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Abstract: The environmental microclimatic characteristics are often subject to fluctuations of consid-
erable importance, which can cause irreparable damage to art works. We explored the applicability
of Artificial Intelligence (AI) techniques to the Cultural Heritage area, with the aim of predicting
short-term microclimatic values based on data collected at Rosenborg Castle (Copenhagen), housing
the Royal Danish Collection. Specifically, this study applied the NAR (Nonlinear Autoregressive)
and NARX (Nonlinear Autoregressive with Exogenous) models to the Rosenborg microclimate time
series. Even if the two models were applied to small datasets, they have shown a good adaptive
capacity predicting short-time future values. This work explores the use of AI in very short forecast-
ing of microclimate variables in museums as a potential tool for decision-support systems to limit
the climate-induced damages of artworks within the scope of their preventive conservation. The
proposed model could be a useful support tool for the management of the museums.

Keywords: cultural heritage preservation; artificial neural networks; nonlinear autoregressive neural
networks; NAR; NARX; forecasting; time series

1. Introduction

Data-driven models developed with wide range of machine learning algorithms are
largerly used in climate and atmospheric modelling [1] Their use, related to microclimate
data in cultural heritage domain, is up to now limited and poorly explored. This is mainly
due to the limited availability of long-term series of key environmental variables at the
sites where the artifacts are exhibited or stored. Although machine learning algorithms
allowed to achieve important results in the processing automation and in the improvement
of forecasting techniques, their complexity results into long training periods and into
the demand for large available datasets [2–4]. When only short time series are available,
complex networks tend to memorize processes rather than learn them, then failing to
identify sudden variations or trends. However, there are particular recurring networks,
optimized for time series, which allow rapid learning and good predictions even short time
series [5].

This work aims to study a new methodology of analysis (based on Machine Learning)
in the field of cultural heritage. Artificial Intelligence (AI) techniques are generally used
on very large datasets, characterized by many independent variables and long temporal
extension. Datasets with a small number of variables are not optimal for neural learning
because they do not provide enough information to the network to develop recognition
patterns. In this case, the network could memorize those trends without actually being
able to recognize any variations, leading to incorrect results as soon as the trends deviate
from what is memorized. In fact, the most critical aspect of AI is “repetition”: the more the
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models analyze data, the more they are able to adapt independently and learn. Computers
learn from previous processing to produce results and take decisions that are reliable.

In this work, we present and compare the NAR (Nonlinear Autoregressive) and
NARX (Nonlinear Autoregressive with Exogenous Input) neural algorithms, for the short-
time prediction of the microclimate inside museums. The microclimatic variables are
characterized by a strong correlation. Furthermore, problems due to sampling often lead
to short and fragmented historical series [6]. NAR and NARX models were built on data
collected at Rosenborg Castle (hereafter named as RDC data) in Copenhagen (one of
the museum partner of the European CollectionCare project); outdoor climate data are
extracted from Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [7].
The paper is organized as follows. Rosenborg Castle is presented in Section 2 of the
manuscript. Section 3 deals with the description of the collected microclimate data and
describes the pre-processing procedures, in order to obtain datasets ready for the learning
operations. Section 4 focuses on the description of the structure of the implemented
artificial intelligence algorithms and on their characterization. Section 5 introduces the
results obtained, proposes an accurate analysis and offers numerous points of reflection on
possible future developments.

2. Rosenborg Castle

Rosenborg Castle, located in the centre of Copenhagen (Denmark), is one of the
museums involved in the CollectionCare project, housing the valuable Royal Danish
Collection spanning from the late 16th century of Christian IV to the 19th century. The
collection consists of artistic artefacts, paintings and tapestries illustrating the culture and
art of the Danish kings from the 17th to the 19th century. A detail of the building is shown
Figure 1.

Figure 1. Main facade of Rosenborg Castle, Copenhagen, Denmark.

Rosenborg Castle is an old building, not built with modern energy saving systems.
The castle has wooden window frames with a single pane of glass, that do not insulate
well. The front door is open to the outside environment all opening hours, all year. As well
as several open windows on all floors during summer. Therefore, the internal climate is
strongly affected by the external one.

A measuring system for hygrothermal variables has been operating in most rooms
since the pre-project period. The monitoring system consists of 14 thermo-hygrometers
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(hereafter named as museum data logger) deployed in twelve rooms. The period under
study covers the years from 2013 to 2018, so that six-year indoor temperature (T) and
relative humidity (RH) observations were collected with acquisition and recording time
within one hour.

By exploiting these time series of data, in this study a forecasting model of the evo-
lution of the museum’s temperature will be created. Such models might help museums’
administrations to optimize the use of heating and cooling systems, in order to reduce
management costs and protect the enviroment.

3. Microclimate Data in Rosenborg Castle

RDC datasets are characterized by only two variables, temperature (T) and relative
humidity (RH). Generally, machine learning models prefer to work on a greater number
of independent variables to be crossed together to learn specific behaviors. In fact, as
mentioned above, neural algorithms working on limited datasets tend to memorize pro-
cesses rather than learn them. In order to enlarge the available dataset of the Rosenborg
Castle and improve the predective ability of the model, we increasead the number of
variables by including outdoor data extracted from Copernicus Climate Change Service
(C3S) Climate Data Store (CDS) [7], hereafter named Copernicus data. In fact, as previously
highlighted, we expect a strong external influence on the internal climate. The data set is
then composed by

• RDC air temperature and relative humidity (hereafter named as RDC data);
• Copernicus data of air temperature, relative humidity, total precipitation, net solar

radiation, horizontal wind components (zonal (u) and meridional (v) components).

Before applying NAR and NARX methods, RDC series were undergone to a quality
data control. Two quality indices are introduced, that define the completeness (CoI) and the
continuity (CI) of the time series [8]. CoI index is defined as the ratio between the number
of taken measurements Nr and the total number of sampling intervals Nt:

CoI =
Nr

Nt
(1)

where CoI∈ [0, 1]. If CoI → 0, the series has a low degree of completeness while CoI = 1
means that the series is complete, i.e., no missing data. CI index provides the reliability of a
series with respect to its fragmentation, and it is related to the number of intervals (NBI)
with missing data compared to the total number of sampling Nt [8,9].

CI = 1− 2 · NBI
Nt

(2)

where CI ∈ [0, 1]. If CI → 0, the series is not continuous while CI = 1 means that the series
is continuous.

Figure 2a shows the flow chart relating to the data pre-processing operations divided
into three phases:

• the first investigates the level of completeness (CoI) and continuity (CI) of the data
series. Datasets that exceed the threshold value of 0.85 for CoI and for CI, pass to
phase two;

• the second phase consists in dataset cleaning from NaN;
• the last phase involves data reorganization into homogeneous sampling matrices,

which involve their reorganization. A well-ordered dataset, without values not readable by
the network (NaN) or invalid variations as information, speeds up the learning process
by the network and above all improves it. In the following paragraphs, we specifically
describe NAR and NARX neural algorithms.
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Figure 2. (a) Flow Chart of the pre-processing steps: the datasets of each room undergo three levels
of selection. First, the completeness (CoI) and continuity (CI) indices are evaluated; if above a limit
threshold they are then cleaned of the presence of NaN and finally standardized in the sampling
through a process of mediation of the measurements contained in one hour; (b) Flow Chart of the
functioning process of the model. Before being processed by the AI, data undergo a pre-processing
phase to evaluate the level of information and to be reorganized. Depending on the type of dataset,
with a time series or with several time series, the data is fed, respectively, to the NAR or NARX
networks. After a training process, which ends with the performance evaluation, the learning is
tested (Testing Phase).

The calculation of quality indices to the RDC data reports a high degree of continuity
(CI > 0.99) for all the exposition halls and a low degree of completeness (average CoI < 0.7)
but for “The Stone Corridor”, which has a CoI ≥ 0.9 from 6 September 2012 to 3 February
2019 sampling. After analyzing the continuity and completeness of the data, it is necessary
to perform two other pre-processing steps. It is therefore essential to eliminate all the NaN
present in the dataset and, in the case of several datasets used at the same time, eliminate all
the rows corresponding to the row where the NaN (acronym which means Not a Number
and indicates the absence of a usable value) of the first dataset is present. After these
processing operations, the two datasets have the following characteristics:

• RDC Stone Corridor dataset: 52,584 rows (from 1 January 2013 00:00:00 to 31 December
2018 00:00:00) and 2 variables: Indoor Temperature (Tindoor) and Indoor Relative
Humidity (RHindoor).

• Copernicus dataset: 52,584 rows (from 1 January 2013 00:00:00 to 31 December 2018
00:00:00) and 6 variables: Outdoor Temperature (Toutdoor), Outdoor Relative Humidity
(RHoutdoor), Total Precipitation(tpoutdoor), Net solar radiation at the surface (ssroutdoor), u
wind component (e.g., zonal component, winduoutdoor ), v wind component (e.g., merid-
ional component, windvoutdoor ). Data are extracted from gridded observational dataset
(spatial resolution of 0.1◦ × 0.1◦) via the Climate Data Store (CDS) infrastructure.

4. Artificial Neural Network

The specific neural networks used in this paper are of the Feedforward type (FFNs),
for which the information flows in one direction only (forward) through the proces-sing
units, called neurons, which are organized in following layers [10,11].

The functional scheme of the entire algorithm is shown in Figure 2b. After the pre-
processing operations, the dataset was divided into three different subsets used for train-
ing/testing/validation purposes, as shown in Figure 3.
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Figure 3. Scheme of the percentage subdivision of the dataset to carry out the training, testing and
validation operations.

4.1. NAR: Nonlinear Autoregressive Network

Most of museums carry out monitoring of a few microclimatic variables, generally
temperature and relative humidity. Using datasets limited in extension and in the number
of variables, artificial intelligence algorithms tend to overfit the problem:the system gets so
used to those data that instead of “understanding” it “memorizes” them. Therefore, any
rapid variation may not be recognized. The acronym NAR describes an autoregressive
nonlinear neural network, whose output ȳ(t) depends on the previous values of itself [12]
through Equation (3) [13]:

ȳ(t) = f (y(t− 1), y(t− 2), . . . , y(t− d)) (3)

where f is a neuron activation function, ȳ is the predicted value at time t based on the
previous values of the series, whose steps are represented by d, and ε(t) is the approximation
error at the time t. Hidden layers are characterized by sigmoid activation function while
the output layer is characterized by linear activation function.

The optimization for the number of neurons in the hidden layers and time delays were
obatined using a trial-and-error procedure [13]. To train the model we have chosen, also in
this case, the Levenberg–Marquardt Algorithm (LMA), which requires more memory but it
is faster [14,15]. The LMA is used in many applications for solving generic curve-fitting
problems but, as with many fitting algorithms, the LMA finds only a local minimum, which
is not necessarily the global minimum. For this reason it is necessary to conduct many
analyses in order to check whether it is a local minimum (problem not perfectly optimized)
or a global minimum (problem perfectly optimized). As shown in Figure 4a, we have
implemented a NAR Neural Network characterized by three blocks: input layer, hidden
layer and output layer. The same procedure (trial-and-error) was used to establish the
time delays. Figure 4a shows the NAR architecture in an open-loop configuration where
output is not sent back as input. This configuration is best for the training phase [16]. The
first phase is training the network:the output value is known and is used as input to set
the internal weights of the network (initially set randomly). The second stage is the test.
The calculated output is sent back into the network, and is used, in parallel structure, to
estimate subsequent values. The weights are set in order to minimize errors. Once the
network has been trained, evaluated and tested, it is possible to make predictions on new
data. In case of multiple predictions, the closed-loop configuration, as shown in Figure 4b,
seems to give more reliable results [17]. In this configuration each new output (at time t) is
used together with the previous inputs to predict the next value (at time t + 1). Therefore,
the open-loop configuration is implemented during network training, while for future
predictions we switch to the closed-loop configuration. Our NAR neural network has one
input, the indoor temperature, and it returns the prediction of the indoor temperature at a
certain time ahead, in this case five future time step. In this model, we have implemented
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a logistic sigmoid function for the hidden layer and a linear activation function for the
output layer, as shown in Figure 4. To find the best performance of the NAR network, an
error analysis was conducted. It consists in varying the parameters of the network until the
error is minimized. The conducted error analysis showed that the best performances of
the NAR network trained with the Levenberg-Maquardt algorithm and on the RDC data is
characterized by 50 neurons (nodes) in the hidden layer and 50 time delays, which from
now on will be called NAR model 50-50.

Figure 4. (a) Schematic of NAR Architecture Model in open-loop configuration. The first block, Input
Layer, represents the data entering the network. The Hidden Layer block represents all neurons,
the number of which has been changed during the evaluation phase, which are located between
the input and the output. Each neuronal connection is characterized by a weight (w) and a bias
(b). Hidden Layer and Output Layer are connected through a sigmoid f1 activation function. The
neurons of the output layer then return an output (predicted data) by activating through the linear
function f2; (b) Schematic of NAR Architecture Model in closed-loop configuration for Multistep
Prediction Process.

4.2. NARX: Nonlinear Autoregressive Network with Exogenous Inputs

Nonlinear autoregressive network with exogenous inputs (NARX) is characterized
by feedback connections enclosing several layers. The dependent output value y(t + 1)
is regressed on both its previous quantities and on those of one or more independent
exogenous variables [18], provided as inputs. NARX model is based on the following
equation [19]:

ȳ(t) = f (y(t− 1), y(t− 2), . . . , y(t− ny), z(t− 1), z(t− 2), z(t− nz)) (4)

where ȳ is the output value and z represents the input value, ny and nz are the output
and the input layers, and the f function represents the neuron activation function. The
NARX basic architecture is organized similarly to the NAR one and is made up, as shown
in Figure 5a, by three main blocks: input, hidden and output layers. In this case too,
the training phase must be carried out in an open-loop configuration (Figure 5a). The
output information is not used to train the whole network. By modifying the structure into
closed-loop configuration (Figure 5b) it is possible to provide multistep predictions.
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Figure 5. (a) Schematic of NARX Architecture Model in open-loop configuration. The first block,
Input Layer, represents the data entering the network. The Hidden Layer block represents all neurons,
the number of which has been changed during the evaluation phase, which are located between
the input and the output. Each neuronal connection is characterized by a weight (w) and a bias
(b). Hidden Layer and Output Layer are connected through a sigmoid f1 activation function. The
neurons of the output layer then return an output (predicted data) by activating through the linear
function f2; (b) Schematic of NARX Architecture Model in Closed-Loop configuration for Multistep
Prediction process.

In NARX networks, the estimated output is fed back to the feedforward network input
to return to processing. During the training phase the true output is available and it is
possible to supply the real output as input to the network. There are two advantages: first, a
cleaner feed-forward network input is obtained; secondly, the neural architecture becomes
purely feedforward and only the training phase exploits a static backpropagation [18]. The
analysis here proposed has the following characteristics: the target time series is the indoor
temperature series Tindoor(t) while the exongenous series are reported below:

• x1(t) = RHindoor(t), indoor relative humidity.
• x2(t) = Toutdoor(t), temperature of the external environment.
• x3(t) = RHoutdoor(t), relative humidity of the external environment.
• x4(t) = tpoutdoor(t), total precipitation of the external environment.
• x5(t) = ssrdirectionoutdoor

(t), net solar radiation at the surface of the external environment.
• x6(t) = winduoutdoor (t), zonal wind component (u).
• x7(t) = windvoutdoor (t), zonal wind component (v).

The target series y(t) and the exogenous series x1(t) are part RDC dataset, while xi(t)
(with i = 2, 3, 4, 5, 6, 7) series are retrieved from Copernicus dataset. Data are chosen by
selecting the sampling period of RDC data.

Training Algorithm and Performance Evaluation Metrics

The chosen training algorithm is the Levenberg–Marquardt Algorithm (LMA) [19,20]
for both NAR and NARX because of its typical fast convergence, despite of high memory.
LM is a back propagation-type algorithm and it is based on modified Gauss–Newton
method: basically, it finds the function minima over a space of parameters optimizing
the solutions by means of an approximation of the Hessian Matrix [21], determining the
variation ∆w:

∆w = [JT(w)J(w) + λI]
−1

JT(w)e(w) (5)
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In Equation (5), we can recognize the learning matrix I, the vector of network errors
e(w) and the learning parameter λ, which is usually set to a randomic value at the beginning
and then is updated to minimize error.

J is a Jacobian matrix, JT its transpose, JTJ the Hessian matrix and finally w represents
the neuron’s weight. To evaluate the prediction performance, two criteria were used, Mean
Squared Errors (MSE) and coefficient of determination (R2). Both methods introduce a
metric to evaluate the error and therefore how much the predicted measure differs from the
real data. MSE is a method to evaluate the predicted values ŷ with respect to the measured
one y based on Equation (6):

MSE =
1
n

n

∑
k=i

(ŷk − yk)
2 (6)

where k presents the actual value and n is the total number of values.
The ideal MSE should not correspond to zero because this would mean a model that

is too tied to the specific dataset and not able to adapt to a general context. If this happens,
the model would be overfitted and unable to adapt to data other than those on which it
was trained. At the same time, however, very large errors should be avoided because the
system underestimates the predictions that would result inadequate. The best condition is
therefore in the balance between overfitting (too low MSE for training) and underfitting
(too high MSE for test and validation).

R2 method evaluates the predicted values ŷ compared to those measured y by per-
forming a linear regression and therefore considering the best fit:

R2 = 1− ∑n
k=i (ŷk − yk)

2

∑n
k=i (ȳk − yk)

2 (7)

where ȳ stands for the average of measured values and n for the number of values.

5. Results and Discussion
5.1. Results with NAR Neural Network

When training a neural network, it is important to analyze the relationship between
the forecast errors and the time steps, called time lags [20]. Such relationship is pointed out
calculating the autocorrelation errcorrt between errors at different time lags.

errcorrt =
M

∑
k=−M

errterrt−k (8)

where M is the time lag extension of the correlation. The error autocorrelation is shown
in Figure 6. At lag zero the model gives no-prediction and consequently the forecast
error is the highest: consequently, it is highly correlated with all the other errors too.
Moving away from lag zero, the error correlation drops down: the NAR model shows error
autocorrelations within the confidence limits CL

CL = ±
2errcorr(M + 1)√

L(ei)
(9)

where errcorr is the error correlation function, L is a function to compute sequence length,
and ei is the considered error sequence. NAR model shows autocorrelation errors within
the 95% confidence limits. The low values founded for the autocorrelation mean that the
model is able to escape from errors, performing good future forecasts even with larger
errors at previous time lags. Thus, we can conclude the model is suitable because errors are
indeed uncorrelated.



Sensors 2022, 22, 615 9 of 16

Figure 6. Error autocorrelation of NAR model 50-50. The lag time represents the time gap between
values in time series. Tha autocorrelation errors are within the 97% confidence limits (dotted line).

The efficiency of our network is then assessed through the MSE and the R2. These
two parameters are calculated and analyzed in the training, testing and validation phases.
Figure 7 shows MSE versus the number of iterations (epochs) for the three cases of training
(blue line), validation (green line) and testing (red line).

Figure 7. Convergence plot of the NAR model characterized by 50 neurons in the hidden layer and
50 steps of time delay: training phase (blue line), validation phase (green line) and testing phase (red
line). It is important to keep these curves under control to avoid overfitting (too low MSE during
training) and underfitting (MSE too high during testing and validation) problems. The optimal MSE
is identified by the intersection of the dotted lines.

The limited dataset results in a validation error of the order of 10−2, which is larger
than the errors shown by NAR in other applications [22–26]. However, we can consider it
acceptable since the error on the real measurement is one order of magnitude higher (∼10−1

Celsius degree). To compare the results, we calculated the R2 too. Figure 8 shows the scatter
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diagrams of the measured and predicted temperatures: for both training (Figure 8a) and
testing (Figure 8b) phases the R2 reaches the 0.99 value.

Figure 8. Predicted data regressed on measured data for NAR model 50-50 in training phase and in
testing phase.

The results of the temperature predictions in the training, validation and testing phases
are shown in Figure 9a, while in Figure 9b the corresponding errors between observations
and predictions are reported.

Figure 9. Representation in the NAR 50-50 model (a) of the time series response (where the output is
the prediction and the target refers to real data) in the three phases of training, validation and testing
and (b) of the error referred to (a) data.

Figure 10 shows in blue the microclimate temperature over 5 consecutive hours
not used for learning and therefore unknown, while the relative network forecasts are
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represented in red. In the absence of a protocol that defines how early it is necessary to
know the trend of the microclimate, a five-hour interval was considered a good interval as
a reference for very short forecasts.

Figure 10. Representation of real data, never fed to the NAR network, and of the respective predic-
tions. The blue line represents the true temperature trend with respect to time (in hours) while the
red line represents the predicted temperature trend with respect to time (in hours). The difference
between predictions and real data ranges from ∼2.82% to ∼1.60%.

The measures taken into consideration show a trend that changes abruptly, probably
due to sudden events such as the opening of a window. At the third hour of prediction,
the network deviates from the real trend but is able to approach the real value again from
the next forecast. This means that in the course of the training the network has learned to
recognize these situations of sudden changes.

5.2. Results with NARX

The main advantage of training a network on many variables lies in the possibility of
finding many correlative patterns. This improves the learning of the network with respect
to the target problem and consequently the predictions.

For NARX network trained with the Levenberg-Maquardt algorithm, the computed
error analysis shows best performances with 28 neurons (nodes) in the hidden layer and
28 time delays. Once the temporal steps has been fixed, the increase in the number of
neurons leads to an overfitting of the results, while too small temporal steps do not allow
to extrapolate sufficient information. Therefore, the best configuration identifies a balance
between the complexity of the model and the degree of information obtainable from a
specific dataset. In order to identify the best time delays, we have analyzed the relationship
between errors predictions and time steps. Figure 11 shows the autocorrelation errors
within the 97% confidence limits except again for the zero lag one: thus we can conclude
that the model is suitable. Therefore, also for NARX network, lag zero value contains no
prediction and consequently the autocorrelation error is higher than those calculated for
predicted values.
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Figure 11. Error autocorrelation of NARX model 28-28. The time lag represents the time gap between
values in time series. Image b) represents a zoom of autocorrelation errors. It can be noted that the
autocorrelation errors are within the 97% confidence limits (highlighted by the dotted lines).

As in NAR case, the trends of the MSE errors are evaluated in the training, validation
and testing phases, shown in Figure 12.

Figure 12. Convergence plot of the NARX model characterized by 28 neurons in the hidden layer
and 28 steps of time delay. The blue curve represents the MSE trend for the training phase, the green
one for the validation phase and the red one for the testing phase. The dotted lines identify, at their
point of intersection, the optimal value of MSE. It is important to keep these curves under control to
avoid overfitting (too low MSE during training) and underfitting (MSE too high during testing and
validation) problems. The optimal MSE is identified by the intersection of the dotted lines.

The NARX model achieves a lower MSE than the NAR one. This improvement is
probably due to the addition of exogenous sets. Consequently, it is expected that larger
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datasets will further improve these results. The training of the model on the input data
was also evaluated on the basis of R2. Figure 13a,b show the regressions related to training
(Figure 13a) and testing (Figure 13b) phases, both with R2 = 0.99.

Figure 13. Predicted data regressed on measured data for NARX model 28-28 in training phase and
in testing phase.

Figure 14a shows together the true and predicted temperature trends in the three
phases. The obtained data overlap almost perfectly.

Figure 14. Representation in the NARX 28-28 model (a) of the time series response in the three phases
of training, validation and testing and (b) of the error referred to (a) data.

Finally, the model prediction ability in the short time (5 h) was evaluated. Figure 15
shows temperature unknown data over 5 successive hours and the relative predictions.
The slight improvement achieved by moving from the NAR model to the NARX model is
also visible in the accuracy of the predictions. Indeed in this configuration the committed
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error settles between the largest ∼1.84% and the lowest ∼0.65%. Particular attention is to
be paid to the third hour of measurement, when the trend changes totally probably for
external reasons. Similarly to the NAR case the prediction deviates but the network is then
immediately able to straighten the prediction.

Figure 15. Representation of real data, never fed to the NARX network, and of the respective predic-
tions: measurements (blue line) and predictions (red line). The the difference between predictions
and real data ranges from ∼1.84% to ∼0.65%.

6. Conclusions

In this work we used and compared two different neural models specific for time
series, NAR and NARX, in order to obtain very short-term predictions of the museum
microclimate, i.e., within a few hours. The two predictive networks were optimized for
the analysis and forecasting of the time series of the “Stone Corridor” exhibition hall of the
Rosenborg Castle in Denmark. In both cases, learning is preceded by a data pre-processing
phase, necessary to prepare the dataset. This consists in the analysis of the information
content of a series of data through two quality indices, CI and COI, on the basis of which
a series is considered analyzable or to be discarded. Further reorganization of the data
structure follows. The short range prediction using the NAR model showed an MSE of
lower order of magnitude than the measurement error (i.e., 10−2), while the NARX model
produced an MSE of two orders of magnitude lower (i.e., 10−3). Currently there is no
protocol that defines the time horizon within which it is necessary to know how to predict
the variations of microclimatic variables. For this reason we have pushed the forecast on
a time range of 5 h: in fact, we considered that this period was adequate to follow the
trend of the forecasts and, in an operational context, provided sufficient margin to act in
advance on the microclimatic conditions by compensating any expected fluctuations. The
study on 5-h sets of unknown data showed that the NAR model predicted an initial error
of 2.82%, slightly higher than that of the NARX network (1.84%); however, both models
improved and the error decreased by an order of magnitude as the networks progressed in
the prediction, dropping to 1.60% and 0.65%, respectively. The results obtained constitute
an important starting point for predicting the temperature of museums, and are satisfactory
with respect to the objectives to be achieved. In particular, the transition from NAR to
NARX shows an improvement, albeit a small one, due to the limited datasets available. We



Sensors 2022, 22, 615 15 of 16

can therefore expect that with larger datasets (number of variables and number of data for
single variables) the models will be able to give more and more precise predictions. It is
however evident that the NARX model should lead to much better results than NAR which
has a tendency to saturate with too large datasets as it only manages one variable at a time.
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