Wang et al synthesized a series of GPX4 PROTACs utilizing ML210 as the binding ligand for GPX4, CRBN as 
the E3 ligase-binding ligand, and various lengths of piperazine rings as linkers.226 Among these, DC-2 exhibited the most 
potent degradation activity in HT1080 cells, with a DC50 value of 0.03 μM and a significant inhibitory effect on HT1080 
cells, with an IC50 value of 0.1 μM. DC-2 not only triggers GPX4 degradation through the ubiquitin-proteasome pathway 
and the autophagy-lysosomal pathway but also induces the formation of GPX4 mitochondrial isoforms.226 DC-2 
outperformed ML210 by degrading GPX4 22-fold more and demonstrated equivalent or superior antiproliferative activity 
against HT1080, Calu-1, and A375 cells compared to ML210. Additionally, DC-2 exhibited better tumor cell selectivity 
and safety. Compound 5i, a PROTAC synthesized using ML210 as the GPX4 ligand and VHL as the E3 ligase ligand, 
degraded GPX4 through the ubiquitin-proteasome and autophagy-lysosome pathways. Additionally, 5i was found to 
induce ROS accumulation in HT1080 cells.227

Tianli Luo et al designed a PROTAC dGPX4 targeting GPX4 by covalently coupling the GPX4 inhibitor ML162 with 
pomalidomide.228 This compound effectively reduces tumor cell GPX4 levels through proteasome degradation, leading 
to ferroptosis. Compared to ML162, dGPX4 was 5 times more efficient in inducing ferroptosis in HT1080 cells, with an 
IC50 of 300 nM and a DC50 of 200 nM. The nanoparticle formulation, dGPX4@401-TK-12, enhanced biocompatibility 
and cell selectivity, effectively inhibiting tumor growth without observable side effects.228 Maohua Cai et al also 
designed GPX4 PROTACs based upon ML162 and its derivatives, with CRBN-based PROTAC GDC-11 demonstrating 
balanced GPX4 degradation (33% at 10 μM), cytotoxicity (IC50 = 11.69 μM), and lipid peroxide accumulation. This 
compound exhibited typical ferroptosis characteristics.229 Also based on ML162 are the PROTACs compounds PD-4 and 
PD-P2. They use pomalidomide as an E3 ligase ligand to promote efficient degradation of GPX4 via the ubiquitin- 
proteasome pathway.230

Chao Wang et al synthesized six MSL3-based PROTACs, identifying compound 8e as a potent GPX4 degrader.231 

Compound 8e significantly inhibited proliferation in HT1080 (IC50 = 58 nM) and Calu-1 (IC50 = 25 nM) cells through 
GPX4 degradation via the ubiquitin-proteasome system and autophagy lysosomal pathway, with a preference for tumor 
cells carrying oncogenic Ras genes for ferroptosis induction.

Haoze Song et al designed 36 PROTACs by covalently coupling RSL3 to four different ubiquitin ligase ligands. 
Among them, compound 18a, based on cIAP-E3 ligase ligands, showed the most potent inhibitory effect on GPX4 levels 
(DC50, 48 h=1.68 μM) and HT1080 cell proliferation (IC50 = 2.37 μM).232 Compound 18a induces cell ferroptosis by 
forming a ternary complex with cIAP and GPX4 to induce GPX4 degradation. The antiproliferative effect on HT1080 
cells was enhanced when compound 18a was combined with FeCl2.232

PROTACs also constructed based on RSL3 are compound R17 and compound NC-R17. R17 is composed of carbon 
chain linker and lenalidomide E3 ligand. Compound NC-R17 is a non-covalent GPX4 degrader constructed by optimis-
ing the POI ligand of R17 and replacing propionamide with chloracetylamine. Both compounds showed the ability to 
degrade GPX4 in tumour cells.233

Compared with traditional small molecule ferroptosis inducers, PROTACs class of ferroptosis inducers have better 
targeting and anti-tumour effects with lower side effects. Therefore, PROTACs technology is a very promising devel-
opment direction for ferroptosis inducers.

Nanomaterials
Nanomaterials are increasingly being investigated for their role in inducing ferroptosis due to their biocompatibility, nano 
effect, and permeability234 (Table 2).

Delivery of exogenous iron ions into the body via nanomaterials is a crucial approach for inducing ferroptosis.276

Mingqi Chen et al developed a ferroptosis inducer, D@FMN-M, to trigger ferroptosis in tumor cells and M2-type 
macrophages, enhancing tumor immunotherapy.235 They incorporated DHA into iron-ion doped hollow mesoporous 
silica nanoparticles (Fe-HMSNs) and further modified them with Outer Membrane Vesicles (OMVs) to create D@FMN- 
M. These nanoparticles accumulate at the tumor site and release Fe3+ ions and DHA in response to the slightly acidic 
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Figure 3 (a) Chemical structural formula of PROTAC-like ferroptosis inducers. (b) The process of PROTAC-mediated ubiquitination and proteasomal degradation of GPX4.
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Table 2 Nanomaterials for Inducing Ferroptosis

Compound Mechanism In vivo Reference

D@FMN-M Release Fe3+ and DHA √ [235]

DOX/Fe3+/EGCG (DF) NPs Release DOX and Fe3+ √ [236]

Fe3O4-PLGA-Ce6 Release Fe3+ and Ce6 √ [237]

BSO/ZIF-8@Au@MPN@HA(BZAMH) Inhibit GSH synthesis √ [238]

MTX-LDH@MnO2 Promoting ROS generation √ [239]

GDY-FIN56-RAP (GFR) Inhibit GPX4 √ [240]

Gel@WA-cRGD Release WA √ [241]

Fe3O4@PCBMA Inhibit MVA pathway and GPX4 √ [242]

DMSN/Fe3O4-Mn@CB-839 Inhibit GSH √ [243]

AuFCSP MOFs Inhibit GSH and GPX4 √ [244]

SRF@Hb-Ce6 Inhibit GSH and GPX4 √ [245]

UCNP Increase Fe2+ and Fe3+ √ [246]

CSO-SS-Cy7-Hex/SPION/Srfn Increase Fe2+ and Fe3+ √ [247]

NMIL-100@GOx@C Increase Fe2+ and H2O2 √ [248]

ChA CQDs Inhibit GPX4 √ [249]

RSL3@COF-Fc (2b) Increase Fe2+ and inhibit GPX4 √ [250]

AMSNs Inhibit GPX4 √ [251]

ACC@DOX.Fe2+-CaSi-PAMAMFA/mPEG Inhibit GSH √ [252]

FGLC Inhibit GSH √ [253]

Fe3O4@PGL NPs Increase Fe3+ and ROS √ [254]

DOX-TAF@FN Increase Fe2+ and Fe3+ √ [255]

GNPIPP12MA Inhibit GSH √ [256]

Pa-M/Ti-NCs Increase Fe2+ and H2O2 √ [257]

IONPs Increase Fe2+ and ROS √ [258]

AFN@CM Release Fe3+ and inhibit GPX4 √ [259]

PPA/TF Increase Fe2+ and ROS √ [260]

IONP-HA Increase Fe2+ √ [261]

mIONP-PL-Pt(IV) Increase Fe2+ and Pt √ [262]

ovs-MnO2 Induces the release of intracellular free iron (Fe2+) √ [263]

ApoE-UPGs-DHA Increase Fe2+ and release DHA √ [264]

FeO-PEI@TDN-DOX Increase Fe2+ and release DOX √ [265]

Cu2O@Au Promote the Fenton reaction and deplete GSH √ [266]

MP-FA@R-F NPs Increase Fe2+ and Rhein √ [267]

(Continued)
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tumor microenvironment. The released Fe3+ is then converted to Fe2+ by depleting intratumoral GSH, leading to the 
production of free radicals through the Fenton reaction and Fe2+-DHA reaction. This accumulation of lipid peroxides 
ultimately induces ferroptosis in tumor cells.235

Min Mu et al designed and synthesized a nanomaterial DF-NP consisting of epigallocatechin gallate (EGCG) and Fe3+ to 
deliver both doxorubicin hydrochloride (Dox) and iron ions to the tumor site.236 DOX/Fe3+/EGCG (DF) NPs have strong 
solubility and long-term storage stability and can efficiently release DOX and Fe3+ by cell internalization under high GSH 
levels and tumor acidic environment. On the one hand, DOX enters the cell nucleus and binds to DNA, inducing apoptosis in 
tumor cells. On the other hand, due to its high reducing capacity, EGCG can chemically reduce Fe3+ to Fe2+, which reacts with 
H2O2 and continuously induces ROS production through the Fenton reaction, thus inducing ferroptosis.236

Iron oxide nanoparticles (IONPs) are a class of nanomaterials composed of iron oxide (Fe3O4 or Fe2O3).277 

Intracellular iron is the basis for the occurrence of ferroptosis. With the development of nanotechnology, IONPs have 
shown excellent therapeutic advantages due to their ability to deliver exogenous iron to activate tumor ferroptosis. IONPs 
are also one of the most classical nanoenzymes with intrinsic enzyme-like activity. IONPs have a peroxidase-like activity 
based on the Fenton reaction, which enables lipid peroxidation of unsaturated fatty acids and induces lipid peroxidation 
and ROS production.278

Xiangrong Tian et al synthesized iron oxide nanoparticles of different sizes (2–100 nm) to study their antitumor 
effects and toxicity mechanisms.258 Their study found that ultrasmall nanoparticles (<~5 nm) release Fe2+ faster and have 
greater cytotoxicity. However, Fe3O4-10 nm NPs showed the best antitumor efficiency due to the balanced abilities in 
tumor accumulation, intratumoral penetration, and cellular internalization. It showed an optimal antitumor effect in vivo, 
and its therapeutic effect was correlated with tumor accumulation and intratumor distribution of nanoparticles.258

Qifang Chen et al designed and synthesized a poly(lactic-co-glycolic acid) (PLGA) nanosystem Fe3O4-PLGA-Ce6 
encapsulating Fe3O4 and Ce6.237 The Fe3O4-PLGA-Ce6 nanosystem can dissociate in an acidic tumor microenvironment, 
releasing iron ions and Ce6, followed by the generation of hydroxyl radicals via the Fenton reaction, which induces 
ferroptosis in tumor cells. At the same time, under laser irradiation, the released Ce6 increases the generation and 
accumulation of ROS, providing photodynamic therapy.237 The loading of iron ions and Ce6 allowed the nanoparticles to 
be fluorescence imaging and MRI-guided, respectively. The nanoparticles were injected intravenously into the body with 
high biocompatibility, permeability, and retention.237

Hanren Chen et al designed and synthesized an iron oxide (Fe3O4) nanoparticle AFN@CM coated with Arsenic 
trioxide (ATO) encapsulated by HCC cell membrane.259 For the first time, they demonstrated in their study that ATO can 
effectively induce lipid peroxidation and ferroptosis in HCC. Moreover, the iron oxide nanoparticles AFN@CM 
synthesized from ATO can target-induce ferroptosis in tumor cells, with excellent anti-cancer effects and almost no 
side effects. In addition to the synergistic effect of ATO and Fe, the stronger antitumor effect of AFN@CM may also be 

Table 2 (Continued). 

Compound Mechanism In vivo Reference

I@P-ss-FRT Increase Fe2+ √ [268]

USPBNPs@MCSNs (UPM) Inhibit Xc−-GSH-GPX4 √ [269]

FeE@PEG NPs Increase Fe2+ and release EGCG √ [270]

HNK@Ir-HMONs- LOD(HIHL) Release HNK and Ir √ [271]

sora@Fe-MIL Increase Fe2+ and release sorafenib √ [272]

Oxa@Mil-100(Fe) Induce apoptosis and release Fe3+ √ [273]

AsIr@PDA Relase IrFN √ [274]

MitCuOHA Inhibit GSH √ [275]
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attributed to the HCC cell membrane wrapping design feature. This feature endows AFN@CM with better biocompat-
ibility and tumor targeting ability.259

Meanwhile, IONPs can also be used in therapeutic approaches such as chemotherapy, phototherapy, gene therapy and 
immunotherapy.279

Xiaolong Liang et al designed and synthesized a theranostic nanoplatform based on a relatively smaller (<20 nm) iron 
oxide loaded porphyrin-grafted lipid nanoparticles (Fe3O4@PGL NPs).254 Fe3O4@PGL NPs could generate ROS in the 
absence of light via the Fenton reaction at relatively high Fe2+ concentrations. At the same time, the presence of PDT 
further accelerated the Fenton reaction and oxidative stress on macrophages to generate synergistic ROS. Both in vivo 
and in vitro experiments showed that Fe3O4@PGL NPs could almost completely inhibit tumor growth by combined PDT 
under fluorescence and magnetic resonance (MR) imaging guidance. Compared with other nanomaterials, Fe3O4@PGL 
NPs have relatively small size, high PS loading efficiency, negligible dark toxicity and excellent biocompatibility.254

Amir Jalali et al synthesized Fe3O4@Glu-menthol magnetic nanoparticles (MNPs) by encapsulating iron oxide 
(Fe3O4) nanoparticles with glucose and affixing them with menthol.280 Studies have shown that Fe3O4@Glu-menthol 
MNPs can induce apoptosis in gastric cancer cells. Moreover, cells treated with Fe3O4@Glu-menthol MNPs showed 
1.6-fold higher expression of the oncogene Caspase 8 gene than untreated cells.280

In addition to Fe3O4@PGL NPs and Fe3O4@Glu-menthol MNPs, many other IONPs are associated with conven-
tional tumor treatments such as chemotherapy, radiotherapy and immunotherapy. Zhuangzhuang Zhang et al designed 
and synthesized an acid-responsive, iron-coordinated polymer nanoparticle (PPA/TF) encapsulating the mitochondria- 
targeting drug alpha-tocopheryl succinate (α-TOS).260 In tumors’ weakly acidic intracellular environment, PPA/TF 
promotes pH-responsive drug release, ROS generation, and GSH depletion.PPA/TF effectively inhibits tumor growth 
by combining ferroptosis induction with Chemodynamic therapy (CDT).260 Hyaluronan (HA)-encapsulated IONP 
(IONP-HA) can be combined with photothermal therapy to effectively induce ferroptosis in recurrent bladder cancers 
that have acquired chemoresistance after chemotherapy.261 Phospholipid-modified Pt(IV) prodrug-loaded iron oxide 
nanoparticle (IONP)-filled micelles (mIONP-PL-Pt(IV)), which can be used in combination with chemotherapy for 
antimelanoma treatment.262 Qingxin Mu et al designed and synthesized a multifunctional nanoparticle containing an iron 
oxide core. This NP can deliver chemotherapeutic and immunotherapeutic agents to breast cancer and dendritic cells 
simultaneously, thus enabling simultaneous chemo-immunotherapy and effective inhibition of TNBC growth and 
metastasis.281

Another class of ferroptosis inducer nanomaterial combines traditional ferroptosis inducers with nanomaterials to 
address issues like low solubility, poor biocompatibility, and adverse reactions.282

BSO was encapsulated in a ZIF-8 matrix, followed by the growth of radiation-sensitive gold nanoparticles (NPs) on 
the surface to create BSO/ZIF-8@Au.238 This material served as a template for the formation of a Metal-phenolic 
network (MPN), which was further modified with hyaluronic acid (HA) to produce the BSO/ZIF-8@Au@MPN@HA 
(BZAMH) nanohybrid. Upon exposure to tumor microenvironmental stimuli, the nanohybrids disassembled, with BSO 
inhibiting γ-GCS to block GSH biosynthesis, Fe2+ triggering a favorable Fenton reaction, and Au NPs enhancing the 
deposition of X-ray radiation doses within the tumor.238 The inactivation of GPX4 and the local generation of hydroxyl 
radicals collectively induced potent ferroptosis, enabling intense radiotherapy and effective treatment of TNBC while 
suppressing TNBC lung metastasis. Furthermore, the inclusion of Fe and Au elements in the nanomedicine provides 
diagnostic capabilities for MRI and CT imaging, allowing for the tracking of nanomedicine distribution and movement 
while monitoring the therapeutic efficacy of cancer treatment.238

MTX-LDH@MnO2 was developed by Liu et al through the incorporation of methotrexate (MTX) within layered 
double hydroxides (LDHs) interlayers and the electrostatic absorption of biomineralization ovalbumin (OVA)-MnO2 onto 
the LDH surface, resulting in a multifunctional and dual-responsive nanosheet [250]. Within the tumor microenviron-
ment, MTX-LDH@MnO2 exhibited rapid dual-response release of MTX and Mn2+. This nanosheet effectively induced 
ferroptosis in tumor cells by synergistically enhancing ROS generation and modulating the GPX4/GSH and GCH1/BH4 
pathways to facilitate LPO accumulation. Moreover, MTX-LDH@MnO2 triggered the release of damage-associated 
molecular patterns (DAMPs), promoting immunogenic cell death (ICD) within tumors. This led to dendritic cell (DC) 
maturation and infiltration of CD4+/CD8+ T-cells, resulting in robust anti-tumor immune responses [250].
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Ling-Xiao Zhao et al designed a GFR nanoplatform, GDY-FIN56-RAP (GFR), with the potential for photothermal 
therapy (PTT) for the treatment of GBM by encapsulating a RAP-polymer and an ferroptosis inducer, FIN56, on 
graphdiyne (GDY).240 GFR combined with 808 nm near-infrared radiation significantly triggered GPX4 down- 
regulation-mediated ferroptosis of GBM cells, which inhibited GBM growth and prolonged the lifespan of the GBM 
in situ xenograft mouse model. Near-infrared radiation facilitated the release of FIN56 from the GFR and directly 
induced GBM cell death through temperature elevation—directly induced GBM cell death. The GFR nanoplatforms can 
penetrate the blood-brain barrier and induce an acidic environment-induced in situ release of FIN56.240

Cheng et al successfully developed an injectable hydrogel, Gel@WA-cRGD, that combines the induction of 
ferroptosis and immunomodulation effects. The hydrogel was created through Ca2+-mediated cross-linking of natural 
sodium alginate, incorporating crgd-modified redox-responsive Withaferin prodrugs (WA-cRGD) and programmed cell 
death ligand 1 antibody (aPD-L1) for targeted tumor treatment. Following injection into postoperative trauma cavities, 
the hydrogels degrade in a microenvironment-responsive manner, releasing β-cyclodextrin (β-CD) and aPD-L1 to the 
trauma margins. These components are selectively taken up by tumor cells and activated by excess GSH in the 
cytoplasm, leading to WA-induced ferroptosis and the release of tumor-derived immune substances for recognition and 
activation of surrounding antigen-presenting cells (APCs). Additionally, aPD-L1 inhibits the PD-1/PD-L1 interaction 
between tumor and immune cells, reversing the immunosuppressive tumor microenvironment (TME). Gel@WA-cRGD 
shows promise for postoperative treatment of resected solid tumors to prevent primary tumor recurrence and suppress 
distal tumors.241

There are many similar drugs that use nanomaterials to encapsulate ferroptosis inducers to enhance their efficacy. The 
toxicity of IKE was significantly reduced by using biodegradable nanoparticles for its delivery.144 The nanomedicine 
Fe3O4@PCBMA formed by loading SIM into magnetic nanoparticle-coated zwitterionic polymers induced ferroptosis 
and improved the therapeutic efficacy of TNBC.242

In addition to the above nanomaterials, there are many other nanomaterials with ferroptosis-inducing effects.
Lei et al developed biocompatible manganese molybdate nanoparticles (MnMoOx NPs) through a high-temperature 

liquid-phase method and DSPE-PEG5k modification [254]. MnMoOx NPs demonstrate antitumor effects by inducing 
ferroptosis and enhancing immunogenicity. These nanoparticles deplete GSH in tumors and inhibit GPX4 expression, 
triggering ferroptosis in tumor cells. Moreover, MnMoOx NPs induce immunogenic cell death in tumor cells, releasing 
DAMPs, promoting DC maturation, enhancing T cell infiltration, activating anti-tumor immune responses, and reversing 
the immunosuppressive tumor microenvironment. When combined with immune checkpoint inhibitors (ICIs) like α-PD- 
L1, MnMoOx NPs further enhance antitumor effects and suppress tumor metastasis.

Despite their many advantages, such as high drug loading capacity, increased water solubility, and improved 
selectivity, nanomedicines still have many problems at this stage. Excessive use of exogenous metals may cause 
potentially adverse effects on human health, including acute and chronic damage.283 The enhanced permeability and 
retention (EPR) effect is influenced by factors such as the nature of the nanomedicine itself, tumor growth, and patient 
heterogeneity. These factors make drug targeting inefficient and make it difficult to achieve complete drug enrichment in 
the tumor.284 This leads to an increased likelihood of damage to normal cells. Although a large number of tumor-targeted 
nanomedicines have been developed at this stage, factors such as tumor complexity and heterogeneity have led to off- 
target effects, and the expected targeting effect cannot be achieved. Studies have shown that the pharmacokinetics of 
different nanomedicines vary between species.285 However, at this stage, most of the studies on the behavior of 
nanoparticles in vivo are derived from animal experimental data, and few of them are relevant enough to predict their 
safety and efficiency in humans based on the results of animal experiments. There are no detailed findings on the 
immunogenic responses generated based on nanomedicine carriers and their impact on pharmacokinetic characterization, 
therapeutic efficacy and potential toxicity. After applying very small IONPs (ESIONPs) to a zebrafish model, Zhaojie 
Lyu et al found that ESIONPs may be neurotoxic and induce ferroptosis.283 The abnormal accumulation of iron ions may 
increase the risk of early degenerative neurological diseases. Therefore, the biosafety and selectivity of nanomedicines 
for therapeutic use remain highly questionable. In addition, due to the difficulty of synthesizing the same nanoparticles 
quickly, precisely, and reproducibly, large-scale and reproducible synthesis of nanoparticles is even more complicated 
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when it involves multi-step or complex techniques.286 All these make the clinical translation of nanomedicines a great 
challenge.

Ferroptosis-Inducing Therapy in PDT and SDT
Photodynamic Therapy
Photodynamic Therapy (PDT) is a new approach to treating tumors and pre-cancerous lesions with photosensitizing 
drugs and laser-activated treatment.287 Irradiating the lesion site with a specific wavelength activates photosensitizing 
drugs that selectively accumulate in the lesion tissue, causing the tumor to take up molecular oxygen to produce ROS, 
which leads to tumor destruction. Synthesizing photodegradation-targeting chimeras (PDTACs) by coupling photosensi-
tizers with ferroptosis-inducing drugs is a new idea in the development of ferroptosis inducer (Figure 4). Protein targeting 
and photoactivation coupling makes PDTAC highly controllable compared to conventional therapies, enabling precise 

Figure 4 Chemical structural formula of PDTAC-like and SDTAC-like ferroptosis inducers.
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and effective treatment.288 This therapy has few side effects, is safer, minimally invasive and better tolerated by the 
elderly, and has broad clinical applications in combination therapy.289

Qiao Hu et al synthesized the photosensitizer ENBS-ML210 by covalently linking the photosensitizer ENBS with the 
GPX4 inhibitor ML210.290 The hypoxic microenvironment of NSCLC severely inhibits ferroptosis, leading to the 
severely limited therapeutic efficacy of some ferroptosis inducers.291 However, in vitro experiments showed that ENBS- 
ML210 effectively induced ferroptosis in H1299 cells under 21% and 2% O2 conditions. ENBS-ML210 could directly 
target GPX4 in H1299 cells to produce superoxide anion radical (O2·-)under 660 nm light irradiation. Both in vitro and 
in vivo experiments confirmed its sound anti-tumor effects.290

Sijin Liu et al synthesized two PDTACs, PV1 and PV2, by coupling the photosensitizer verteporfin (VPF) to GPX4- 
targeting peptides.292 PV1 and PV2 have neither inhibitory nor degradative activity, but they can selectively degrade 
intracellular GPX4 and generate ROS under red light irradiation, leading to ferroptosis of tumor cells. Dead cells induced 
by PDTACs exhibit robust immunogenicity in vitro and efficiently trigger anti-tumor immunity in vivo.292 The coupling 
of protein degradation and photoactivation makes PDTAC highly controllable, which will greatly help further drug 
development and clinical application studies.

The second-generation photosensitizer talaporfin sodium (TS) is rapidly cleared from the body, requiring a shorter 
shading period (2 weeks) than the first-generation photosensitizer porfimer sodium (4 weeks), and the antitumor effect 
penetrates deeper into the submucosa and extends to the muscle layer.293 PDTAC synthesized by TS-PDT induces 
ferroptosis in tumor cells by generating ROS and inhibiting system Xc−. In vivo, TS-PDT combined with ferroptosis 
inducers (IKE or sorafenib) reduced tumor volume.293

TCSVP, a mitochondria-targeted porfimer sodium with aggregation-induced emission (AIE) properties, was devel-
oped by Shan Wang et al AIE-PS, in comparison to traditional porfimer sodium, maximizes energy conservation from 
heat dissipation, leading to enhanced reactive oxygen species (ROS) generation and fluorescence emission 
capabilities.294 Due to the more negative mitochondrial potential of cancer cells relative to normal cells, the positively 
charged AIEgen can effectively differentiate between cancerous and normal cells. TCSVP specifically targets cancer 
cell mitochondria, efficiently producing ROS in the presence of light, thereby sensitizing tumor cells to ferroptosis 
induction by RSL3.294

Xinyang Zhao et al synthesized the Iridium(III) complex Ir1, derived from hydrated Iridium, with adjustable 
photophysical and chemical properties. By incorporating triphenylphosphine as a mitochondria-targeting ligand and Py- 
RSL as a ferroptosis-inducing ligand, the complex not only triggers ferroptosis by inhibiting GPX4 and FSP1 but also 
suppresses the ErbB signaling pathway to enhance tumor suppression.295 The metal coordination in Ir1 confers 
fluorescent properties, enabling intracellular localization monitoring under visible light excitation (488 nm) for real- 
time cell tracking, while effectively reducing off-target toxicity of the Py-RSL ligand.295 With a dual inhibitory 
mechanism, Ir1 exhibits superior anticancer and ferroptosis-inducing capabilities with reduced toxicity and fewer side 
effects.

Sonodynamic Therapy
Sonodynamic therapy (SDT) is an innovative non-invasive treatment method that uses ultrasound (US) to activate 
a sensitizer and produce reactive oxygen species (ROS) to destroy cancer cells296 (Figure 5). Unlike light-based 
therapies, US has the advantage of deeper tissue penetration, making SDT particularly effective for treating tumors 
located deep within the body.

Yidan Lai et al designed and synthesized a platinum(II)-cyanine complex, Pt-Cy, which was shown to generate ROS 
under both ultrasound (US) and light irradiation in in vitro experiments. Pt-Cy exhibited US-induced cytotoxicity with an 
IC50 of 6.94 mM under US irradiation, while showing minimal dark-cytotoxicity to 4T1 cells. Pt-Cy also reduced GSH 
content in cells under US irradiation, leading to the accumulation of lipid peroxides and triggering ferroptosis. In terms of 
in vivo tumor therapy, Pt-Cy demonstrated superior acoustic kinetic therapeutic effects compared to PDT.297

Liqiang Zhou et al designed a liposomal nanosystem called Lipo-PpIX@Ferumoxytol, which combines the nanoso-
nosensitizer PpIX and the iron supplement ferumoxytol. Ferumoxytol was used to deliver excess iron to tumor cells, 
leading to ferroptosis and increased susceptibility to SDT-induced apoptosis. Additionally, SDT was found to enhance the 
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sensitivity to ferroptosis by modulating the ferritinophagy process. The dual ferroptosis/apoptosis pathway was triggered 
by Lipo-PpIX@Ferumoxytol, resulting in the inhibition of tumor growth.298

Jing Yu et al developed ultra-small iron-doped zinc oxide nanoparticles, FZO-NP, and surface-modified FZO 
nanoparticles to create FZO-ASP, which exhibited good water stability. FZO-ASP was capable of initiating the Fenton 
reaction and inducing ferroptosis in tumor cells. When combined with ultrasonic energy, FZO-ASP showed enhanced 
inhibition of cancer cell proliferation and mouse mammary tumor growth, with no significant toxicity observed in treated 
mice.234

Challenges and Opportunities in the Development of Ferroptosis Inducers
With in-depth research on the mechanisms and targets of ferroptosis, various ferroptosis inducers have been discovered 
and developed. Although many ferroptosis inducers have been reported, multiple types of ferroptosis inducers have 
different advantages and disadvantages (Table 3). Meanwhile, the clinical application of ferroptosis inducers is still in 
slow progress. Therefore, the research, development, and clinical translation of ferroptosis inducers still need to be 
continuously advanced. Improving the drawbacks of the existing inducers and developing ferroptosis inducers that can be 
better applied to the clinic is the focus of the current research and development of ferroptosis inducers.

Figure 5 Ferroptosis-inducing therapy in PDT and SDT.
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Discovery of New Targets for Ferroptosis Inducers
Most of the existing ferroptosis-inducing agents act on classical ferroptosis-regulating targets such as system Xc−, GPX4, 
FSP1 and Nrf2, which have limited induction and tend to make cells resistant to drugs.309 Therefore, new targets for 
ferroptosis inducer action still need to be explored.

Xuejun Jiang et al found that membrane-bound O-Acyltransferase Domain Containing 2 (MBOAT2) could re-regulate 
the lipid composition of cell membranes through phospholipid metabolism by replacing monounsaturated fatty acid 
(MUFA)-rich phospholipids with polyunsaturated fatty acid (PUFA), thereby inhibiting ferroptosis. (MUFA)-rich phos-
pholipids replace polyunsaturated fatty acid (PUFA), which is easily oxidized and thus inhibits ferroptosis.310 MBOAT2 
is a new regulator independent of GPX4 and FSP1. Meanwhile, MBOAT2 is regulated by the androgen receptor (AR), 
suggesting that AR becomes a new regulatory target for ferroptosis.

Ping Wang et al recently found that 7-Dehydrocholesterol (7-DHC) directly inhibits phospholipid peroxidation by 
relying on its unsaturated key structural property.311 The enzymes involved in distal cholesterol biosynthesis can affect 
the ferroptosis sensitivity of cells by regulating the level of 7-DHC.311 The enzymes involved in distal cholesterol 
biosynthesis can affect the ferroptosis sensitivity of cells by regulating differences in the levels of 7-DHC. Targeted 
regulation of 7-DHC levels is expected to be a therapeutic strategy for cancer. Zhigang Hu et al found that Apurinic/ 
apyrimidinic endonuclease 1 (APE1) regulates ferroptosis in hepatocellular carcinoma cells by modulating the AKT/ 
GSK3β/NRF2 axis.312 This suggests that APE1 is a novel ferroptosis regulator.

mTOR is a critical factor that regulates cellular protein synthesis, nutrient metabolism, and growth and proliferation.313 

Disheveled Egl-10 and pleckstrin domain-containing protein 5 (DEPDC5) is a newly discovered negative regulator upstream 
of the mTOR pathway in recent years.314 Song li et al found that DEPDC5-deficient CD8+ T cells produced high levels of 
xanthine oxidase and lipid ROS due to high mTORC1-induced ATF4 expression, leading to spontaneous ferroptosis.315 This 
suggests that DEPDC5 protects CD8+ T cells from ferroptosis by limiting mTORC1-mediated purine catabolism. Thus, 
DEPDC5 is also a target for ferroptosis regulation.

Furthermore, many studies have shown that epigenetic modifications and protein post-translational modifications 
(PTMs) play important roles in developing diseases involving ferroptosis.316 Epigenetic mechanisms such as DNA 
methylation, histone acetylation and miRNAs may regulate cellular sensitivity to ferroptosis. DNA methylation can affect 
the expression of iron metabolism genes such as FPN, TFR2, HAMP, HJV, and bone morphogenetic protein 6 (BMP6) by 
regulating the promoter region of the methylation level.317 Several miRNAs can target genes such as DMT1, FPN, TFR1, 
TFR2, and Ferritin H and affect the process of iron absorption, transport, storage, and utilization by inhibiting the 
expression of these key genes of iron metabolism.318 Epigenetic regulation is also a very promising mechanism of action 

Table 3 Comparing the Advantages and Disadvantages of Different Ferroptosis Inducers Methods

Traditional Small Molecular 
Compounds

PROTACs Nanomaterials PDT and SDT

Advantages Small molecular weight; Can 

penetrate the cell membrane; Can 

cross blood-brain barrier; Most do 
not involve immunogenicity; Good 

stability; Can be taken orally; Easily 

absorbed; Mature synthesis 
technology

Catalytic properties; Great 

target; Longer half-life; Low 

toxicity; Overcome drug 
resistance; Wide range of 

targets

Great target; Good stability; 

Longer half-life; Overcome 

drug resistance; High 
effectiveness; High oral 

bioavailability

High controllability; High 

selectivity; Low toxicity

Disadvantages Poor solubility; Short half-life; Low 
specificity; drug resistance; Limited 

effectiveness

High molecular weight; 
Poor solubility; Low oral 

bioavailability; Poor 

drugability; Difficult to 
synthesize

Low biosecurity; Having 
some toxic effects; Off- 

target effect; Difficult to 

repeat synthesis

High dependence on tissue 
oxygen concentration; 

Weak penetration into 

deep tissues; Limited 
therapeutic effect

Ref. [299,300] [301,302] [303–305] [306–308]
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for ferroptosis inducers. The discovery of these new mechanisms and targets provides new ideas and directions for 
developing ferroptosis inducers.

Drug Potency Enhancement
The limited potency of the action of ferroptosis inducers is an important reason that prevents their use in clinical 
practice.319 How to make it more effective in killing tumor cells and thus inhibiting tumor growth is an important issue 
faced during the development of ferroptosis inducers.

Usually, drugs have a single target, but the pathophysiologic processes of most diseases are so complex that 
therapeutic modalities directed at a single target have limited effect.320 Thus, drugs targeting multiple cell death 
modes are better suited for clinical use. Existing ferroptosis inducers, such as matrine,321 PB122 and LAP,322 have the 
dual effect of inducing ferroptosis and apoptosis in cells. Meanwhile, drugs that act on multiple ferroptosis regulatory 
targets can better induce ferroptosis in tumor cells than on a single ferroptosis regulatory target.

In addition to developing drugs that can act on multiple targets, combining ferroptosis inducers with different 
mechanisms of action is a very important therapeutic strategy. For example, FSEN1 synergizes with DHA to induce 
ferroptosis in tumor cells.97 Ferroptosis inducers can also be used in combination with conventional tumor therapies. 
Ferroptosis inducers such as Tubastatin A,174 BZAMH238 and DSF198 are effective in enhancing the therapeutic effect of 
radiotherapy on tumors when combined with radiotherapy.323

With the increasing research on ferroptosis, more and more natural products have been found to have ferroptosis- 
inducing effects.324 Although these natural products themselves have limited effects in inducing ferroptosis in tumor 
cells, their discovery has provided lead compounds for the development of ferroptosis inducers. For example, compound 
31, synthesized by combining the core of the natural product indirubin with the active fragment of a GPX4 covalent 
inhibitor via a linker, effectively inhibited human colon cancer cells.93

The continuous development of new technologies such as PROTACs, PDTACs and nanomaterials in ferroptosis 
inducers also contributes to drug potency. PROTC DC-2 with ML210 as ligand degraded GPX4 22-fold more than 
ML210 and inhibited it better than ML210 in a wide range of cells.226 PROTC dGPX4 with ML162 as ligand-induced 
ferroptosis 5-fold more efficiently than ML162.228 Developing these new technological fields is a significant direction for 
the future development of ferroptosis inducers.

Reduction of Toxic Side Effects of Drugs
As tumors are chronic wasting diseases, tumor patients are usually in poor general condition and their body energy is in negative 
balance.325 The side effects of the drug will cause serious physical burden to tumor patients. This is also a serious obstacle to the 
clinical application of ferroptosis inducers. Tumor cells are derived from normal tissues and are very similar to normal tissues in 
terms of internal and external cellular structure and survival conditions (eg, relationship to the immune system).326 For example, 
ferroptosis induced by Lepadins E, Lepadins H and JQ1 occurs in cancer cells and normal cells. How to selectively kill tumor 
cells without harming normal cells in therapy is an important issue in the development of ferroptosis inducers.24

In selecting drug targets, the selection of tumor-specific targets can selectively induce ferroptosis in tumor cells.327 

For example, N6F11 can bind to a specific structural domain of the E3 ubiquitin ligase TRIM25, predominantly 
expressed in tumor cells, thereby selectively causing GPX4 protein degradation in tumor cells. Studies have shown 
that the toxic effects of compounds are related to the structure of the compound.328 For example, nitro is the leading toxic 
group separating nitroaromatics and can covalently bind to hemoglobin.329 Therefore, in the design stage of compounds, 
the drug’s toxicity can be reduced from the starting point of the structure-activity relationship.

Technologies such as PROTACs, PDTACs, and nanomaterials have been shown to improve the targeting of 
ferroptosis inducers.330 PROTAC-based ferroptosis inducers such as DC-2, dGPX4, and compound 8e have been 
shown to enhance the rate of inhibition while effectively improving the ability of the drugs to target the tumor cells 
and reducing the toxicity of the drugs. In photodynamic therapy, irradiating the lesion area with specific wavelengths 
activates the drugs that selectively accumulate in the lesion tissue. This treatment has better precision and 
controllability.331 Nanomedicines, on the other hand, are more biocompatible and soluble and cause fewer toxic side 
effects than conventional ferroptosis inducers.332
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Summary
Ferroptosis is an iron-dependent mode of programmed cell death. Ferroptosis has become a hot research topic since it 
was proposed in 2012. With in-depth research on the mechanism of ferroptosis and its targets, various ferroptosis 
inducers have been discovered and developed. At the same time, research on its application in cancer prevention and 
treatment has also deepened. Under the predicament that tumors are resistant to traditional therapies such as chemother-
apy and radiotherapy and have poor therapeutic effects, the proposal and development of ferroptosis-inducing therapies 
have provided new ideas and prospects for tumor treatment.

In this article, we introduce the mechanism of ferroptosis, the various types of ferroptosis inducers, and the application 
of ferroptosis-inducing therapies in the field of PDT and SDT. The comprehensive and systematic summary of small 
molecule drug classes of ferroptosis inducers provides ideas for designing and optimizing a new generation of small 
molecule drugs. The summary of the research progress of ferroptosis inducers in PROTACs, nanomaterials, PDT, and 
SDT provides a reference for the development and clinical translation of ferroptosis inducers in new fields. We also 
compare the advantages and disadvantages of various ferroptosis inducers. More importantly, we present the challenges 
and opportunities for developing ferroptosis inducers. We not only show the problems encountered in developing 
ferroptosis inducers but also propose solutions to solve the problems. In conclusion, we hope that the comprehensive 
summary and in-depth discussion of ferroptosis inducers will provide a direction for further research and development 
and clinical translation of ferroptosis inducers, thus bringing more effective treatment for tumor patients.
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