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Abstract. An extract from a traditional Chinese herb, 
Marsdeniae tenacissima (trade name, Xiao‑Ai‑Ping) has 
been approved for use on the Chinese market as a cancer 
chemotherapeutic agent for decades. Previous studies have 
demonstrated the cytostatic and pro‑apoptotic effects of 
M. tenacissima extract (MTE) in multiple cancer cells. 
However, the contributions of MTE to the proliferation and 
apoptosis of hepatoma carcinoma cells and the underlying 
mechanisms remain unclear. In the present study, Bel‑7402 
cells were incubated with increasing concentrations of MTE 
ranging from 0‑320 µl/ml to explore the effects and potential 
mechanisms of MTE on the proliferation and apoptosis of 

Bel‑7402 cells. 3‑(4,5‑dimethylthiazol‑2‑yl)‑5(3‑carboxymet
hoxyphenyl)‑2‑(4‑sulfopheny)‑2H‑tetrazolium, inner salt and 
propidium iodide (PI)‑stained flow cytometry assays demon-
strated that MTE significantly suppressed the proliferation 
of Bel‑7402 cells in a dose‑dependent manner by arresting 
the cell cycle at S phase (P<0.05). Annexin V‑fluorescein 
isothiocyanate PI‑stained flow cytometry confirmed the 
significantly pro‑apoptotic effect of MTE at both 160 and 
240 µl/ml (P<0.001). Reverse transcription‑quantitative poly-
merase chain reaction and western blot analysis demonstrated 
that MTE (both 160 and 240 µl/ml) induced a significant 
downregulation of B‑cell lymphoma (Bcl)‑2 (P<0.01), upregu-
lation of Bcl‑2‑associated X protein (P<0.01) and activation of 
caspase‑3 (P<0.05). Furthermore, a significant downregulation 
of murine double minute‑2 (MDM2) (P<0.001) and activation 
of p53 (P<0.001) in Bel‑7402 cells following treatment with 160 
or 240 µl/ml MTE was observed, accompanied by the inhibi-
tion of the nuclear factor (NF)‑κB pathway (P<0.001). These 
results suggested that MTE inhibited growth and exhibited 
pro‑apoptotic effects in Bel‑7402 cells, which was mediated 
by downregulation of the MDM2‑induced p53‑dependent 
mitochondrial apoptosis pathway and blocking the NF‑κB 
pathway. Overall, these data serve as preliminary identifica-
tion of the significant roles of MTE in hepatic carcinoma 
cells, and suggest that MTE may be a promising candidate for 
hepatocellular carcinoma therapy.

Introduction

Hepatocellular carcinoma (HCC) is the most frequent form 
of primary liver malignancy and the third leading cause of 
cancer‑related mortality worldwide, with at least 700,000 
deaths annually (1‑3). Unlike the majority of solid tumors, HCC 
always develops in patients with underlying liver disease, such 
as alcohol abuse and viral hepatitis B or C (4,5). At present, 
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the main clinical strategy for HCC is partial hepatic resection 
combined with chemotherapy; however, this is limited by the 
high recurrence, with a rate of 75‑100%, which leads to a poor 
5‑year survival rate of 40‑50% (6). The high recurrence rate is 
largely attributed to the unlimited growth and anti‑apoptotic 
abilities of hepatoma carcinoma cells (7). As a result, novel 
approaches to control recurrence and promote apoptosis of 
hepatoma carcinoma cells may be effective in reducing the 
mortality of HCC.

Marsdeniae  tenacissima caulis is a traditional herbal 
medicine comprised of the dried stems of M. tenacissima 
(Roxb.) Wight et Arn, which is an Asclepiadaceous plant 
widely distributed in the Guizhou and Yunnan Provinces of 
China (8). M. tenacissima caulis has been demonstrated to 
be clinically effective against asthma, trachitis, tonsillitis, 
pharyngitis, cystitis, pneumonia and rheumatism, with few 
side effects (8). M. tenacissima extract (MTE) injection has 
been used for the treatment of cancer in China for decades 
due to the bioactive constituents of polyoxypregnane glyco-
sides (9,10). Both in vivo and in vitro studies have reported 
that MTE enhances the sensitivity of various tumors to gefi-
tinib, paclitaxel and doxorubicin, and also inhibited gefitinib 
metabolism by interfering with hepatic cytochrome P450 
(CYP) 3A4 and CYP2D6 enzymes (10‑15). Furthermore, 
M. tenacissima or MTE alone have been demonstrated to 
repress the proliferation and promote apoptosis of human 
esophageal carcinoma cells, hematologic neoplasm cell 
line cells and Burkitt's lymphoma cells (16‑19). A study by 
Lin et al  (8) reported that MTE reduced the migration of 
A549 lung cancer cells via regulation of the C‑C chemokine 
(CC) receptor type 5‑CC ligand 5 axis, Rho C and phosphory-
lated focal adhesion kinase (8). A study by Huang et al (20) 
demonstrated that the anti‑angiogenic effect of MTE is 
achieved by downregulation of vascular endothelial growth 
factor (VEGF)‑A in human hepatoma cells (HepG2), as well 
as VEGF‑A and VEGF receptor‑2 in human umbilical vein 
endothelial cells (20). As for HCC, a study by Jiang et al (21) 
identified that the M. tenacissima polysaccharide was able 
to inhibit tumor growth in H22 tumor‑bearing mice in a 
dose‑dependent manner (21). However, limited attention has 
been directed towards the underlying mechanism by which 
MTE suppresses proliferation and promotes apoptosis in 
hepatoma carcinoma cells.

The results of the present study demonstrated that MTE 
inhibited growth and induced mitochondrial pathway apop-
tosis of hepatoma carcinoma cells by triggering the murine 
double minute‑2 (MDM2)‑mediated p53 pathway and reducing 
the nuclear factor (NF)‑κB pathway simultaneously.

Materials and methods

Cell culture. The Bel‑7402 cell line was kindly provided by the 
Science Experimental Center of Liaoning Medical University 
(Jinzhou, China). Cells were cultured in RPMI‑1640 (Gibco; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (Beyotime Institute 
of Biotechnology, Haimen, China) and 100  U/ml strepto-
mycin/penicillin at 37˚C in an atmosphere containing 5% 
CO2. When 80‑90% confluence was reached, Bel‑7402 
cells were digested by 0.25% trypsin (Beyotime Institute of 

Biotechnology) as previously described (22) for subsequent 
experiments.

Drug treatment. MTE (trade name, Xiao‑Ai‑Ping; 1 g crude/ml) 
was obtained from Nanjing Sanhome Pharmaceutical Co., Ltd. 
(Nanjing, China). The voucher specimen was 200907‑T009‑05, 
and was identified by Professor De‑Kang Wu from Nanjing 
University of Chinese Medicine (Nanjing, China). The stem of 
M. tenacissima was collected from Yunnan, China and MTE 
was prepared as previously described (14). Briefly, 1 kg of 
M. tenacissima stem powder was extracted with water three 
times, filtered and concentrated. Following this, concentrates 
were resuspended with 85% (v/v) ethanol and centrifuged 
three times at 4˚C. The suspension was evaporated to give a 
final volume of ~200 ml. The purchased MTE was dissolved in 
dimethyl sulfoxide (Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany). Bel‑7402 cells were incubated at 37˚C with various 
concentrations of MTE (0, 40, 80, 160, 240 and 320 µl/ml; 
equivalent of 0, 40, 80, 160, 240 and 320 mg/ml crude drug) 
for 24 h for MTS experiments. Control cells were exposed 
to 8,000 µg/ml 5‑fluorouracil (5‑FU; Sigma‑Aldrich; Merck 
KGaA) at 37˚C for 24 h as a positive control. For reverse tran-
scription‑quantitative polymerase chain reaction (RT‑qPCR) 
and western blot analysis, cells were treated with various 
concentrations of MTE (0, 160 and 240 µl/ml) at 37˚C for 24 h. 
For flow cytometric analysis, cells were incubated at 37˚C with 
160 and 240 µl/ml MTE for 24 and 48 h, respectively.

3‑(4,5‑dimethylthiazol‑2‑yl)‑5(3‑carboxymethoxyphenyl)‑2‑(4‑ 
sulfopheny)‑2H‑tetrazolium, inner salt (MTS) assay. Cells 
were seeded in 96‑well plates at a density of 2x104 cells/well. 
Following culture to 80% confluence, cells were exposed to 
the indicated concentrations of MTE at 37˚C for 24 h, with 
five replicates performed for each testing point, including 
the 5‑FU‑treated positive control, untreated negative control 
(0 µl/ml MTE) and blank wells. Following this, cells were 
incubated with MTS (1:5; Promega Corp., Madison, WI, 
USA) for 2 h at 37˚C. Optical density values were measured 
at 490 nm using a microplate reader (BioTek Instruments, Inc., 
Winooski, VT, USA). The results were expressed as inhibitory 
rates.

Flow cytometric analysis of the cell cycle. Bel‑7402 cells in 
each group were trypsinized and fixed with 70% ethanol at 4˚C 
for 12 h. Subsequent to washing with phosphate‑buffered saline 
(pH 7.4), cell cycle analysis was carried out with a Cell Cycle 
Detection kit (C1052, Beyotime Institute of Biotechnology), 
according to the manufacturer's protocol. The kit contained 
binding buffer, propidium iodide (PI) staining buffer (20x) 
and RNase A (50x). In brief, cells were stained in 500 µl 
binding buffer containing 25 µl PI staining buffer with 10 µl 
RNase A for 30 min at 37˚C in the dark. The cell cycle was 
analyzed immediately using a flow cytometer (FACSCalibur; 
BD Biosciences, Franklin Lakes, NJ, USA). The percentage 
of cells across the cell cycle was obtained using CellQuest 3.3 
software (BD Biosciences).

Flow cytometric analysis of cell apoptosis. According to 
the protocol of the Annexin V‑fluorescein isothiocyanate 
(FITC)/PI apoptosis detection kit (Nanjing KeyGen Biotech 
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Co., Ltd., Nanjing, China) which contains binding buffer, 
annexin V‑FITC and PI staining buffer, the collected 
Bel‑7402 cells were resuspended in 500 µl binding buffer 
and sequentially mixed with 5 µl Annexin V‑FITC and 5 µl 
PI. The mixture was incubated for 15 min at room tempera-
ture in the dark. Cell apoptosis was calculated with flow 
cytometry (FACSCalibur; BD Biosciences) and CellQuest 3.3 
software.

RT‑qPCR. Total RNA from each group was extracted with 
RNAprep Pure Cell/Bacteria kit (Tiangen Biotech Co., Ltd., 
Beijing, China), according to the manufacturer's instructions, 
and 50 ng RNA was reverse transcribed into cDNA. qPCR was 
performed using a thermocycler (MiniOpticon Real‑Time PCR 
System; Bio‑Rad Laboratories, Inc., Hercules, CA, USA) with 
2X SYBR‑Green PCR Mastermix (Beijing Solarbio Science 
and Technology Co., Ltd., Beijing, China), which contains 
buffer, dNTP, HotStart Taq DNA polymerase, SYBR‑Green I 
dye and MgCl2, according to the manufacturer's instructions. 
The cycling profile was as follows: Initial denaturation at 95˚C 
for 5 min, 30 cycles consisting of 95˚C for 20 sec, 60˚C for 
20 sec and 72˚C for 30 sec. Primer sequences were as follows: 
B‑cell lymphoma‑2‑associated X (Bax), forward 5'‑CCC​GAG​
AGG​TCT​TTT​TCC​GAG‑3' and reverse 5'‑CCA​GCC​CAT​GAT​
GGT​TCT​GAT‑3'; B‑cell lymphoma (Bcl)‑2, forward 5'‑ATG​
ACT​TCT​CTC​GTC​GCT​ACT‑3' and reverse 5'‑CCC​ATC​CCT​
GAA​GAG​TTC​CGA‑3'; caspase‑3, forward 5'‑CAT​GGC​CTG​
TCA​GAA​AAT​AC‑3' and reverse 5'‑TAA​CCC​GAG​TAA​GAA​
TGT​GC‑3'; and β‑actin, forward 5'‑TGA​ACG​GGA​AGC​TCA​
CTG​G‑3' and reverse 5'‑TCC​ACC​ACC​CTG​TTG​CTG​GA‑3'. 
Relative mRNA expression levels were calculated using the 
2‑∆∆Cq method (23) from three independent experiments and 
β‑actin was used as an internal control.

Western blotting. Total proteins were extracted by lysing 
Bel‑7402 cells with radioimmunoprecipitation assay lysate 
containing 1% phenylmethanesulfonyl fluoride (both Beyotime 
Institute of Biotechnology). For NF‑κB p65 detection, nuclear 
and cytoplasmic proteins were extracted using the Nuclear 
and Cytoplasmic Protein Extraction kit (Beyotime Institute 
of Biotechnology), according to the manufacturer's protocol. 
The concentrations of proteins were subsequently quanti-
fied using a bicinchoninic acid protein assay kit (Beyotime 
Institute of Biotechnology), according to the manufacturer's 
instructions. Following this, 40 µg protein was loaded and 
separated by 10% SDS‑PAGE and subsequently electro-
transferred onto polyvinylidene fluoride membranes (EMD 
Millipore, Billerica, MA, USA). The membranes were blocked 
with 5% non‑fat milk for 1 h at 37˚C and probed with specific 
primary antibodies against Bax (AB026), Bcl‑2 (AB112), 
cleaved‑caspase‑3 (AC033), phosphorylated (p)‑p53 (AP068) 
(all 1:1,000; Beyotime Institute of Biotechnology), NF‑κB p65 
(A00284; 1:400; Boster Systems, Inc., Pleasanton, CA, USA) 
and MDM2 (ab137413; 1:1,000; Abcam, Cambridge, UK) at 
4˚C overnight. Subsequently, the membranes were incubated 
at 37˚C with their corresponding secondary antibodies (A0208 
and A0216; 1:5,000; Beyotime Institute of Biotechnology) 
for 45 min. Target bands were visualized using enhanced 
chemiluminescence solution (Qihai Biotec, Shanghai, China) 
and measured using Gel‑ProAnalyzer software v4.0 (Media 

Cybernetics, Inc., Rockville, MD, USA). GAPDH and histone 
H3 were employed as internal controls. The experiment was 
repeated three times.

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism v. 5.0 software (GraphPad Software, Inc., La 
Jolla, CA, USA). All data were presented as the mean ± stan-
dard deviation. One‑way analysis of variance followed by the 
Bonferroni post hoc test was used to compare differences 
between groups. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

MTE suppresses the proliferation of Bel‑7402 cells by 
arresting the cell cycle at S phase. To explore the effect of 
MTE on the proliferation of Bel‑7402 cells, cells were exposed 
to increasing concentrations of MTE (0, 40, 80, 160, 240 and 
320 µl/ml) for 24 h, and the inhibitory histograms were plotted 
according to MTS results. The growth inhibitory rate of 
Bel‑7402 cells was significantly increased in a dose‑dependent 
manner with MTE treatment compared with negative control 
cells, particularly at dosages of 160, 240 and 320  µl/ml 
(Fig. 1A; P<0.001). The inhibitory rate of Bel‑7402 cells at 
240 and 320 µl/ml MTE was significantly higher than that 
in the 5‑FU‑treated positive control cells (Fig. 1A; P<0.001). 
The growth inhibitory effect was only slightly higher at 320 
than at 240 µl/ml MTE treatment; therefore160 and 240 µl/ml 
MTE were used for subsequent experiments. Flow cytometry 
analysis revealed the number of Bel‑7402 cells arrested in 
the S phase was significantly higher in the MTE‑treated cells 
compared with negative control cells, resulting in a significant 
decrease of cells in the G1/G0 phase at both 24 and 48 h of 
incubation (Fig. 1B and C; P<0.05). These results suggested a 
cytostatic effect of MTE via arresting the cell cycle at S phase 
in Bel‑7402 cells.

MTE enhances the apoptosis of Bel‑7402 cells. An 
Annexin V‑FITC/PI staining‑based flow cytometry assay was 
employed to evaluate the contribution of MTE to Bel‑7402 
cell apoptosis. The total apoptosis rate of Bel‑7402 cells was 
demonstrated to be significantly increased with 240 but not 
160 µl/ml MTE treatment at 24 h compared with negative 
control cells (Fig. 2A and B; P<0.001). The total apoptosis rate 
was increased significantly (3.36‑ and 5.38‑fold, respectively) 
in Bel‑7402 cells treated with 160 and 240 µl/ml MTE for 
48 h compared with the respective negative controls (Fig. 2C; 
P<0.001). These results suggested that MTE has pro‑apoptotic 
effects on Bel‑7402 cells.

MTE triggers the mitochondrial apoptosis pathway in 
Bel‑7402 cells. To address the status of the mitochondrial 
apoptosis pathway in Bel‑7402 cells with MTE treatment, 
RT‑qPCR and western blotting were performed to detect the 
expression levels of Bax, Bcl‑2 and caspase‑3 (Fig. 3). The 
results demonstrated that both mRNA and protein expression 
levels of Bax in Bel‑7402 cells were significantly increased 
with 160 and 240 µl/ml MTE administration compared with 
untreated control cells (Fig. 3A and C; P<0.001). Furthermore, 
the expression of Bcl‑2 at both mRNA and protein levels was 
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significantly decreased (Fig. 3A and C; P<0.001) compared 
with untreated controls. Bel‑7402 cells treated with 160 and 
240 µl/ml MTE demonstrated a significant increase in the 
expression of caspase‑3 mRNA after treatment with 160 and 
240 µl/ml MTE (P<0.01 and P<0.001, respectively; Fig. 3B) 
compared with untreated controls. Additionally, the level of 
cleaved caspase‑3 in Bel‑7402 cells was significantly increased 
compared with the negative control by 1.6‑fold with 160 µl/ml 
MTE treatment (P<0.05) and 2.6‑fold with 240 µl/ml MTE 
treatment (P<0.001; Fig. 3D). These results suggested that 
MTE induces the apoptosis of Bel‑7402 cells by triggering the 
mitochondrial apoptosis pathway.

MTE downregulates MDM2 to activate the p53‑dependent 
mitochondrial pathway and inhibit the NF‑κB pathway. 
Western blotting was used to assess the expression levels of 
MDM2, p53 and p65. The protein expression levels of MDM2 
in cells treated with 160 and 240 µl/ml MTE were significantly 

decreased by 1.52‑fold and 2.78‑fold, respectively, compared 
with control cells (Fig. 4A; P<0.001). The levels of p‑p53 were 
significantly elevated by treatment with 160 and 240 µl/ml 
(Fig. 4B; P<0.001). Furthermore, cytoplasmic p65 was signifi-
cantly elevated in MTE‑treated cells compared with the 
control (Fig. 4C; P<0.01), and p65 levels in the nucleus were 
significantly downregulated compared with the control 
(Fig. 4C; P<0.001). These results suggested that the cytostatic 
and pro‑apoptotic effects of MTE were induced by downregu-
lating the MDM2‑mediated activation of the p53‑dependent 
mitochondrial pathway and inhibition of the NF‑κB pathway.

Discussion

Previous studies have demonstrated that MTE is an effec-
tive treatment for various types of malignant cancer (10‑21). 
However, the anti‑cancer effects of MTE and the underlying 
mechanisms are not fully understood in HCC. The results of 

Figure 1. MTE suppresses the proliferation of Bel‑7402 cells by arresting the cell cycle at S phase. (A) Bel‑7402 cells were seeded in 96‑well plates and 
exposed to a range of concentrations of MTE (0, 40, 80, 160, 240 and 320 µl/ml) for 24 h. 3‑(4,5‑dimethylthiazol‑2‑yl)‑5(3‑carboxymethoxyphenyl)‑2‑ 
(4‑sulfopheny)‑2H‑tetrazolium inner salt assay was employed to evaluate cell proliferation, and 5‑FU served as a positive control. (B) Quantified data for cell 
cycle distribution as analyzed by flow cytometry. (C) A series of representative examples of cell cycle distributions. Data are expressed as the mean ± standard 
deviation of triplicate experiments. *P<0.05, **P<0.01 and ***P<0.001 vs. negative control (0 µl/ml MTE); ###P<0.001 vs. positive control (5‑FU). MTE, 
Marsdeniae tenacissima extract; 5‑FU, 5‑fluorouracil.
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the present study indicated that MTE is able to suppress the 
proliferation and promote the apoptosis of hepatoma carci-
noma cells via activating the p53‑dependent mitochondrial 
pathway and inhibiting the NF‑κB pathway.

Clinical studies have demonstrated that administration 
of MTE represses hematologic neoplasm growth in tumor 
models of nude mice (17), and M. tenacissima polysaccha-
ride dose‑dependently inhibited the growth of hepatoma H22 
tumor‑bearing mice (21). In vitro studies have reported that 
MTE induces G0/G1 cell cycle arrest in human esophageal 
carcinoma cells and hematologic neoplasm cells (16). In the 
present study, it was demonstrated that MTE suppressed 
the proliferation of Bel‑7402 cells. Notably, a significant 
decline in the number of cells at the G1/G0 phase and a 
notable increase at the S phase was observed, indicating that 
the growth inhibition of MTE was due to S phase arrest in 
Bel‑7402 cells.

To the best of our knowledge, the effects of MTE on apop-
tosis in hepatoma carcinoma cells have not previously been 
reported. The results of the present study demonstrated that 
MTE significantly enhanced the apoptosis of Bel‑7402 cells at 
doses of 160 and 240 µl/ml. Among the molecules involved in 

the mitochondrial apoptosis pathway, Bax is a pro‑apoptotic 
protein sequestered in the cytosol and on the outer membrane of 
mitochondria (MOM) and endoplasmic reticulum (ER) (24,25). 
Bcl‑2 is an anti‑apoptotic protein located predominantly in 
the cytosol but also on the MOM and ER in different propor-
tions (24,25). Caspase‑3 is a major effector of the intrinsic 
apoptotic pathway (26). A study by Li et al (19) reported that 
MTE components, Tenacigenoside A and 11α‑O‑benzoyl‑12
β‑O‑acetyltenacigenin B, increased tumor cell apoptosis in 
mice with lymphoma via downregulating Bcl‑2 and Bcl‑xl and 
upregulating BH3 interacting‑domain death agonist. A study 
by Ye et al (17) revealed that MTE promoted the apoptosis of 
human hematologic neoplasm cells by downregulating Bcl‑2 
and upregulating Bax and caspase‑3. Accordingly, a notable 
upregulation of Bax, downregulation of Bcl‑2 and activation 
of caspase‑3 in Bel‑7402 cells was observed in the present 
study following MTE treatment. These results suggested 
that MTE downregulates Bcl‑2, enabling the oligomerized 
Bax to re‑localize to the MOM, which subsequently formats 
mitochondrial pores to increase the permeability of the mito-
chondrial membrane, ultimately releasing cytochrome c (cyt c) 
and activating the mitochondrial apoptotic pathway. Thus, the 

Figure 2. MTE enhances the apoptosis of Bel‑7402 cells. (A) Bel‑7402 cells were treated with various concentrations of MTE for 24 or 48 h and representa-
tive flow cytometry results are demonstrated. Cells are characterized as healthy cells (bottom left quadrant), early apoptotic (bottom right quadrant), late 
apoptotic (top right quadrant) and necrotic (top left quadrant). Apoptosis rate and stage of Bel‑7402 cells following (B) 24 and (C) 48 h of MTE treat-
ment. Data are expressed as the mean ± standard deviation of triplicate experiments. **P<0.01 and ***P<0.001 vs. negative control (0 µl/ml MTE). MTE, 
Marsdeniae tenacissima extract; Early, early apoptotic cells; Late, late apoptotic cells; PI, propidium iodide.



WANG et al:  MECHANISMS OF MTE ON GROWTH INHIBITION AND APOPTOSIS IN Bel-7402 CELLS2482

activation of caspase‑3 in Bel‑7402 cells may eventually result 
in cell death.

MDM2 is an E3 ubiquitin ligase that is overexpressed 
in various malignancies and is capable of suppressing cell 
cycle arrest or apoptosis and promoting cell survival and 
growth (27). p53 is a tumor suppressor, and activated p53 
directly binds to Bcl‑xl and Bcl‑2 to induce cyt c release, ulti-
mately resulting in quiescence, senescence or death of cancer 
cells  (28,29). Previously, detailed studies have identified 
that MDM2 negatively regulates p53 via ubiquitin‑mediated 
degradation of p53 (30). Once MDM2 and p53 are activated 
by acetylation and phosphorylation on specific residues, the 
MDM2‑p53 complex is dissociated, resulting in the stabiliza-
tion of p53 and, consequently, transcriptional upregulation 
of p53 leading to cell‑type specific cell death  (31). In the 
present study, it was demonstrated that MTE was able to 
significantly decrease the expression of MDM2, thereby 
activating the p53‑induced mitochondrial apoptotic pathway. 

It is a well‑established fact that the majority of malignancies 
are associated with long‑term activation of NF‑κB (32,33). 
MDM2 has been identified as a co‑transcription factor for 
NF‑κB as it may directly induce p65 transcription by inter-
acting with specificity protein 1 binding sites at the p65 gene 
promoter (34). p53 competes with NF‑κB for limited tran-
scription co‑factors (35) and, in the present study, increased 
cytoplasmic p65 and decreased nuclear p65 in MTE‑treated 
Bel‑7402 cells were observed, indicating that downregulation 
of MDM2 inactivates the NF‑κB pathway. These findings 
suggested that the growth inhibition and pro‑apoptotic effects 
of MTE in Bel‑7402 cells are mediated by activating the 
p53‑induced mitochondrial apoptotic pathway and inacti-
vating the NF‑κB pathway.

In conclusion, the results of the present study suggested 
that MTE suppresses proliferation and promotes apoptosis 
in Bel‑7402 cells via downregulatingMDM2 to activate 
the p53‑mediated mitochondrial apoptotic pathway and 

Figure 3. MTE triggers the mitochondrial apoptosis pathway in Bel‑7402 cells. Bel‑7402 cells were incubated with various concentrations of MTE for 24 h, and 
the mRNA expression levels of (A) Bcl‑2, Bax and (B) caspase‑3 were detected by reverse transcription‑quantitative polymerase chain reaction and normalized 
to β‑actin. The protein expression levels of (C) Bax, Bcl‑2 and (D) cleaved caspase‑3 were analyzed by western blot analysis. GAPDH was used as an internal 
control. Data are expressed as the mean ± standard deviation of triplicate experiments. *P<0.05, **P<0.01 and ***P<0.001 vs. negative control (0 µl/ml MTE). 
MTE, Marsdeniae tenacissima extract; Bcl‑2, B‑cell lymphoma 2; Bax, B‑cell lymphoma 2‑associated X protein.
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inactivate the NF‑κB pathway. These findings highlight the 
significant influence of MTE on the survival of Bel‑7402 cells 
and preliminarily suggest the relative underlying molecular 
mechanisms involved. The present study indicates that MTE 
may be a promising candidate for HCC therapy.
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