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Abstract
Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) that preferentially infects the respiratory tract. Bradykinin (BK) is a hypotensive substance that 
recently emerged as one of the mechanisms to explain COVID-19-related complications. Concerning this, in this review, we 
try to address the complex link between BK and pathophysiology of COVID-19, investigating the role of this peptide as a 
potential target for pharmacological modulation in the management of SARS-CoV-2. The pathology of COVID-19 may be 
more a result of the BK storm than the cytokine storm, and which BK imbalance is a relevant factor in the respiratory disor-
ders caused by SARS-CoV-2 infection. Regarding this, an interesting point of intervention for this disease is to modulate BK 
signaling. Some drugs, such as icatibant, ecallantide, and noscapine, and even a human monoclonal antibody, lanadelumab, 
have been studied for their potential utility in COVID-19 by modulating BK signaling. The interaction of the BK pathway 
and the involvement of cytokines such as IL-6 and IL1 may be key to the use of blockers, even if only as adjuvants. In fact, 
reduction of BK, mainly DABK, is considered a relevant strategy to improve clinical conditions of COVID-19 patients. In 
this context, despite the current unproven clinical efficacy, drugs repurposing that block B1 or B2 receptor activation have 
gained prominence for the treatment of COVID-19 in the world.
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Introduction

Coronavirus disease 2019 (COVID-19) is a potentially fatal 
disease caused by the severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) that preferentially infects the res-
piratory tract and causes pneumonia in humans (Chen et al. 
2020). In severe cases, patients may develop acute respira-
tory distress syndrome (ARDS), coagulation disturbances, 
septic shock, multiple organ failure, and, consequently, death 
(Wang et al. 2020; She et al. 2020). Severe COVID-19 has 
been associated with a massive release of proinflammatory 
cytokines and hyperactivation of innate immune cells (Lucas 
et al. 2020; Iwasaki et al. 2021). Recently, studies have been 
proposed that dysregulated bradykinin (BK) signaling may 
be the trigger of the cytokine storm observed in people with 
severe disease (van de Veerdonk et al. 2020b).

BK is a powerful hypotensive and smooth muscle stimu-
lating polypeptide that acts as a downstream product of the 
kallikrein-kinin system (KSS) (Leeb-Lundberg et al. 2005). 
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BK was discovered by three Brazilian scientists led by Dr. 
Maurício Rocha e Silva in a study from Bothrops jararaca 
snake venom. They demonstrated that trypsin-like enzymes 
release the pharmacological substance BK, instead of hista-
mine, from plasma globulin precursor. The discovery of BK 
allowed the study of a new physio and pathological phenome-
non (Hawgood 1997). The action of BK is constitutively medi-
ated by the B2 receptor, whereas the B1 receptor is activated by 
the metabolites des-Arg9-BK (DABK) and Lys-des-Arg9-BK 
(Lys-DABK) under inflammatory conditions (Ahluwalia and 
Perretti 1999; Leeb-Lundberg et al. 2005).

BK is a peptide rapidly produced and degraded under physi-
ological conditions that plays a crucial role in several pro-
cesses in the endothelium (Su 2015). It acts as a regulator of 
tissue blood flow and vasomotricity and can be appointed as 
an extension member of the renin-angiotensin system (RAS) 
(Schmaier 2002). This molecule is involved in the induction 
of vasodilation, natriuresis, and hypotension, events that occur 
after activation of B2 receptors (Marcic et al. 1999; ERDOS 
2002; Chen et al. 2005). Moreover, high concentrations of this 
peptide play a prominent role in the inflammatory and oxida-
tive process (Jacox et al. 2014; Hofman et al. 2016; Ruocco 
et al. 2020), as well as in the sensitization of sensory nerve 
endings (Choi and Hwang 2018). The DABK is a biologi-
cal substrate of ACE2 in lung and consequently the reduction 
in ACE2 function leads to impaired inactivation of DABK, 
resulting in activation of the B1 receptor signaling cascade 
and increases neutrophil recruiting and chemokine production 
in airway epithelial cells (Sodhi et al. 2018). Since degrada-
tion of BK is regulated by the angiotensin-converting enzyme 
(ACE) and the strong evidence that ACE2 can cleave DABK 
and Lys-DABK, it has been hypothesized that BK metabolism 
could be affected by SARS-CoV2 infection due to interac-
tions between viral glycoproteins and ACE2 enzyme (Datta 
et al. 2020). Recently, peptide BK has emerged as one of the 
mechanism to explain COVID-19-related complications (Kar-
amyan 2021).

Considering the proinflammatory, oxidative, and prolif-
erative actions of BK and its clinical repercussion (Kempe 
et al. 2020), it is possible that BK has a pivotal role in the 
pathophysiology of COVID-19. In this review, we discuss 
the complex link between BK and the pathophysiology of 
COVID-19, investigating the role of this peptide as a poten-
tial target of pharmacological modulation in the manage-
ment of SARS-CoV-2 infection.

Bradykinin pathway in the pathogenesis 
of COVID‑19

Rameshrad et al. (2020) described the importance of BK in 
the SARS-CoV-2 infection by calling attention to the inter-
play between ACE in the renin-angiotensin system (RAS) 

and KSS system. The binding between SARS-CoV-2 and 
ACE2 unbalances the function of ACE2 by decreasing its 
surface expression, resulting in dysfunction in the RAS 
and, consequently, accumulation of angiotensin II (Ang II) 
(Shukla and Banerjee 2021), and increased levels of BK bio-
active metabolite DABK (Colarusso et al. 2020). Therefore, 
the downregulation of ACE2 may lead to the increased avail-
ability of DABK, BK, and other compounds associated with 
hyperinflammatory response. Moreover, it was found that 
transmembrane protease serine 2 (TMPRSS2), a fundamen-
tal host protein used for SARS-CoV-2 to entry in the cell, 
has a kallikrein-like effect upon plasmatic kininogen and is 
involved in enhancing BK and DABK production (Nicolau 
et al. 2020).

Cell damage and inflammation caused by SARS-CoV-2 
induce the release of DABK metabolites and activation of 
the B1 receptor (McLean et al. 2000). Roche and Roche 
(2020) reported that high levels of DABK in the extracellular 
environment of neighboring cells lead to a positive feed-
back cycle of injury and inflammation. The exposure of B1 
receptor to proinflammatory cytokines during SARS-CoV-2 
infection (Colarusso et al. 2020) has also been associated 
with leukocyte migration, oxidative stress, and increase in 
vascular permeability with important pulmonary repercus-
sion (Colarusso et al. 2020; Ayres et al. 2020; Parekh et al. 
2020). In addition, it has been demonstrated that activation 
of the B2 receptor is responsible for the release of nitric 
oxide (NO), prostacyclin, and may induce the hyperpolari-
zation derived from the endothelium (Chow et al. 2020). 
Moreover, BK plays a key role in cardiovascular function, 
such as has a vasodilation profile, enhances vascular perme-
ability, and lowers blood pressure, producing these effects 
through binding to its receptors, B1 and B2 (Nussberger 
et al. 2002).

On this context, Garvin et al. (2020) (Garvin et al. 2020), 
by analyzing gene expression of cells in the bronchoalveolar 
lavage fluid (BALF), found that both RAS and BK systems 
are affected during COVID-19 infection. In addition, there is 
a negative regulation (up to 8 times) of enzymes that degrade 
BK (Garvin et  al. 2020). BALF samples from patients 
infected with COVID-19 confirmed a negative regulation 
of ACE. This promotes deviation in RAS, which makes it 
possible to sensitize the effects of BK in view of the pres-
ence of Ang 1–9. As a result of BK elevation, vasodilation 
occurs, which corroborates with the vascular leakage, and 
inflammatory cell infiltration.

Still, Garvin et al. (2020) (Garvin et al. 2020) suggested 
that the pathogenesis of COVID-19 may be more a result of 
the BK storm than the cytokine storm. The BK storm caused 
by inhibition of ACE2 may be responsible for triggering 
the most serious symptoms from the COVID-19 since the 
induction of fluid leakage into the lung by BK and high lev-
els of hyaluronic acid may generate a gelatin-like substance 
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that makes it difficult to capture oxygen and release carbon 
dioxide into the lungs (Garvin et al. 2020). In addition, the 
ACE2 downregulation caused by SARS-CoV-2 infection 
increases DABK and, consequently, there is an intensifica-
tion of the cytokine release. The activation of inflammatory 
mediators can lead to ARDS and multiple organ failure (Tol-
ouian et al. 2020). Thus, it has been hypothesized that the 
elevation of BK levels plays a pivotal link between ACE2 
downregulation and the severity of SARS-CoV-2 infection 
(Mansour et al. 2021). Therefore, ACE2, DABK, and B1 
receptor are suggested as a pharmacological pathway to pre-
vent or moderate the ARDS and complications in COVID-19 
patients (Fig. 1).

Furthermore, the interplay between BK and neurotensin 
(NT) or substance P (SP), as well as their cognate signaling 
pathways, has been identified as critical players in patho-
genic mechanisms of COVID-19 (Karamyan 2021). The 
BK, NT, and SP could cause impairment of BBB under 
pathophysiological conditions (Al-Ahmad et al. 2021), as 
well as are related to inflammation-induced complications of 
COVID-19 pathology (Karamyan 2021). Simultaneous inhi-
bition of BK, NT, and SP systems would be therapeutically 

more advantageous rather than modulation of the BK mech-
anism alone.

Pharmacotherapies that target BK, DABK, 
or B1 and B2 receptors in the treatment 
of COVID‑19

Treatment of COVID-19 requires an understanding of under-
lying molecular mechanisms associated with disease pro-
gression to provide a therapeutical response with appropriate 
use of available drugs, including those repurposed. Recently, 
it was proposed that dysregulation of BK signaling could be 
involved in the pathogenesis of this disease. In this way, an 
interesting point of intervention for SARS-CoV-2 infection 
is to modulate BK and DABK concentrations or block B1 
or B2 receptors (Vickers et al. 2002). Mansour et al. (2021) 
(Mansour et al. 2021) suggest that inhibition of BK signal-
ing in severe COVID-19 patients could mitigate the lung 
inflammatory response with a positive impact on the disease 
severity, reducing mortality rates.

Fig. 1   Schematic representation 
of BK storm caused by SARS-
CoV-2 infection. SARS-CoV-2 
binds to ACE2 decreasing its 
surface expression attenuating 
kinin degradation and, conse-
quently, increasing the levels of 
BK and DABK in plasma and 
tissue. Briefly, plasma kallikrein 
processes high-molecular-
weight kininogen to BK. BK 
interacts with B2 receptor on 
the endothelial cells. DABK is 
formed from BK degradation 
by carboxypeptidase, which are 
ligands of the B1 receptor also 
present on the endothelial cells 
and upregulated under inflam-
matory conditions. DABK is 
degraded by ACE2, which is 
downregulated in COVID-19, 
leading to an increase in inflam-
matory mediators and organs 
failure
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Ghahestani et al. (2020) (Ghahestani et al. 2020) hypoth-
esized that blocking B2 receptors with icatibant may be a 
pharmacological strategy facing the BK deregulation in 
COVID-19 patients (Ghahestani et al. 2020). Icatibant is a 
safe B2 receptor antagonist (Dubois and Cohen 2010) that 
could be administered to reduce the BK signaling (Garvin 
et al. 2020). This drug is reported in the literature for its 
effectiveness in treating respiratory disorders, including 
patients who develop angioedema from the use of ACE 
inhibitors (Baş et al. 2015). In addition, there is a positive 
association between the administration of icatibant and 
improved oxygenation in severe COVID-19 patients, sug-
gesting that targeting the kallikrein-kinin system might be 
beneficial for controlling clinical outcomes in these patients 
(van de Veerdonk et al. 2020a, p. 19).

According to Veerdonk et al. (2020a, b) (van de Veer-
donk et al. 2020b), the pulmonary angioedema presented 
in COVID-19 patients may be associated with the release 
of kinins, resulting in a very high number of intensive care 
unit (ICU) admissions. Furthermore, COVID-19 severity 
has been associated with the upregulation of proinflamma-
tory cytokines that could be stimulated by the BK cascade 
(Karamyan 2021). Therefore, blocking BK receptors might 
ameliorate COVID-19 complications by reducing kinin 
levels and, consequently, the inflammatory process (van 
de Veerdonk et al. 2020b). In the same context, Colarusso 
et al. (2020) (Colarusso et al. 2020) suggested that inhibit-
ing the upstream signaling that leads to the BK production 
would be an alternative pharmacotherapeutic strategy for 
patients with COVID-19. The authors stated that the use 
of lanadelumab, a human monoclonal antibody that acts 
as a plasma kallikrein inhibitor, which is important for the 
cleavage of high-molecular-weight kininogen (HMWK) into 
bradykinin (Colarusso et al. 2020). It can block the upstream 
axis that leads to kinin production, preventing coagulation 
and inflammatory storm, decreasing morbidity and mortal-
ity associated with COVID-19. Furthermore, studies in sep-
sis experiments based on the administration of B1 receptor 
antagonists have shown positive results in hemodynamic 
disorders with reduced risk of multiple organ failure (Muru-
gesan et al. 2016). Tolouian et al. (2020) (Tolouian et al. 
2020) proposed that the inhibition of BK from the selective 
binding of ecallantide to plasma kallikrein (Tolouian et al. 
2020), with reduction of B1 activation, could decrease the 
damages caused by SARS-CoV-2. In addition, B1 receptor 
antagonist LF22-0542, also known as safotibant, could be 
considered as a promising drug to treat COVID-19 due to its 
anti-inflammatory effects (Mahmudpour et al. 2020).

There is growing evidence on the increased risk of arterial 
and venous thromboembolism in patients with COVID-19. 
Pulmonary embolization and deep vein thrombosis have the 
potential to activate KKS in plasma, which leads to BK pro-
duction (Schmaier 2016). In this sense, Solun et al. (2020) 

(Solun and Shoenfeld 2020) have suggested the administra-
tion of aprotinin—an FDA-approved monomeric polypep-
tide that acts as a nonspecific serine protease inhibitor—as 
a pharmacotherapy for severe acute lung injury. Aprotinin 
inhibits the intrinsic pathway of coagulation and fibrinoly-
sis and has been used to reduce the release of proinflam-
matory cytokines and bleeding during surgical procedures. 
However, the authors emphasized a concern regarding the 
administration of aprotinin against ARDS and acute lung 
injury from COVID-19 patients affected by acute coronary 
syndrome, renal failure, and cerebrovascular problems, as 
well as, patients who have undergone coronary artery bypass 
surgery or use drugs from the aminoglycoside class in a 
synchronous manner (Solun and Shoenfeld 2020). However, 
aprotinin is not a specific protease inhibitor and its clinical 
usefulness in the disease is doubtful and needs more studies.

According to Ebrahimi (2020) (Ebrahimi 2020, p. 2), the 
antitussive alkaloid noscapine could also act in COVID-
19 by decreasing the release of cytokines induced by BK. 
Noscapine is a drug used as a therapeutic resource against 
cough, which has been shown to be effective against cough 
associated with BK (Ebrahimi et al. 2003). However, its anti-
tussive mechanism is not completely known, although it has 
been suggested that noscapine could act by interfering with 
the bradykinin cough mediation, with no involvement of μ, 
κ, and δ opioid receptors (Ghahestani et al. 2020). Finally, 
Ebrahimi 2020 suggests that the use of inhibitors of ACE 
in COVID-19 patients may corroborate an exacerbation of 
symptoms (Ebrahimi 2020).

The member from the RAS family, neprilysin (NEP), has 
also been postulated as a promising drug against COVID-19 
due to its potential role in protecting lungs from inflamma-
tion and fibrosis (Wick et al. 2011). El Tabaa and El Tabaa 
(2020) reported cell signaling pathways containing NEP in 
the pathogenesis of COVID-19. The authors suggest that 
NEP can mitigate cytokine storm induced by SARS-CoV-2 
invasion via inhibition of Ang II generation by neutrophil-
derived cathepsin G and directing Ang I for generating Ang 
(1–7), which could suppress the expression of TGF-β1, as 
well as possess fibrinogenic actions. Moreover, NEP acts 
in the BK pathway by degrading BKs and consequently 
decreasing proinflammatory cytokine levels, which is ben-
eficial for stabilizing endothelium and restoring its function 
(Pham 2006; El Tabaa and El Tabaa 2020). In the litera-
ture, it has been proposed that the administration of recom-
binant human neutral endopeptidase (rNEP) may mitigate 
lung injury by increasing the NEP concentration and, con-
sequently, reducing the proinflammatory mediators levels, 
including BK (Lightner et al. 2002). Therefore, therapeu-
tic strategies aimed to upregulated NEP expression and/or 
increase its activity may be a benefit for the prevention and 
treatment of COVID-19.
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Interestingly, experimental data postulated that endo-
toxin-free recombinant neurolysin (rNln) contribute to the 
accumulation of bradykinin, substance P, and neurotensin, 
and could alter the progression of the disease, having similar 
effects that NEP. This recombinant protein did not change 
arterial blood pressure, heart rate, body temperature, and 
blood glucose levels. So, rNln could be an alternative for 
the treatment of COVID-19 (Wangler et al. 2016; Karamyan 
2021).

Finally, another drug that could also be used in the treat-
ment of SARS-CoV-2 infection and could modulate BK storm 

is heparin (Nicolau et al. 2020). Heparin can minimize the 
activation of KKS and, consequently, effects of inflamma-
tion and coagulation disturbances associated with COVID-19 
(Nicolau et al. 2020). In fact, low-molecular-weight heparin 
modulates the activation of the coagulopathy pathways, miti-
gating coagulation disturbances and the severe acute respira-
tory distress syndrome (Falcone et al. 2020). In addition, an 
in vitro study proposed that heparin could restore vascular 
homeostasis by inhibiting glycocalyx disruption induced by 
SARS-CoV-2 infection (Potje et al. 2021). Finally, a clini-
cal trial has tried to prove the potential of heparin in the 

Fig. 2   Bradykinin in complex with interleukins as receptors. In 
A, bradykinin (BK) complexed with interleukin-1 (IL-1) (PDB 
ID: 2KKI); in B, BK complexed with interleukin-6 (IL-6) (PDB 
ID: 1ALU). All chains were colored in rainbow style for the recep-
tors and BK as conventional atoms’ colors. Illustrations elaborated 

by using PyMol v.0.99 software (https://​pymol.​org/2/). All docking 
simulations were performed using Gold® v. 5.8.1 (https://​www.​ccdc.​
cam.​ac.​uk/​solut​ions/​csd-​disco​very/​compo​nents/​gold/), applying the 
ChemPLP scoring function, in which it was observed that BK has a 
high affinity for IL-1 (score: 85.52) than for IL-6 (score: 67.85)

Table 1   Proposed pharmacotherapies that target BK or B1 and B2 receptors for the treatment of COVID-19

KKS, the kallikrein-kinin system; NEP, neprilysin

Drug Mechanisms Action Reference

Aprotinin Nonspecific serine protease inhibitor, 
including kallikrein

Blocking the coagulation pathway, as 
well as reducing the proinflamma-
tory response

Solun and Shoenfeld (2020)

Ecallantide Plasma kallikrein inhibitor Hereditary angioedema with normal 
C1INH (HAE-nC1INH)

Tolouian et al. (2020); Cai et al. (2020)

Heparin Minimize the activation of KKS Anticoagulant
Recombinant human 

neutral endopepti-
dase

Upregulation of NEP Degraded the proinflammatory 
molecules (chemokines, endothelin, 
bradykinin) associated neutrophil 
sequestration

Lightner et al. (2002)

Icatibant B2 receptor antagonist Hereditary angioedema Ghahestani et al. (2020)
Lanadelumab Human monoclonal antibody that acts 

towards plasma kallikrein
Angioedema inhibit the kinines, block-

ing coagulation, and inflammatory 
process

Colarusso et al. (2020)

Noscapine Opioid derivative acting centrally as an 
antitussive agent

Antitussive drug
Decreasing the release of cytokines by 

BK protecting neural tissues from 
ischemic damage and oxidative stress

Ebrahimi (2020, p. 2)

Safotibant B1 receptor antagonist Anti-inflammatory profile Mahmudpour et al. (2020)
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management of SARS-CoV-2 infection. In that a randomized, 
placebo and controlled study, we determine if nebulized hepa-
rin may reduce the need for mechanical ventilation in hospital-
ized patients with COVID-19 (NCT04723563). Some studies 
are used the drug combination as a pharmacological option. 
In this context, an interventional study enrolled 308 patients 
to evaluate the clinical efficacy of heparin and tocilizumab in 

severe COVID-19 patients (NCT04600141). However, to date, 
the preliminary results have not yet been reported.

Additionally, the BK involvement is consistent with ele-
vated levels of IL-6 in COVID-19 patients, actively partici-
pating in cytokine storm syndrome (Cron 2021). During the 
first findings in patients with COVID-19, IL-6 concentrations 
were noted to be elevated, and IL-6-blocking therapies were 
available in China, but with incipient and inconclusive results 

Fig. 3   Chemical structures of 
proposed pharmacotherapies 
that target BK or B1 and B2 
receptors for the treatment of 
COVID-19
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that made the therapy uninteresting for clinical purposes. How-
ever, BK also participates in the modulation of IL-1 levels, 
which plays a key role in the COVID-19 cytokines storm. 
Thus, IL-1 blockers seem to provide more benefit than IL-6 
inhibition which might be related to the endotheliopathy asso-
ciated with COVID-19 and the release of IL-1α or the fact that 
IL-1 is frequently upstream of IL-6 expression, so blocking 
IL-1 signaling equally indirectly blocks IL-6 (Crayne et al. 
2019). Molecular docking was performed to determine the 
binding efficiency between the BK and the proinflammatory 
cytokines IL-1 or IL-6, in which it was observed that BK has 
a higher affinity for IL-1 (score: 85.52) than for IL-6 (score: 
67.85) (Fig. 2).

Therefore, there is growing evidence that reduction of 
BK, DABK, and proinflammatory cytokines is a promising 
pharmacotherapeutic strategy to improve clinical outcomes 
of patients with COVID-19, especially among those with 
pulmonary inflammation and respiratory failure. Table 1 and 
Fig. 3 summarized the main molecular target of the drugs 
described in this article, showing the pharmacological pro-
files associated with COVID-19 pathophysiology.

Conclusion

BK is a peptide rapidly produced and degraded under 
physiological conditions that plays a crucial role in several 
processes, including inflammatory and oxidative events. 
BK emerges as a key mechanism to explain COVID-19-re-
lated complications since the dysregulated BK signaling 
may be the trigger of the cytokine storm observed in peo-
ple with severe SARS-CoV-2 infection. Taking account 
that the binding between SARS-CoV-2 and ACE2 unbal-
ances the function of ACE2, leading to increased levels 
DABK, drugs with potential effects in inhibiting the syn-
thesis of BK or DABK or their action should be evaluated 
in high-quality randomized clinical trials for the treatment 
of COVID-19.
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