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ABSTRACT
This paper investigates the capabilities of the evolutionary fuzzy genetic (FG) approach
and compares it with three neuro-fuzzy methods—neuro-fuzzy with grid partitioning
(ANFIS-GP), neuro-fuzzy with subtractive clustering (ANFIS-SC), and neuro-fuzzy
with fuzzy c-means clustering (ANFIS-FCM)—in terms of modeling long-term air
temperatures for sustainability based on geographical information. In this regard, to
estimate long-term air temperatures for a 40-year (1970–2011) period, the models
were developed using data for the month of the year, latitude, longitude, and altitude
obtained from 71 stations in Turkey. The models were evaluated with respect to mean
absolute error (MAE), rootmean square error (RMSE),Nash–Sutcliffe efficiency (NSE),
and the determination coefficient (R2). All data were divided into three parts and
every model was tested on each. The FG approach outperformed the other models,
enhancing the MAE, RMSE, NSE, and R2 of the ANFIS-GP model, which yielded the
highest accuracy among the neuro-fuzzy models by 20%, 30%, and 4%, respectively. A
geographical information system was used to obtain temperature maps using estimates
of the optimal models, and the results of the model were assessed using it.

Subjects Environmental Impacts, Spatial and Geographic Information Science
Keywords Long-term air temperature, Estimation, Evolutionary fuzzy, Neuro-fuzzy, GIS

INTRODUCTION
Regional climate is critical to the efficiency of crops as it deeply influences their yield
potential. Rainfall, solar irradiance, and the temperature of the air are factors affecting
crop yield, improvement, and growth (Ali-Nezhad & Eskandari, 2012). With regard to the
phonological levels of the ripening of a crop, temperature is considered vital (Rosenzweig
& Liverman, 1992). Moreover, crop growth is done within only specific temperature
ranges. While the growth of a plant relies heavily on temperature, the plant species
is the most significant determinant of the range of temperature ideal for its growth
(Hasanuzzaman, Nahar & Fujita, 2013). Temperature determines the crop’s survival and
growth in each region (Cobaner et al., 2014). Brunetti et al. (2014) discuss the pros and cons
of three spatial models such as multi-linear regression with local improvements (MLRLI),
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regression kriging (RK), local weighted linear regression (LWLR) considering elevation
input for temperature assessment in Italy. Gonzalez-Hidalgo et al. (2015) employ spatial
trend analysis based on the interpolation method such as radial weight with a Gaussian
shape using angular weight for temperature data analysis. Serrano-Notivoli, Beguería &
De Luis (2019) evaluate spatial, temporal variability of temperature using methods such
as Generalized Linear Mixed (GLMM) and Generalized Linear Models (GLM) with the
inclusion of spatial predictors such as latitude, longitude, altitude, and distance.

Techniques from artificial intelligence (AI), such as the adaptive neuro-fuzzy inference
system (ANFIS) and artificial neural networks (ANN), have been used in such subjects as
agro-hydrology, agro-meteorology, and engineering for water resources. This study focuses
on the relevant literature. Zhu et al. (2019) proposed a model using different machine
learning techniques such as multilayer perceptron neural network models (MLPNN),
adaptive neuro-fuzzy inference systems (ANFIS) with fuzzy c-mean clustering algorithm
(ANFIS_FC), ANFIS with grid partition method (ANFIS_GP), and ANFIS with subtractive
clustering method (ANFIS_SC) for prediction of water temperature. Khosravi et al. (2018)
employs a model using multilayer feed-forward neural network (MLFFNN), radial basis
function neural network (RBFNN), support vector regression (SVR), fuzzy inference system
(FIS) and adaptive neuro-fuzzy inference system (ANFIS) for solar radiation prediction.

The abductive neural network method was utilized by Abdel-Aal (2004) to predict air
temperature every hour. Using data concerning seasonality and changing the parameters
of an ANN model, Smith, McClendon & Hoogenboom (2005) developed an ANN for
temperature forecasting. Dew-point temperature was modeled by Shank, Hoogenboom &
McClendon (2008) using neural networks, and Turkey’s long-term temperature forecasting
was applied by Bilgili & Sahin (2009) to each month. A new method utilizing the Yule–
Walker equation and ANNs was proposed by Chattopadhyay, Jhajharia & Chattopadhyay
(2011) to model the time series of monthly maximum temperatures in northeast India.
Turkey’s mean air temperature for each month was modeled by Şahin (2012) using ANN
and remote sensing. By using geographical data, the performance of ANNs and ANFIS
was compared in terms of forecasting air temperature in Iran by Kisi and Shiri. In another
study, themonthlymean of Turkey’s air temperature was predicted byCobaner et al. (2014)
using ANNs and ANFIS. All past assessments have used ANFIS and ANNs, and none of
them has evaluated fuzzy methods for long-term modeling of temperature by applying
geographical information. Thus, this paper aims to model long-term temperatures using
geographical data and compare an evolutionary fuzzy method with three approaches based
on ANFIS.

Some researchers in climatology, biogeography, hydrology, meteorological, agriculture,
and ecology have applied temperature modeling using spatial/geographical information
systems (GIS) (Ninyerola, Pons & Roure, 2000). Goodale, Aber & Ollinger (1998) applied
predictors to interpolate temperature and precipitation in Ireland using spatial information
(latitude, longitude, and altitude). Geostatistical model kriging was employed by Benavides
et al. (2007) to model temperature. Chuanyan, Zhongren & Guodong (2005) compared
the results of conventional predictive models, such as linear regression and geostatistical
interpolation techniques (e.g., ordinary kriging, splines, and inverse distance weight), in
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terms of spatial distribution in modeling surface air temperature. Ninyerola, Pons & Roure
(2000) also employed GIS-based techniques for the accurate prediction and mapping of
the nonlinear behavior of air temperature over space and time.

To predict long-term monthly air temperature with spatial data for achieving
sustainability, in this research the evolutionary fuzzy genetic (FG) model applicability
is examined. The results of the proposed model were evaluated by comparing with those of
three ANFIS models: ANFIS using fuzzy c-means clustering (ANFIS-FCM), ANFIS using
grid partitioning (ANFIS-GP), and ANFIS using subtractive clustering (ANFIS-SC). In
this regard, training and testing the FG and ANFIS models were conducted on 71 weather
stations data in Turkey. The results were also evaluated using the GIS method.

STUDY AREA
The 37th largest country in the world, Turkey is located at 38.9637◦ N latitude and
35.2433◦ E longitude with an area of 780,000 km2, 25 million hectares of which is
suited for agriculture. Turkey is a mountainous country with large plains. The highest
mountain, Ararat, is 5165 m high. The distribution of temperature and weather patterns
are significantly influenced by the orientation and elevation of mountains in the country.

This study used monthly mean temperatures gathered from 71 stations of the Turkish
State Meteorological Service. This information included a 40-year dataset from 1970–2011
for each station. Table 1 shows the temperature (◦C), longitude, latitude, and altitude above
sea level as recorded by each station. The temperature varied from −11.5 ◦C in January
(Ardahan) to 32 ◦C in July (Urfa) in the long term. The high variation may have occurred
because of the sea rounding these areas, the high mountains along the coasts of the Black
Sea and the Mediterranean Sea, and the mountainous eastern Anatolia region (Cobaner et
al., 2014). Figure 1 shows the meteorological stations distribution in Turkey.

METHODS
Fuzzy approach
Fuzzy logic has been used in such fields as business, engineering, and the sciences (Zadeh,
1965). Figure 2 shows units of fuzzification of a general fuzzy system including a fuzzy
inference engine, a fuzzy rule base, and defuzzification. Fuzzy logic is based on the idea
of using hybrid systems, where part of one system and part of another are used instead of
only one. The degree of dependence on a system is a number between zero and one.

In the inference mode, the fuzzy system takes inputs and outputs data. By using a map
of association, namely fuzzy associative memory, the inputs are transformed into the
equivalent output sets by fuzzy system learning (Kosko & Toms, 1993). Some ‘‘black box’’
approaches such as ANNs can function, for example, in regression, but fuzzy systems are
clearer and more pliable. Thus, it is clear how fuzzy systems perform and modify processes
(Russell & Campbell, 1996).

The fuzzy method used here is as follows. Several subsets using Gaussian member
function are formed from the input and output parameters. ck fuzzy rules are available,
where c and k are the subsets and inputs numbers, respectively. Efficiency increases with
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Table 1 Summary of the geographical information of the studied weather stations (Kisi & Shiri, 2014).

Station Lat.
(◦N)

Long.
(◦W)

Alt.
(m)

∗T
(◦C)

Station Lat.
(◦N)

Long.
(◦W)

Alt.
(m)

∗T
(◦C)

Adana 37 35.32 27 19.12 K.maras 37.3 40.77 572 16.81
Adiyaman 37.76 38.27 672 17.24 Karabuk 41.2 32.62 259 13.33
Afyon 38.74 30.55 1,034 11.28 Karaman 37.17 33.22 1,025 11.88
Agri 39.72 43.05 1,632 6.18 Kars 40.59 43.08 400 4.81
Aksaray 38.37 34.03 965 12.02 Kastamonu 41.37 33.77 800 9.73
Amasya 40.65 35.83 412 13.63 Kayseri 38.72 35.49 1,093 10.44
Ankara 39.97 32.86 891 11.98 Kirikkale 39.84 33.52 748 12.57
Antalya 36.9 30.79 54 18.40 Kirklareli 41.74 27.22 232 13.20
Ardahan 41.11 42.7 1,829 3.75 Kirsehir 39.16 34.15 1,007 11.35
Artvin 41.18 41.82 628 12.03 Kilis 36.72 37.12 638 17.10
Aydin 37.84 27.84 56 17.63 Konya 37.99 32.56 1,031 11.58
Balikesir 39.63 27.92 102 14.55 Kutayha 39.42 29.99 969 10.75
Bartin 41.62 32.35 30 12.63 Malatya 38.35 38.31 948 13.74
Batman 37.89 41.12 540 16.51 Manisa 38.61 37.4 71 16.98
Bayburt 40.25 40.43 1,584 6.93 Mardin 37.31 40.73 1,040 16.15
Bilecik 40.14 29.97 539 12.50 Mugla 37.29 28.37 646 15.01
Bingol 38.88 40.49 11.77 11.95 Mus 38.74 41.49 1,320 9.71
Bitlis 38.39 42.12 1,573 9.53 Nigde 37.97 34.69 1,211 11.08
Bolu 40.74 31.6 743 10.53 Osmaniye 37.1 36.25 94 18.24
Burdur 37.72 30.29 967 13.18 Rize 41.04 40.5 9 14.23
Bursa 40.23 29.01 100 14.56 Sakarya 40.77 30.39 31 14.44
Canakkale 40.15 26.41 6 15.01 Samsun 41.35 36.24 4 14.38
Cankiri 40.61 33.61 751 11.18 Siirt 37.93 41.94 896 16.11
Corum 40.54 34.94 776 10.57 Sinop 42.02 35.15 32 14.09
Denizli 37.76 29.09 425 16.21 Sivas 39.74 37.02 1,285 9.08
Elazig 38.67 39.22 990 13.03 S.urfa 37.16 38.79 549 18.38
Erzincan 39.74 39.5 1,218 10.89 Sirnak 37.52 42.45 1,350 14.13
Erzurum 39.95 41.17 17.58 5.40 Tekirdag 40.99 27.49 3 13.96
Eskisehir 39.78 30.58 786 10.84 Tokat 40.3 36.56 608 12.48
Gaziantep 37.07 37.39 855 15.07 Trabzon 41 39.78 39 14.68
Giresun 40.92 38.39 37 14.53 Tunceli 39.1 39.55 978 12.83
Gumushane 40.46 39.47 1219 9.55 Usak 38.67 29.4 919 12.51
Hakkari 37.57 43.75 1,728 10.26 Van 38.49 43.39 1,661 9.24
Hatay 36.36 36.28 82 18.26 Yalova 40.66 29.27 4 14.67
Igdir 39.92 44.06 858 12.08 Yozgat 39.82 34.81 1,298 8.97
Istanbul 40.98 28.82 33 15.01
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Figure 1 Meteorological stations distribution in Turkey (the map was provided by the State State Hy-
draulicWorks (DSI), see http://en.dsi.gov.tr/about-dsi-)

Full-size DOI: 10.7717/peerj.8882/fig-1

the number of subsets, and the rule base increases in weight, rendering construction more
complex. In the case of only one input, x, and k subsets, the rule base yields yn (n= 1, 2,
. . . , k2) (Şen, 1998).

In the case of one variable input, x with four values of ‘‘low,’’ ‘‘medium,’’ ‘‘high,’’ and
‘‘very high,’’ four rules are possible:

R1: IF x is ‘‘low,’’ THEN y1
R2: IF x is ‘‘medium,’’ THEN y2
R3: IF x is ‘‘high,’’ THEN y3
R4: IF x is ‘‘very high,’’ THEN y4
The output is single weighted, y, as a weighted average of the outputs of these four rules

as follows:

y =
∑4

n=1wn ·yn∑4
n=1wn

(1)
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Figure 2 A typical fuzzy inference system.
Full-size DOI: 10.7717/peerj.8882/fig-2

where the degree of membership, wn, is investigated for each x to be assigned an equivalent
yn after triggering each rule.

Therefore, having formed the rule base, any assortments of subsets of the parameters
used as input to the fuzzy system, Eq. (1), can be used to compute the output values (y)
(Şen, 1998).

The proposed fuzzy base rule can be computed using the datasets used as input and
output as follows:
1. using the smallest number of inputs;
2. assigning a specific membership function to each input;
3. computing the value of membership (wn) of x in all fuzzy subsets;
4. calculating the output yn simultaneously with the weight set wn;
5. renewing all other data points; and
6. calculating the weighted average using Eq. (1) (Kiszka, Kochanskia & Sliwiska,

1985a;Kiszka, Kochanskia & Sliwinska, 1985b).
As any change in the subsets makes a direct effect on the functionality of the fuzzymodel,

forming the fuzzy subsets is among the most challenging problems in the area. It is thus
vital to define the membership functions optimally to maximize modeling efficiency (Kisi
& Cengiz, 2013). The optimal membership functions are defined in this research using the
genetic algorithm.

Genetic algorithm
GAs have been researched in engineering since 1960, when they were introduced byHolland
(Abraham & Jain, 2005; Ortiz Jr et al., 2004). In general, GAs try to imitate the Darwinian
concept of natural selection. A GA first generates a set of possible solutions and tries to
find the best approach to survival to form a new population of solutions, which assesses
the real solution better than before. The challenge of creating better and fitter solution sets
is the basic principle of GAs. They are utilized to find the best and most optimal solutions
to solve difficult problems. Utilizing this approach provides a useful option for solutions
(Aijun et al., 2004; Tsai, Liu & Chou, 2004). While other methods are restricted due to their
suppositions, GAs have fewer such limits (Jean, Lin & Chou, 2007).

Adaptive neuro-fuzzy inference system
ANFIS, a general investigation tool with the quality to approximate continuous real
functions on compact sets, was developed in 1993 by Jang. In its structure, nodes are
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Figure 3 ANFIS model for temperature prediction.
Full-size DOI: 10.7717/peerj.8882/fig-3

attached to one another by directional links. A node function containing variable or
constant parameters introduces the node (Jang, Sun & Mizutani, 1997).

The example below presents a typical fuzzy inference system (FIS) with an output f,
three inputs x,y , and z , and two if–then fuzzy rules of the Takagi and Sugeno type:

Rule 1: If x is A1, y is B1, and z is C1, then f1= p1x+q1y+ r1z+ s1 (2)

Rule 2: If x is A2, y is B2, and z is C2, then f2= p2x+q2y+ r2z+ s2 (3)

where f1 and f2 are the output functions of rules 1 and 2, respectively. Figure 3 shows the
structure of ANFIS. The functions of the nodes are as follows.

Ol,i = φAi(x) indicates the node function for each square node i of layer 1 that is
adaptive, and i= 1, 2, x, is the ith input node; Ai is a linguistic label (i.e., ‘‘small’’ or
‘‘big’’) for this node function. When input x satisfies quantifier Ai, Ol,i, is the membership
function (MF) of fuzzy set A (e.g., A1, A2, B1, B2, C1, C2) and indicates its degree. φAi(x) is
mainly a Gaussian function ranging between zero and one as the minimum and maximum
levels, respectively:

φAi(x)= exp(−
(
x−ai
bi

)2

) (4)

where {ai,bi} is the parameter set. These layer parameters are considered to be assumed.
The circle nodes of layer 2 have index 5, which indicates the multiplication of the inputs
and the sending of the product. For instance, wi = φAi(x)φBi(y)φCi(z), i= 1, 2. The
output of each node shows the impression level of a rule. Circle nodes of layer 3 take the
label N. Following this, the ratio of the level of impression of the ith rule on the sum of the
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levels of all rules is computed by the ith node using

wi=
wi

w1+w2
, i= 1,2. (5)

The node function of the square nodes of layer 4 is O4,i= w̄ifi= w̄i
(
pix+qiy+ riz+ si

)
,

where w̄i represents the layer 3 output and the parameter series is
{
pi,qi,ri, si

}
. These layer

parameters are called consequent parameters. The single circle nodes of layer 5, labeled
‘‘6,’’ sums all incoming signals and returns the result as the final output:

O5,i=
∑
i=1

w̄ifi=
∑

iwifi∑
iwi

. (6)

The ANFIS network acts similarly to a first-order Sugeno FIS (Kisi, 2015). Linear or
fixed-valued functions are used in ANFIS to generate the output. Detailed information
concerning ANFIS is available in Jang’s study (1993).

Grid partitioning
This approach provides independent partitions of prior variables (Jang, 1993). The
membership functions of all prior variables can be determined by prior knowledge
and experience. Expressing the meaning of the linguistic terms of a context is the goal of
designing these partitions. However, in many systems, there is no specific information
accessible to these partitions. Thus, the ranges of the prior variables may easily be divided
into membership functions that are equally shaped and spaced. The membership functions
may be located suitably in case the system’s input–output data are available. The rule base
should be generated in a manner that perfectly covers previous fuzzy set combinations.
The membership functions of each variable are built apart from those of others, and this is
the main disadvantage of this method as this causes it to overlook the relationship among
variables (Vernieuwe et al., 2005).

Subtractive clustering
The ANFIS subtractive clustering (ANFIS-SC) model is defined by merging ANFIS with
subtractive clustering. In this model, a possible cluster center is each data point, which is
not a grid point (Chiu, 1994). It is thus an extended model of Yager & Filev (1994), the
mountain clustering method.

In this approach, the number of effective ‘‘grid points’’ that should be investigated are
similar to the number of data points independently of the number of dimensions of the
problem. One of the advantages of this approach is that a tradeoff between computational
complexity and accuracy is unnecessary because the need to define a grid resolution is
removed. The scale of the mountain method to accept or reject the cluster centers is also
extended in subtractive clustering.

The impressive radius is vital to defining the number of clusters. Too many smaller
clusters require more rules if a small radius is chosen, and vice versa. Thus, selecting a
suitable impressive radius for data space clustering is crucial. Defining the number of fuzzy
rules and presumptions of the fuzzy MF is the next stage. In the end, the results in the
output MF are generated by utilizing linear least squares, which builds a valid FIS (Cobaner,
2011; Sanikhani & Kisi, 2012).
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Fuzzy c-means clustering
C-means fuzzy clustering is a form of flexible clustering model in which the data points
are combined by calculating possible data points in the feature space. In this model, the
mountain clustering approach can be used to calculate the number of clusters and cluster
centers (Chiu, 1994; Cobaner, 2011). This model is based on the k-means algorithm, which
is unsuitable for big datasets. C-means fuzzy clustering reduces the intra-cluster variance
to a minimum (Ayvaz, Karahan & Aral, 2007) and combines data using its clustering
algorithm. The c-means fuzzy clustering minimizes either the distance or the objective
squared error function (Kisi, 2015).

Spatio–temporal modeling
The use of GIS for the spatial modeling of many real-world phenomena toward
implementation for sustainability (Childers et al., 2015; Lundgren & Kjellstrom, 2013)
has attracted research attention. Spatial modelling acts like a critical tool to examine the
nature or property of real-world phenomena whether being sustained or not. Much of
real-world phenomena are dynamic, and involve spatial and temporal changes. Thus, the
use of a GIS for temporal and spatial modeling plays an important role in improving
model visualization and tracking how much far from sustainability indicators (Fig. 4). The
GIS is used for various purposes, such as creating the required spatial data (geographical
location) used as input for the prediction model. Using the spatial functions generates a
map related to the modeling phenomena to assess their behavior and at different locations.
Such spatial statistical functions as zonal statistics assess variation in phenomena as well as
minimum and maximummean values at different locations. A geospatial function, such as
the interpolation method, enables the elimination of possible model defects (e.g., data loss
in some areas). Geostatistical analysis, such as trend analysis functions, provides forecasting
trends and patterns of phenomena.

Model evaluation statistics
Four statistics were used to evaluate the models: mean absolute error (MAE), root mean
square error (RMSE), Nash–Sutcliffe efficiency (NSE), and the determination coefficient
(R2). RMSE, MAE, and NSE can be expressed as

RMSE =

√√√√1
n

n∑
i=1

(
ATM ,i−ATo,i

)2 (7)

MAE =
1
n

n∑
i=1

∣∣ATM ,i−ATo,i
∣∣ (8)

NSE = 1−
∑n

i=1(ATM ,i−ATo,i)∑n
i=1(ATo,i−ATo)

(9)

where ATM and ATo are modeled and observed air temperatures, respectively, n is the
number of time steps, and ATo is the mean observed air temperature.
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Figure 4 Spatial temporal modeling.
Full-size DOI: 10.7717/peerj.8882/fig-4

APPLICATION AND RESULTS
Modeling long-term air temperatures using evolutionary fuzzy and
neuro-fuzzy approaches
Four hybrid fuzzy methods—evolutionary FG, ANFIS-GP, ANFIS-SC, and ANFIS-FCM—
were compared in terms of predicting long-term air temperatures. The inputs of the
models were latitude, longitude, altitude and month of the year. To train and test models,
the data of 71 weather stations in Turkey were used. The entire dataset (the 70 stations
×12 months = 840 data items) was divided into three subsets. The first 23 stations were
used in the first part, the second set of 23 for the second, and the other 24 stations were
used for the last part. In the first application, training and testing were conducted using the
first two parts (subsets) and the third part respectively; it was called model 1 (M1). In the
second application, training was conducted using the second and third parts and testing
was conducted using the first part, and was called model 2 (M2). In the last application,
training was conducted using the first and third parts the testing was conducted using the
second part, and was called model 3 (M3).

ANFIS-GP was applied to the datasets, and two and three Gaussian membership
functions (MFs) were used to find the optimal one. More than three MFs led to worse
results and memory-related problems. The number of iterations was varied from 10 to 100
with increments of 10 for each number of MFs. Different values of the radius were used
(from 0.1 to 1 in increments of 0.1) for the ANFIS-SC model, and different numbers of
clusters were used (from two to eight, incremented by one) for the ANFIS-FCM model.
The numbers of iterations used were similar to those in the ANFIS-GP and ANFIS-SC
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Table 2 Optimal parameters and structures of the ANFIS-GP, ANFIS-SC, ANFIS-FCM and FGmodels.

Model ANFIS-GP ANFIS-SC ANFIS-FCM FG

M1 3-3-2-3, 100 1, 100 5, 100 3-3-2-3, 1,000, 100
M2 3-2-2-2, 100 1, 100 8, 90 3-2-2-2, 1,000, 100
M3 3-3-2-3, 100 1, 100 7, 100 3-3-2-3, 1,000, 100

methods. To test the FG models, the optimal number of MFs for the ANFIS-GP models
were used. A total of 1,000 iterations and 100 members were used for the FG models. The
optimal parameters and structures of the applied models are listed in Table 2. For example,
3−3−2−3,100 indicates an ANFIS-GP model with three, three, two, and three MFs for
the four inputs (month of the year, latitude, longitude, and altitude) over 100 iterations.
The number 1,100 indicates the value of the radii and the number of iterations of the
ANFIS-SC model, the numbers of clusters and iterations of the ANFIS-FCM model were
5,100. ‘‘ 3−3−2−3 , 1,000, 100,’’ indicating an FGmodel with three, three, two, and three
MFs for the four inputs with 1,000 generations and a population of 100.

Table 3 specifies the results of training and testing the models in terms of RMSE, MAE,
NSE, and R2. In the training stage, the RMSE of the FG model ranged from 1.59 to 1.89,
whereas that of ANFIS-GP, ANFIS-SC, and ANFIS-FCM was in the range 2.16–2.95,
1.14–1.45, and 6.13–6.93, respectively. Similar ranges were observed for the MAE, NSE,
and R2. The ranges and means reveal that the ANFIS-SC was the most accurate in terms
of approximating long-term air temperatures followed by the FG. ANFIS-FCM yielded the
worst results in this stage. In the test stage, however, the ranges of RMSE, MAE, NSE, and
R2 of the FGmodels were 1.63–3.26, 1.23–2.08, 0.868–0.967, and 0.882–0.967, respectively,
which were superior to the those of the other models. The average RMSE, MAE, NSE, and
R2 of the optimal FGmodels (2.32, 1.59, 0.925, and 0.935) were also higher than those of the
ANFIS-GP (2.91, 2.28, 0.890, 0.898), ANFIS-SC (5.41, 3.42, 0.539, 0.768), and ANFIS-FCM
(12.5, 8.32, 0.239, 0.250) models. Among the neuro-fuzzy models, ANFIS-GP obtained
the highest accuracy. In terms of RMSE, MAE, NSE, and R2, the FG model enhanced the
accuracy of ANFIS-GP by 20%, 30%, 4%, and 4%, respectively.

A graphical comparison of the four methods is provided in Fig. 5–Fig. 7 for M1, M2,
and M3. The obvious finding from Fig. 4 is that the estimates of the FG model were closer
to the corresponding observed temperatures than those of the ANFIS-GP, ANFIS-SC,
and ANFIS-FCM models. Considerable under/over-estimations were observed in the
ANFIS-FCM model. The scatterplots show that the fit line equation of the FG model was
y = 0.9910x–0.906, closer to the exact line (y = x) with a higher R2 than the other three
models. ANFIS-GP was better than the other two neuro-fuzzy models. Similar trends were
seen for M2 and M3 (see Figs. 6 and 7).

Spatial modeling of long-term air temperatures using GIS
Air temperature is a spatio-temporal phenomenon, and thus changes with time and place.
Based on their capabilities, GIS spatial functions can be used to improve the model. The
GIS can be used to provide additional input for air temperature modeling in the form
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Table 3 Training and testing results of the FG, ANFIS-GP, ANFIS-SC and ANFIS-FCMmodels.

Process FG ANFIS-GP ANFIS-SC ANFIS-FCM

Model RMSE
(◦C)

MAE
(◦C)

NSE R2 RMSE
(◦C)

MAE
(◦C)

NSE R2 RMSE
(◦C)

AE
(◦C)

NSE R2 RMSE
(◦C)

MAE
(◦C)

NSE R2

M1 1.89 1.31 0.955 0.956 2.47 1.98 0.924 0.924 1.24 0.95 0.981 0.981 6.66 5.48 0.448 0.448
M2 2.19 1.43 0.937 0.938 2.95 2.26 0.886 0.886 1.45 1.10 0.972 0.972 6.93 5.81 0.373 0.373Training

M3 1.59 1.25 0.967 0.967 2.16 1.83 0.938 0.938 1.14 0.87 0.983 0.983 6.13 5.06 0.504 0.504
Mean 1.89 1.33 0.953 0.954 2.53 2.02 0.916 0.916 1.28 0.973 0.979 0.979 6.57 5.45 0.442 0.442

M1 2.08 1.45 0.940 0.955 2.74 2.26 0.896 0.904 3.93 2.52 0.78 0.820 7.53 6.17 0.209 0.253
M2 1.63 1.23 0.967 0.967 2.68 2.10 0.910 0.912 9.09 5.64 −0.036 0.602 22.3 12.5 5.22- 0.119Testing

M3 3.26 2.08 0.868 0.882 3.31 2.47 0.864 0.878 3.21 2.09 0.872 0.882 7.67 6.30 0.269 0.379
Mean 2.32 1.59 0.925 0.935 2.91 2.28 0.890 0.898 5.41 3.42 0.539 0.768 12.5 8.32 0.239 0.250
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Figure 5 Observed and predicted air temperatures by FG, ANFIS-GP, ANFIS-SC and ANFIS-FCM
models –M1models; time variation graphs of (A) FG, (B) ANFIS-GP, (C) ANFIS-SC and (D) ANFIS-
FCM and scatterplots of (E) FG, (F) ANFIS-GP, (G) ANFIS-SC and (H) ANFIS-FCM.

Full-size DOI: 10.7717/peerj.8882/fig-5

of spatial data (latitude and longitude). This spatial modeling leads to greater flexibility
in the proposed model and renders it more adaptable for practical use. Moreover, the
GIS is used to create temperature map-related locations to enable better visualization and
interpretation of the outputs.
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Figure 6 Observed and predicted air temperatures by FG, ANFIS-GP, ANFIS-SC and ANFIS-FCM
models –M2models; time variation graphs of (A) FG, (B) ANFIS-GP, (C) ANFIS-SC and (D) ANFIS-
FCM and scatterplots of (E) FG, (F) ANFIS-GP, (G) ANFIS-SC and (H) ANFIS-FCM.

Full-size DOI: 10.7717/peerj.8882/fig-6

A classified temperature mapping enables a comparison of the variation in temperature
ranges of all methods with respect to M1 (Fig. 8), M2 (Fig. 9), and M3 (Fig. 10). The lowest
temperature ranges according to the classified temperature map in M1 were ANFIS-SC:
4.52–8.74, ANFIS-FCM: 6.14–8.95, ANFIS-GP: 8.45–10.22, and FG-FUZZY-G: 8.94–10.47.
The maximum temperatures were ANFIS-SC: 18.82–22.75, ANFIS-FCM: 17.45–20.21,
ANFIS-GP: 16.02–18.05, and FG-FUZZY-G: 16.75–18.47. The lowest temperatures ranges
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Figure 7 Observed and predicted air temperatures by FG, ANFIS-GP, ANFIS-SC and ANFIS-FCM
models –M3models; time variation graphs of (A) FG, (B) ANFIS-GP, (C) ANFIS-SC and (D) ANFIS-
FCM and scatterplots of (E) FG, (F) ANFIS-GP, (G) ANFIS-SC and (h) ANFIS-FCM.

Full-size DOI: 10.7717/peerj.8882/fig-7

according to M2 were ANFIS-SC: −5.09—3.33, ANFIS-FCM: −85.50—6, ANFIS-GP:
7.22–9.34, and FG-FUZZY-G: 4.46–7.62, and the maximum temperatures were ANFIS-
SC: 37.08—48.67, ANFIS-FCM: 13.38–24.13, ANFIS-GP: 16.35–18.47, and FG-FUZZY-
G: 15.21–17.51. The lowest temperature ranges in M3 were ANFIS-SC: 8.15–10.75,
ANFIS-FCM: 4.60–9.20, ANFIS-GP: 10.23–11.75, and FG-FUZZY-G: 7.96–10.29), and
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Figure 8 M1model output maps for (A) ANFIS-SC, (B) ANFIS-GP, (C) ANFIS-FCM and (D) FG.
Full-size DOI: 10.7717/peerj.8882/fig-8

the maximum temperatures were ANFIS-SC: 18.08–19.98, ANFIS-FCM: 23.60–26.73,
ANFIS-GP: 17.43–19.23, and FG-FUZZY-G: 16.02–17.48.

Furthermore, the temperature map helps experts evaluate the temperature in different
locations to identify places with maximum or minimum temperatures. For example, in
M1, Osmaniye, in M2, Adana, and in M3, Hatay had the highest temperatures in the best
FG method. The unique functionality of other GISs in this section helps address defects in
the proposed model. Following this, if there is information loss in some areas, the maps
use interpolation functions to yield the temperature.

DISCUSSION
As mentioned in the previous section, the ANFIS-GP has memory-related problems when
it has much membership functions (more than 3 in this study). In fact, this also changes
with respect to input numbers. In this study, 4 inputs were used and, in this case, the use
of 4 membership functions causes memory problem. This is due to the fact that ANFIS-GP
consider all rules combinations, and it therefore has much more premise parameters,
which show the membership functions’ shape and location and consequent parameters
that compose the equations of considered rules. However, the main advantage of this
method is that it is more flexible because of high number of weights compared to other
ANFIS methods, ANFIS-SC and ANFIS-FCM. The main advantages of the ANFIS-SC and
ANFIS-FCM methods are the use of less parameters or weights because they use clustering
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Figure 9 M2model output maps for (A) ANFIS-SC, (B) ANFIS-GP, (C) ANFIS-FCM and (D) FG.
Full-size DOI: 10.7717/peerj.8882/fig-9

algorithms, and they can therefore optimize rule or membership functions’ numbers.
However, this property may cause inappropriate learning of these methods compared to
ANFIS-GP.

The FG model was found to be the best method in modelling long-term temperatures,
followed by the ANFIS-GP method. The FG also uses all rules combinations similar
to ANFIS-GP and therefore, it has much more premise parameters which show the
membership functions’ shape and location and consequent parameters. Themain advantage
of the FG due to its evolutionary training algorithm (genetic algorithm, GA). In ANFIS-GP,
gradient descent (GD) algorithm is utilized for the optimization of membership functions’
parameters (premise parameters). The GD can be trapped into local optima, while this
does not occur for the GA algorithm.

CONCLUSIONS
In this paper, the capabilities of evolutionary fuzzy genetics were compared with three
neuro-fuzzy techniques in terms of estimating long-term air temperatures for sustainability.
Data from71 stations fromTurkeywere used and divided into three equal parts. The applied
models were tested using each part. Each method was hence tested three times with all the
data. Finally, a GIS was used to produce air temperature maps based on the results of the
optimal models. Three main results can be drawn from the application:
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Figure 10 M3model output maps for (A) ANFIS-SC, (B) ANFIS-GP, (C) ANFIS-FCM and (D) FG.
Full-size DOI: 10.7717/peerj.8882/fig-10

i- The evolutionary FG model is superior to the ANFIS-GP, ANFIS-SC, and ANFIS-FCM
at modeling long-term air temperatures.

ii- Of the neuro-fuzzy methods, the ANFIS-GP outperformed the ANFIS-SC and ANFIS-
FCM.

iii- The accuracy of the best neuro-fuzzy model, the ANFIS-GP, in terms of RMSE, MAE,
NSE and R2 increased by 20%, 30%, 4%, and 4%, respectively, using the FG model.
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