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Extracellular vesicles (EVs) are vesicular bodies (40-1000 nm) with double-layer membrane structures released by different cell
types into extracellular environments, including apoptosis bodies, microvesicles, and exosomes. Exosomes (30-100 nm) are
vesicles enclosed by extracellular membrane and contain effective molecules of secretory cells. They are derived from
intracellular multivesicular bodies (MVBs) that fuse with the plasma membrane and release their intracellular vesicles by
exocytosis. Research has shown that almost all human cells could secrete exosomes, which have a certain relationship with
corresponding diseases. In chronic liver diseases, exosomes release a variety of bioactive components into extracellular spaces,
mediating intercellular signal transduction and materials transport. Moreover, exosomes play a role in the diagnosis, treatment,
and prognosis of various chronic liver diseases as potential biomarkers and therapeutic targets. Previous studies have found
that mesenchymal stem cell-derived exosomes (MSC-ex) could alleviate acute and chronic liver injury and have the advantages
of high biocompatibility and low immunogenicity. In this paper, we briefly summarize the role of exosomes in the
pathogenesis of different chronic liver diseases and the latest research progresses of MSC-ex as the clinical therapeutic targets.

1. Introduction

Liver, as an essential metabolic organ of the body, plays an
important physiological role in metabolizing toxic sub-
stances, storing liver sugar, and synthesizing secretory pro-
teins. Chronic liver disease has become a serious public
health problem with 2 million deaths worldwide per year.
Minimally invasive liver biopsy remains the preferred
method for pathological examination of liver disease [1],
but its reliability depends on high sampling accuracy, and
it is urgent to establish more reliable and noninvasive diag-
nostic methods to satisfy clinical demand.

The study of exosomes in liver diseases is a rapidly devel-
oping field. As the investigation develops in-depth, people
have realized the critical role of exosomes in regulating cel-
lular signal transduction and material transportation and
focused on studying exosome-mediated chronic liver dis-
eases. Exosomes from different cell types have different com-
positions (such as RNAs, proteins, and lipids) and thus have
complex biological functions. The hepatocytes [2], Kupfter

cells [3], hepatic stellate cells [4], and hepatic sinusoidal
endothelial cells [5] that constitute the liver could all secrete
or serve as target cells of exosomes, and the changes of the
number and composition of these vesicles reflect the physio-
logical and pathological state of liver. The quality and quan-
tity of these exosomes vary from different liver states [6].
During the occurrence and development of liver diseases,
exosomes can also be used as novel molecular biomarkers
for monitoring the therapeutic effect of diseases.
Mesenchymal stem cells (MSCs) are kind of cells with
the potential of self-renewal and multidifferentiation, which
can be obtained from various human tissues. Exosomes
derived from MSCs (MSC-ex) are tiny vesicles that carry
and maintain the proteins and mRNA activity of secretory
cells. As a natural cell-derived nanocarrier, MSC-ex have
been reported to cross the blood-brain barrier [7]. They
can directly enter the target cells to play biological roles, with
higher biosafety and more stable signal transduction efficiency
over parental MSCs. Therefore, MSC-ex have attracted wide-
spread attention in the field of tissue regeneration and repair
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[8]. For example, some scholars have found that human peri-
apical cyst-MSCs can differentiate into dopaminergic neurons
under certain conditions, and the difference between exo-
somes released during this process helps people better under-
stand the relationship between the onset of Parkinson’s disease
and circadian rhythm [9]. In the model of liver ischemia-
reperfusion with partial hepatectomy in miniature pigs,
adipose-derived stem cells (ADSCs) contributed to the repair
and regenerate of damaged tissues [10]. Moreover, hucMSC-
ex hold the tremendous potential in endometrial stromal cell
repair, which could be used in the treatment of endometrial
injury [11].

In the field of chronic liver diseases, exosomes secreted
by various types of MSCs play a significant role in repairing
injured tissues and regulating immune responses. This
review will describe the role of exosome-mediated intercellu-
lar communication in various types of chronic liver diseases,
with special emphasis on the application of MSC-ex in clin-
ical therapy.

2. Role of Exosome in the Development of
Chronic Liver Diseases

2.1. Liver Fibrosis. Liver fibrosis is a tissue damage repair
reaction characterized by abnormal proliferation of intrahe-
patic connective tissue, which is a common pathological
process in the initial stage of various chronic liver diseases,
such as viral hepatitis, alcoholic fatty liver, and hepatocellu-
lar carcinoma. Liver fibrosis is the precursor to cirrhosis
[12], which has been widely accepted that cirrhosis devel-
oped from hepatic fibrosis is a precancerous lesion.

In the course of hepatic fibrosis, the communication
between hepatic stellate cells and other hepatic parenchymal
cells such as hepatic sinusoidal endothelial cells and Kupfter
cells plays an important role in the occurrence and develop-
ment of hepatic fibrosis. Exosomes released by damaged
hepatocytes internalize in hepatic stellate cells, leading to
phenotypic switch of quiescent stellate cells. The activation
of hepatic stellate cells (HSCs) is the primary driving factor
to the occurrence, development, and regression of liver
fibrosis [4]. Exosomes released by damaged hepatic stellate
cells are rich in fibrogenic contents, which can promote
fibrosis through multiple pathways [13], for example, stimu-
lating collagen production by fibroblasts, myofibroblasts
from bone marrow, and portal fibrocytes [14]. Charrier
et al. found the connective tissue growth factor (CTGF), a
multifunctional heparin-binding glycoprotein that plays a
promoting role in a variety of fibrosis processes. CTGF is
widely present in activated HSC-derived exosomes [15], reg-
ulating the activation and migration of HSCs and immune
responses, while EVs produced by quiescent HSCs are rich
in miR-214, Twislt, which attenuates the profibrotic func-
tion of activated HSCs. Exosomes derived from hepatic sinu-
soidal endothelial cells regulate the migration capacity of
HSC by adhesion [16], and adhesion promotes the entry of
EVs into target cells through dynein-dependent endocytosis.
EVs produced by healthy human serum, such as miR-34c,
miR-151-3p, miR-483-5p, and miR-532-5p [17], inhibit the
activation of stellate cells and fibrogenesis pathways. More-
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over, liver injury promotes the activation of monocytes and
macrophages [18] and produces a series of proinflammatory
mediators that cause liver inflammation through exosomes.

The formation of liver fibrosis is closely related to the
progress of various liver diseases. During the formation of
liver fibrosis, exosomes produced by various cells interact
with each other to jointly regulate the changes of cytokines
and cell populations and function as the fibrosis regulators
in the occurrence and development of liver fibrosis, and
the specific mechanism of their functions still needs to be
further studied (Figure 1).

2.2. ALD and NAFLD

2.2.1. Alcoholic Liver Disease. Alcoholic liver disease (ALD)
is a liver pathology associated with chronic alcohol con-
sumption [19]. During ALD, the release of circulating exo-
somes increased, including specific proteome, miRNA, and
lipid, which may be associated with cellular stress responses.
By comparing EV components in plasma of healthy controls
and patients with severe alcoholism, alcoholic cirrhosis, and
alcoholic hepatitis, it was found that EV levels increased in
patients with ALD and correlated with disease severity
[20]. High EV levels predict poor prognosis in ALD patients.
Regular consumption of alcohol causes inflammatory stimu-
lation by inhibiting fatty acid oxidation, upregulating adipo-
genic genes, and changing lipid transportation.

Alcohol activates cellular regulatory networks that con-
trol inflammation and cell death, including the caspase path,
which leads to the activation of apoptotic pathways and
increases exosomes’ production [21]. Alcohol-mediated
release of exosomes is rich in CYP2E1 [22] from hepato-
cytes. CYP2E1 is a member of the cytochrome P450 family,
promoting monocyte polarization that secretes exosomes
with high expression of miR-27a. Alcohol also inhibits the
phosphorylation of JNK and P38 by MAP2K4, MAP2K?7,
and p38 MAPK pathways and activates ERK, leading to
the increased secretion of IL-10 in monocytes. IL-10 is a dif-
ferentiating factor that induces the generation of M2-
polarized macrophages [23]. Alcohol-induced hepatocytes
secrete exosomes with high expression of CD40L and miR-
122 [24]. Monocytes increased their sensitivity to lipopoly-
saccharides [25] after receiving exosomes rich in miR-122,
and macrophages were activated and released many proin-
flammatory factors like IL-6, IL-17, and IL-1p after receiving
CDA40L [26]. During the progression of ALD, the toll-like
receptor 4 (TLR4) pathway is activated and induces toll-
receptor ligands binding to miR-155, triggering inflammation
and liver injury. Hepatocyte-derived and monocyte-derived
exosomes both regulate macrophage phenotypes, leading to
the inflammatory phenotype of ALD. In alcoholic steatohepa-
titis, exosomes released by intestinal epithelial cells in the
enterohepatic circulation had an adverse effect on hepatocyte
activity and lipid accumulation [27], driving infiltration of
macrophages and neutrophils [19]. In summary, these bioac-
tive molecules released by exosomes mediate intercellular sig-
nal transduction and suggest the progression of ALD to
alcoholic fatty liver (Figure 2). In addition, exosomes are
widely present in body fluids and carry alcohol-related specific
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F1GURE 1: Functions of exosomes in the pathogenesis of liver fibrosis. Hepatocyte-derived exosomes activated by the exposure to alcohol,
lipotoxic damage, and hepatitis virus. A variety of different pathways mediate chronic inflammation that exacerbate liver fibrosis.
Immune cells secrete a large number of proinflammatory factors to promote the infiltration of inflammatory cells and aggravate liver
inflammation. During liver injury, exosomes secreted by hepatocytes contain different types of RNAs, protein, and drive activation and
function in hepatic stellate cells and macrophages. Meanwhile, LSEC vascularization and extracellular matrix deposition increased,
resulting in fibrosis and liver dysfunction. The most significant markers of fibrosis are intrahepatic connective tissue dysplasia and
massive diffuse extracellular matrix deposition. It is marked by upregulated expression of collagen, laminin, and a-SMA.

components, which can also be used as markers for the diag-
nosis of alcoholic liver injury, but their specificity and sensitiv-
ity need to be evaluated.

2.2.2. Nonalcoholic Fatty Liver Disease. Nonalcoholic fatty
liver disease (NAFLD) starts with steatosis and progresses
to nonalcoholic steatohepatitis (NASH), which is one of
the most common chronic liver diseases associated with obe-
sity, insulin resistance, and genetic susceptibility [28] and
has the risk of developing into terminal liver diseases [29].
Studies have shown that 20% of NAFLD patients could
advance to NASH and eventually cirrhosis [30]. Exosomes
play an essential role in the pathogenesis of NAFLD.
NAFLD is characterized by hepatocyte dysfunction
induced by lipid and macrophage-associated inflammation
[31]. During the development of NAFLD, lipid toxicity sig-
nals promote monocytes to the liver and polarize into
inflammatory macrophages [32]; the lipid-induced death
receptor five signaling pathway is activated, and the dam-
aged or stressed hepatocytes release exosomes that are
closely related to the degree of liver injury [33]. Diet-
related steatohepatitis affects exosome release and some
obesity-related exosomes, such as miR-27A-3p, miR-27b-

3p, miR-192, and miR-122 [34], overexpressed in circulating
exosomes isolated from high-fat-fed mice. miR-199a-5p in
circulating exosomes of high-fat-fed mice inhibits macro-
phage stimulation and fatty acid metabolism, thus promot-
ing lipid accumulation in the liver [35]. In addition, lipids
cause the accumulation of immature bone marrow cells,
which release proinflammatory cytokines and induce apo-
ptosis of natural killer T (NKT) cells. NKT apoptosis pro-
motes the excessive production of TH-1 cytokines, leading
to chronic inflammation. Lipotoxic exosomes further induce
angiogenesis through vascular noninflammatory protein-1
and mediate its internalization by endothelial cells. Lipotoxic
hepatocytes also produce exosomes rich in miR-17-92 clus-
ters, absorbed by HSCs, leading to fibrotic activation [36].
The progression of NAFLD to NASH depends on the
exosome-mediated cell-to-cell communications. After the
passage of NAFLD into NASH, exosomes of hepatocytes
rich in mtDNA are released. The mtDNA-rich exosomes
activate TLRY in KCs by triggering the secretion of proin-
flammatory cytokines, such as IL-1b and TNF-a, and aggra-
vate the progression of NAFLD [37]. Interestingly, exosomes
from adipose stem cells reduce adipose inflammation and
lipid deposition by polarizing M2 macrophages and white
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FIGURE 2: Exosomes in progression of alcoholic liver disease (ALD). Circulating exosomes play a significant role in lipid and cholesterol
metabolism in alcoholic liver disease. During the progression of alcoholic liver disease, many pathways lead to the increased of exosome
release. These exosomes activate hepatic stellate cells and promote fibrotic deposition. They are absorbed by immune cells such as
monocytes and macrophages. Ultimately, a large number of proinflammatory factors are released, promoting the transformation of AFL

into ASH.

adipose tissue. Adipose tissue is an essential source of circu-
lating miRNA, and adipose cells with Dicer specifically
knocking out significantly reduce the numbers of circulating
miRNA [38]. In addition, HepG2-derived exosomes can be
actively internalized by adipocytes, thus stimulating tran-
scriptome changes in adipocytes, specifically inducing
inflammatory phenotypes in adipocytes [39]. These findings
suggest that the secretion of vesicles containing unique sub-
stances may trigger the progression of NAFLD to other liver
diseases by inducing the activation of macrophages and the
release of inflammatory factors (Figure 3).

In summary, during the occurrence and development of
alcoholic and nonalcoholic liver diseases, exosomes regulate
the signal transduction and materials transfer between hepa-
tocytes and inflammatory cells, affecting the activities of the
liver mononuclear macrophage system and regulating the
inflammatory responses.

2.3. Viral Hepatitis. There are about 1.5 million people
worldwide die of hepatitis virus-related liver diseases every
year [40], creating a serious public health problem. Persis-
tent viral replication and low immunologic function result
in severe liver parenchymal damage and increase the risk
of viral hepatitis progression to terminal liver disease. Here
we mainly introduce the application of exosomes in viral
hepatitis B and C.

Exosomes are potent vectors for transmitting the hepati-
tis virus and transmitting nucleic acids and proteins of the
virus from infected cells to uninfected cells. Exosomes
secreted by hepatocytes infected with hepatitis C virus carry
virus-derived Ago2 protein, HSP90, and miR-122 [41],
mediating stable transmission of hepatitis virus in the liver
[42]. On the one hand, exosome-mediated viral transporta-
tions help the virus evade surveillance by the immune sys-
tem. miRNAs released from virus-infected hepatocytes
inhibit the proliferation and survival of natural killer (NK)
cells and escape the host’s innate immunity [43]. Exosomes
containing HCV RNA reduce toll-like receptor 3 (TLR3)
activation and interfere with antiviral ISG activation [44].
The expression of TIM-3/GAL-9 in exosomes secreted by
HCV-infected hepatocytes increased, affecting the differenti-
ation of monocytes and suppressing the body’s immune
responses [45]. The complex microenvironments in the
liver, on the other hand, could also identify particles carrying
viral antigens, inducing the immune responses of target cells
to the virus [46]. Innate immune responses to the virus
removal depend on NK cells, dendritic cells (DCs), and T
cells. Exosomes released from immune cells secrete the anti-
viral factors and immunosuppressive factors. NK cells also
secrete exosomes with the natural killing ability and antiviral
proteins, such as CD56 and perforin. DC is the most effec-
tive antigen-presenting cell against hepatitis virus attacks.
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Macrophage-derived exosomes transfer antiviral responses
induced by interferon-a (IFN-a) could be transmitted from
liver nonsubstantial cells [47] and macrophages [48] to
HBV-infected hepatocytes via exosomes to exert the func-
tion of antivirus. In addition, exosomes released by hepato-
cytes infected with HBV also carry HSP70 protein [49] and
stimulate macrophages to express the NK cell-active recep-
tor ligands through the signal transduction pathway, thus
promoting the antiviral ability of NK cells. In some nonpar-
enchymal cells in the liver, although hepatitis virus does not
replicate in these cells, they still induce intracellular expres-
sion of cytokines like interferon I and III types that stimulate
the immune system and exert an antiviral response release
exosomes into virus-infected hepatocytes [47]. Interestingly,
blocking the release of EVs severely inhibits viral replication
but without suppressing the viability of host cells [50]. These
studies have proved that exosomes play an essential role in
virus transmission and immune regulation.

The regulation of exosome-mediated intercellular com-
munications might be an effective method to control hepati-
tis virus transmission. Evidence has shown that exosomes
released by hepatocytes during viral hepatitis are involved
in the HSC-mediated liver fibrosis pathway. HCV-infected
hepatocytes release exosomes enriched in miR-192 and
miR-214 and deliver them to HSCs, resulting in HSC activa-
tion and transformation into myofibroblasts that highly
express fibrotic components such as CNN2 [51]. HCV-
infected hepatocytes could also release exosomes expressing

miR-19a, which directly regulate the CSS-STAT3 axis and
upregulate extracellular matrix (ECM) factors in HSC [52]
and activate the profibrosis pathway of HSC through
exosome-mediated autocrine [53]. In summary, the role of
exosomes in viral hepatitis is complex, and the inhibition
of the EV release may play an antiviral effect to a certain
extent. Further animal experiments and preclinical studies
for the function of exosomes will help to predict the progno-
sis of the diseases and develop new therapeutic strategies
(Figure 4).

2.4. Hepatocellular Carcinoma. Hepatocellular carcinoma
(HCC) is a common malignancy with a poor global survival
rate. The main risk factors of HCC encompass viral hepatitis
infection, excessive alcohol consumption, and smoking [54],
but it is complicated and difficult to screen the pathogenesis
of HCC.

Plentiful evidences suggest that exosomes derived from
hepatoma carcinoma cells carry tumor-specific markers,
which mediate the intercellular communication between
cancer cell populations, and promote the migration and
invasion of recipient cells. It was found that the expression
of circ-0004277 in exosomes from hepatoma carcinoma cells
upregulated and improved the expression of circ-0004277 in
normal hepatocytes adjacent to hepatoma carcinoma cells
through cell communications thus inducing epithelial-
mesenchymal transformation (EMT) and promoting intra-
hepatic metastasis of HCC [55]. EMT is the key process of
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tumor metastasis [56], and tumor cells receiving EMT can
release exosomes conducive to tumor metastasis [57].
High-throughput sequencing revealed that miR-374A-5p
has the most significant differential expression among
miRNA components in exosomes [57]. Recent studies also
show that hepatoma carcinoma cells cultured with cancer-
derived exosomes increase the number of cancer stem cells.
Hepatoma carcinoma cells secrete exosomes that highly
express Shh and activate the hedgehog pathway to promote
tumorigenesis [58]. These results suggest that hepatoma car-
cinoma cells mediate the secretion of different exosomes,
regulate the liver microenvironments through various path-
ways, and promote tumor migration and invasion.

In addition, the recurrence and metastasis of hepatocel-
lular carcinoma can seriously affect the therapeutic effect of
the disease. It is well known that hypoxia plays a key role
in the progression of HCC [59]. Hypoxia increases the pro-
duction of exosomes by HCC cells [60]. In a study of
hypoxia-induced exosome expression, scholars found that
exosomes released by HCC cells can activate the Wnt/f3-
catenin signaling pathway through the expression of miR-
1273F and enhance malignant phenotype [60] like migration,
proliferation, EMT, and invasion of normoxic HCC cells. A
recent study showed that hypoxic environment promotes exo-
some release in CRC (colorectal cancer, CRC) lesions, and
miR-135a-5p components in exosomes may be involved in
an important component of colorectal liver metastases [61].
We have reasons to believe that exosomes play an integral role
in hypoxia-induced tumor metastasis. Moreover, highly

angiogenic microenvironment provides sufficient nutrients
for tumor cell growth [62]. On the one hand, exosomes from
hepatocellular carcinoma cells, like miR-103, regulate the biol-
ogy of vascular endothelial cells to inhibit the synthesis of VE-
cadherin and P120 connexins [63], thereby increase vascular
barrier permeability and promote the metastasis of HCC. On
the other hand, exosomes promote tumor angiogenesis.
miR-378b-riched exosomes from hepatoma carcinoma cells
enhance the angiogenesis of HCC [64], which may be associ-
ated with TGFBR3 inhibition. Exosomes derived from hepa-
toma carcinoma cells are also rich in miR-210 and promote
angiogenesis in vitro and in vivo that significantly correlated
with blocking SMAD4 and STAT6 pathways [65]. These
results suggest that malignant tumor cells could alter the
tumor microenvironments through exosomes and enhance
the degree of angiogenesis in HCC (Figure 5).

3. Exosomes as Biomarkers for Liver Diseases

Early detection of liver diseases is one of the essential prereq-
uisites for blocking the disease progression. Invasive liver
biopsy remains the reference standard for diagnosing liver
diseases, and novel, reliable, and noninvasive diagnostic
methods are urgently needed. Exosomes from a variety of
human tissues such as urine and blood are currently consid-
ered as source of noninvasive molecular biomarkers for early
detection and prognosis of various liver diseases. The com-
ponents of exosomes such as particular proteins and nucleic
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acids can cross the blood-brain barrier, representing the
physiological and pathological states of the liver.

Exosomes play a key role in mediating cell to cell com-
munication and package delivery, and they can be used as
diagnostic biomarkers. It was found that dozens of miRNAs
significantly increased in the serum of HCC patients com-
pared with healthy controls. Among them, miR-210 medi-
ated by exosomes derived from hepatoma carcinoma cells
increased and could be used as a biological marker for diag-
nosing HCC [65]. miR-638 in serum exosomes affects the
occurrence of HCC by inhibiting the proliferation of cancer
cells and is considered a tumor-specific miRNA marker. In
patients with chronic hepatitis B, viral load is proportional
to serum miR-122 level, and miR-146a level has an opposite
trend, both involved in inflammatory and immune
responses [66]. Low levels of serum miR-122 may indicate
severe liver fibrosis. And the elevation of miR-21 suggests
HBV-associated cirrhosis or HCC [67]. miR-19a and miR-
155 levels are associated with advanced liver fibrosis in the
serum exosomes of HCV patients, and the CD81 protein
content in serum exosome was positively associated with
inflammatory activity and severity of liver fibrosis [68].

Sphingolipids in plasma-derived EVs could be used as bio-
markers in patients with alcoholic fatty liver disease. The
impurities from lipoprotein have little interference, showing
a high diagnostic value [69]. For example, miR-309, miR-
30a, and miR-192 increased significantly in alcohol-
induced liver injury, which has a high diagnostic value for
the identification [20]. In patients with NAFLD, lipotoxic
hepatocytes release exosomes highly expressing MLK3, and
multiple miRNAs in serum of patients, such as miR-34a,
miR-122, and miR-192, could be used as biomarkers of
NAFLD [70] (Table 1).

Liver disease is a worldwide difficult problem. As part of
liquid biopsy, exosomes are expected to be used in the early
diagnosis of chronic liver disease. As a new generation of
nanomedical diagnosis, people expect to build a nanodiag-
nostic platform based on EVs. Although further studies are
needed to improve the specificity of exosome in various
chronic liver diseases, we believe that exosomes as novel bio-
markers have widespread clinical application value. It is nec-
essary to combine multiple indicators as specific markers for
early diagnosis and monitoring liver diseases to pursue
unsatisfied clinical needs.
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4. MSC-ex Exert Applications in the
Treatments of Liver Diseases

Liver transplantation (LT) remains the standard treatment
for almost all the end-stage liver diseases (ESLDs), but the
imbalance between donors and the patients and the complex
postoperative complications are the major challenges. There
are few specific targeted drugs for liver diseases clinically at
present, and it is urgent to develop new drugs for ESLD.

Mesenchymal stem cells (MSCSs) are pluripotent stem
cells that derived from mesoderm and widely distributed in
almost all the body tissues. Study has found that the proteins
and miRNAs contained in mesenchymal stem cells (MSCs)
play their functions in the pathological process of liver and
regulate liver microenvironment. Exosomes are small vesi-
cles secreted by cells. Compared with mesenchymal stem
cells (MSCs), the exosomes secreted by MSCs are smaller
and lower immunogenicity. They are easier to produce and
store and even easier to avoid formation of ectopic tissue
or tumor masses and avoid some of the regulatory issues that
allogeneic mesenchymal stem cells face. Therefore, the trans-
plantation of MSC-ex has become the focus of injury repair
and regenerative medicine. Studies have found that exo-
somes could pass through the intercellular spaces and deliver
“therapeutic molecules” between different cells in chronic
liver diseases. In tumor microenvironment, MSC-ex could
transmit extracellular signals and inhibit tumor angiogenesis
by downregulation of vascular endothelial growth factor
(VEGF) [104]. hucMSC-ex could transfer bioactive compo-
nents and reduce carbon tetrachloride- (CCl4-) induced
mouse liver fibrosis [105], inhibiting EMT and collagen pro-
duction and upregulating the expression of apoptotic pro-
tein Bcl-2 in hepatocytes. Correspondingly, exosomes from
amnion-derived MSCs (Ad-MSCs) attenuate CCl4-induced
liver injury by inhibiting stellate cells and Kupffer cell activa-
tion [106]. Exosomes from human-induced pluripotent stem
cells (IPSCs) promote regeneration against the ischemia/
reperfusion model in mice [107]. Moreover, exosomes
derived from BM-MSCs could suppress the Wnt/S-catenin
pathway axis to improve liver fibrosis [108]. In addition,
exosomes from healthy people may benefit patients with
liver fibrosis. For example, exosomes from normal hepato-
cytes reduce the expression of fibrosis-related genes in mice
induced by CCl4. Exosomes derived from human hepato-
cytes indicate an excellent ability of antifibrosis and anti-
inflammatory in the NASH model of mice, inhibiting HCC
growth and stimulating its apoptosis by the delivery of
miR-451 and miR-31 [109]. These studies provide a theoret-
ical basis for the potential therapeutic effects of exosomes in
liver diseases (Table 2).

Recent research has suggested that exosomes contain
organ-specific targeting molecules specific to recipient tis-
sues to some extent, and gene modification can improve
the therapeutic effect of MSC exosomes. In addition to the
direct therapeutic effects of exosomes on chronic liver dis-
eases, exosomes can also be used as vectors to deliver specific
biomolecules to target cells for biological functions, with the
development of nanotechnology and its deepening in the
interdisciplinary fields like biomedicine. Nanovesicles, tradi-

tionally used as a single drug carrier, have been endowed
with a variety of new functions, while their activity in the
body has been improved. Cell-derived exosomes are a kind
of endogenous nanodrug treatment system based on cell
derivatives. Compared with traditional synthetic nanocarri-
ers prepared in chemical environment, they have excellent
biocompatibility and bioavailability. How to give full play
to the advantages of nanomaterials and at the same time to
synthesize or extract innovative nanodrugs with low toxicity
as diagnosis tracer or treatment of diseases has become the
frontier of the development of nanomaterials. Naturally
occurring exosomes have the disadvantages of short half-
life and fast clearance rate. Recent studies have shown that
modified exosomes or hydrogel-coated exosomes can pro-
long the retention rate in vivo and improve the therapeutic
effect. In addition, it has been suggested that the efficacy of
MSC-ex may depend on its biological composition and,
more importantly, on the responsiveness of the recipient to
MSC-ex [110]. Some substances in the environment of
MSC-ex may also be important components that inhibit its
activity. In the treatment of peri-implantitis in dental
implant treatments with MSC-ex, scholars have found the
phenomenon of oxidative stress and vessel morphology
alterations under the exposure of titanium (Ti) particle,
which influence the function of MSC-ex [111].

In addition, quantitative criteria for exosome as a
treatment means should be established, and various clini-
cal trials are needed to determine its safety, efficacy, and
feasibility in the body. With the progress of science and
technology, the methods of exosome extraction are chang-
ing rapidly; however, there is no unified extraction scheme
for exosomes to date.

5. Conclusion and Prospect

This review summarizes the role of MSC-ex in alleviating the
progression of chronic liver diseases and the value of exo-
somes as potential diagnostic and therapeutic markers in
chronic liver diseases. Exosomes are closely connected with
chronic liver diseases, and the change of their composition
may reflect the underlying disease progression. The release
of exosomes increased in various chronic liver diseases,
and these small vesicles could carry molecules with biolog-
ical activity such as proteins, nucleic acids, and lipids for
relatively stable transmission between cells and participate
in a variety of pathophysiological processes, such as cyto-
kine secretion, macrophage activation, extracellular matrix
remodeling, and hepatic stellate cell activation.

The characteristics of exosomes carrying small molecules
and the biological activity determine their potential role in
the treatment of liver diseases. Many studies have been car-
ried out in chronic liver diseases and have made some prog-
ress. However, exosomes are as fraught with expectations as
they are with problems. Most of the current studies on exo-
somes for the treatment of chronic liver diseases are based
on cell experiments and animal experiments, and the clinical
phase of the investigation remains to be explored. Moreover,
for EVs in circulating body fluid or blood, exosomes and
microvesicles are defined by size, but they cannot be
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distinguished by size. Therefore, it becomes especially
important to distinguish circulating EVs by expression of
specific biomarkers in exosomes and microvesicles. We also
need to further explore the precise molecular mechanisms of
exosome biogenesis, release, and interaction with target cells
in chronic liver diseases for clinical transformation and
define the criteria for biological properties of exosomes dur-
ing mass production. With the participation of a growing
number of scholars, it is believed that exosomes will be
widely used in clinical practice in the near future, bringing
good news to patients.
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