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Abstract

We present a novel self-supervised Contrastive LEArning framework for single-cell ribonucleic acid (RNA)-sequencing (CLEAR) data
representation and the downstream analysis. Compared with current methods, CLEAR overcomes the heterogeneity of the experimental
data with a specifically designed representation learning task and thus can handle batch effects and dropout events simultaneously.
It achieves superior performance on a broad range of fundamental tasks, including clustering, visualization, dropout correction,
batch effect removal, and pseudo-time inference. The proposed method successfully identifies and illustrates inflammatory-related
mechanisms in a COVID-19 disease study with 43 695 single cells from peripheral blood mononuclear cells.
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INTRODUCTION
Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) has
been a powerful tool for measuring the transcriptome-wide gene
expression in individual cells and understanding the heterogene-
ity among cell populations [1, 2]. It has been facilitating the inves-
tigation of several critical biomedical topics, such as cancer [3] and
autoimmunity [4]. Despite its promises, the unique properties of
the scRNA-seq data, such as extreme sparsity and high variability
[5], have posed a number of computational challenges to the
community [6, 7]. The key processing step is to obtain a reliable

low-dimensional representation for each cell, which can preserve
the biological signature of the cell while eliminating technical
noise [8, 9].

The existing commonly used methods to perform the above
processing are based on different backbone algorithms and
assumptions. The earliest methods utilize the traditional
dimension reduction algorithms, such as principal component
analysis (PCA), followed by k-means or hierarchical clustering
to group cells [5, 10–15]. Considering the complexity of the
data, researchers have developed multiple kernel-based spectral
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clustering and feature selection-based clustering methods to
learn more robust similarity matrices for cells [16–18]. However,
the time and space complexity of such methods impede the
broad applications of the methods [5]. In contrast, the graph-
based methods and deep learning methods enjoy high speed and
scalability [14, 15, 19, 20]. Almost all the recently developed deep
learning-based methods are based on autoencoder [5, 9, 21–26]
(AE) or variational autoencoder [8, 27, 28] (VAE), which can also
incorporate the biostatistical models [29, 30] seamlessly. However,
as AE and VAE methods are unsupervised learning methods, it
is very difficult to control and decide what the deep learning
models will learn, although some very recent studies try to
impose constraints and our prior knowledge about the problem
onto the low-dimensional space [5, 28]. Researchers have also
tried to utilize manual labeling as supervision for training the
models, accompanied by transfer learning [23] or meta-learning
[31], but such methods encounter scalability issues and have
strong assumptions about the homogeneity of different datasets,
making them less popular than the above methods. Recently,
contrastive learning has attracted researchers’ attention, and it
has been used for single-cell multi-omics data integration [32]
and analysis [33].

As discussed above, almost all the existing methods are
based on unsupervised learning [7], regardless of the specific
algorithm. Without accessible supervision, for the deep learning-
based methods, it is difficult to guide the training process
of the model and explain why a particular transformation is
learned, although the model may work well. For example, the
functionally similar cells should be close in the transformed
space, while distinct cells should be distant [7]; the model
should overcome the batch effect and map the cells of the
same type but from different experiments into the same region
[8]. Unsupervised learning methods may have difficulty in
incorporating these requirements explicitly. Here, we propose
a novel method, Contrastive LEArning framework for single-cell
RNA-sequencing (CLEAR), for integrative scRNA-seq data analysis,
based on a new machine learning scenario, self-supervised
learning, which can model all the above requirements explicitly.
More specifically, we design our method based on self-supervised
contrastive learning [34], where we construct the labels from the
unlabeled data. For the gene expression profile of each cell, we
distort the data slightly by adding noise to the raw data, which
mimics the technical noise in the biological experiments. During
training, we force the model to produce similar low-dimensional
representations for the raw data and the corresponding distorted
profile (positive pairs). Meanwhile, we train the model to output
distant representations for cells of different types (negative
pairs).

CLEAR achieves superior performance on a broad range of
fundamental tasks for scRNA-seq data analysis, including clus-
tering, visualization, dropout correction, batch effect removal
and pseudo-time inference. As for clustering, CLEAR can outper-
form the popular tools and recently proposed tools on diverse
datasets from different organisms. Applied on a dataset from a
COVID-19 disease study with 43 695 single cells from peripheral
blood mononuclear cells (PBMCs), CLEAR successfully identifies
and illustrates inflammatory-related mechanisms. Further exper-
iments to process a million-scale single-cell dataset demonstrate
the scalability and potential of CLEAR to handle the emerging
large-scale cell atlases. With the capability of generating effec-
tive scRNA-seq data representation while eliminating technical
noise, the proposed method can serve as a general computational
framework for single-cell data analysis.

RESULTS
Overview of CLEAR
Unlike most existing methods, which are based on unsupervised
learning to map the single-cell gene expression profile to the
low-dimension space, we develop CLEAR based on self-supervised
learning. Notice that we can incorporate our prior knowledge
about scRNA-seq data, such as noise and dropout events, into
the model training process implicitly and seamlessly when we
build the label from the unlabeled data. More specifically, we
design CLEAR based on self-supervised contrastive learning [34].
As shown in Figure 1, eventually, we also want to train a deep
learning encoder to map the gene expression profile into the low-
dimensional space by forcing functionally similar cells close in
the transformed space while distinct cells being distant. Here, the
model should also be robust to technical noise, such as dropout
events. That is, the profiles from the same cell, no matter with or
without dropout events, should be mapped into the same place
in the low-dimension space. Although it is difficult to estimate
the noise level of the real dataset, we can add simulated noise
to the data and force the trained model to be robust to the
noise. Based on the above idea, we design CLEAR as shown in
Figure 1. Given the single-cell gene expression profile, we add
different simulated noise, such as Gaussian noise and simulated
dropout events, to it (data augmentation), resulting in distorted
profiles (augmented data). We also borrow the idea from the
genetic algorithm [35] and generate the distorted profile (child)
by getting the recombination from the two raw profiles (parents).
The raw profile and the corresponding distorted profiles from
the same cell are positive pairs, while the profiles from different
cells are negative pairs. When training the model, we force the
model to produce similar representations for the positive pairs
while distinct ones for the negative pairs (contrastive learning).
Intuitively, we pull together the representations of functionally
close cells in the low-dimensional space while pushing apart the
embeddings of the dissimilar ones. CLEAR does not have any
assumptions on the data distribution or the encoder architecture.
It can eliminate technical noise and generate effective scRNA-seq
data representation, which is suitable for a range of downstream
applications, such as clustering, batch effect correction and time-
trajectory inference, as discussed below.

Overall clustering performance
To assess how the representation from CLEAR helps to cluster, we
evaluate the proposed method, combined with the k-means clus-
tering algorithm, on 10 published datasets with expert-annotated
labels [36–42]. The label information is only available during test-
ing. We compare our model with several state-of-the-art methods
that are widely used for scRNA-seq data and belong to different
categories, including PCA-based tools (Seurat [10], SC3 [11], CIDR
[12], SINCERA [13]), graph-based methods (Seurat [19], scGNN
[25]), deep generative models (scVI [8], scDHA [22], scGNN [25],
ItClust [23], scRAE [43]), transfer learning approach (ItClust [23])
and two similar works with contrastive learning-based models
(contrastive-sc [44], scNAME [45]). Evaluated on 10 datasets cov-
ering the life span of humans and mice (Supplementary Method
4), CLEAR achieves substantially better performance in adjusted
Rand index (ARI) score and normalized mutual information (NMI)
than all the other methods on most datasets (Figure 2A, Sup-
plementary Table 1, Supplementary Figures 1–3, Supplementary
Method 3). In particular, on average, CLEAR improves over the
second-best method, scDHA, by 4.56% regarding the ARI score.
We also perform multiple runs on multiple random seeds to show
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Figure 1. Overview of the proposed framework, CLEAR. The proposed method is based on self-supervised contrastive learning. For the gene expression
profile of each cell, we distort the data slightly by adding noise to the raw data, which mimics the technical noise in the biological experiments. When
training the deep encoder model, we force the model to produce similar low-dimension representations for the raw data and the corresponding distorted
profile while distant representations for cells of different types. Intuitively, the deep learning model learns to pull together the representations of similar
cells while pushing apart different cells. By considering noise during training, CLEAR can produce effective representations while eliminating technical
noise for the scRNA-seq profiles. Such representations have a broad range of applications, including clustering and classification, dropout event and
batch effect correction, pseudo-time inference. CLEAR is also scalable to million-scale datasets without any overhead.

the stability of CLEAR (Supplementary Table 2), and do the hyper-
parameter fine-tuning for the baseline methods to achieve a fair
comparison (Supplementary Table 3). To better understand the
representation produced by each method, we use uniform mani-
fold approximation (UMAP) to project the internal representations
into a two-dimensional space and visualize them (Figure 2B, Sup-
plementary Figures 4–12) As shown in the figure, CLEAR learns
to embed similar cells within the same clusters while sepa-
rate dissimilar cells well among different clusters, and produces
similar clustering results as the ground truth cell annotation.
Furthermore, we evaluated the representations produced by each
method with the Leiden clustering algorithms. Starting from a
large resolution that the Leiden algorithm would overcluster, we
decreased the resolution with a step size equal to 0.01 until it
tended to undercluster, as illustrated in Supplementary Figure
13. The river plot at the turning point is shown in Figure 2C. As
the PCA-based features are used as the cornerstone for experts
in annotating cell types, it is not surprising that Seurat clus-
ters match with experts’ annotation quite well. However, scDHA
tends to overcluster oligodendrocyte cells and excitatory cells
at the turning point. In contrast, CLEAR better represents the
data by achieving nearly perfectly matching performance like
Seurat. It suggested that CLEAR and Seurat embeddings have a
better internal structure compared with scDHA. Although CLEAR

does not access any human supervision on marker genes, it can
recover the ground truth directly for this dataset, suggesting
that the proposed framework can implicitly capture the data’s
biological features. We also performed an ablation study and
hyperparameter selection on the data augmentation operations
to demonstrate the effect of the novel self-supervised contrastive
learning settings, shown in Supplementary Tables 4–6.

CLEAR corrects dropout events and batch effects
effectively
Dropout events and batch effects are notorious in scRNA-seq data
analysis, which should be handled properly. We next evaluate the
robustness of CLEAR when encountering dropout events. We sim-
ulate the dropout effects by randomly masking non-zero entries
into zero with a hypergeometric distribution. Given the additional
artificial dropouts, clustering becomes much more difficult. We
test the eight competing approaches together with CLEAR on
the Hravtin dataset, containing 48 266 single cells with 25 187
genes and thus 1.2 billion read counts. We set 10%, 30%, 60%
and 80% dropout rates for the non-zero entries, respectively (Sup-
plementary Figure 14). High dropout rates provide more difficult
conditions for the feature extraction and clustering algorithms.
CLEAR achieves the best performance in handling dropout events
in terms of clustering, even when 80% of the nonzero entries are
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Figure 2. The representation from CLEAR benefits clustering and dropout event correction. (A) Clustering performance comparison of different methods
on diverse datasets. On average, CLEAR improves over the second-best method, scDHA, by 4.56%, regarding ARI. (B) UMAP visualization of representations
produced by CLEAR, scDHA and Seruat on the Hrvatin dataset. (C) River plots of the Hrvatin dataset. CLEAR clustering matches almost perfectly with
the expert annotation, without overclustering or underclustering. (D) Clustering performance change of different methods against different artificial
dropout percentages in terms of ARI.

masked. Although the extreme dropout events may not happen
in the wet lab given the improving sequencing technologies, these
artificial dropouts offer a way of evaluating the robustness of the
algorithms. The performance of scDHA is similar to that of CLEAR
when no dropouts are introduced, but it becomes worse when the
dropout rate is 80% (Figure 2D). Except for the extreme scenario
where the effectiveness is purely theoretical, CLEAR is also robust

to low dropout rates. It suggests the effectiveness of CLEAR under
real-world settings.

Although several methods have been proposed to correct
batch effects, which are undesirable variability in the scRNA-
seq datasets from technical and biological noise, most of them
work as separate modules, focusing on one batch effect factor
each time, and thus cannot generalize to the large complex
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Figure 3. CLEAR corrects batch effects effectively. (A) Upper panel: UMAP visualization showing different methods’ performance on integrating
DoubleNeg and pDC cells from two batches. Bottom panel: UMAP visualization showing different methods’ performance on separating four cell types.
Notice that CLEAR’s representations also preserve the biological similarity between CD141 cells and CD1C cells. (B) The quantitative performance of
different methods on batch effect removal, measured by ARI and ASW.

atlas projects well, whose batch effects are from multiple factors.
CLEAR, however, has the potential to model multiple batch effects
in an end-to-end fashion. Here, we assess CLEAR on correcting
batch effects. Specifically, we first evaluate CLEAR on the human
dendritic cells dataset [46], consisting of batches with shared cell
types and biologically similar but unshared cell types. The goal of
the batch effect removal algorithms is to integrate common cell
types while maintaining separation between highly similar cells
in different batches (Methods). As shown in Figure 3A, CLEAR can

separate different cell types while mixing up DoubleNeg and pDC
cells from different batches. The biological similarity between
CD141 cells and CD1C cells is also represented in the figure: the
distance between CD141 cell cluster and CD1C cell cluster is
closer than the other two clusters. On the other hand, scVI and
SIMLR bring DoubleNeg and pDC cells closer but do not mix the
batches well. Seurat can mitigate the batch effects in DoubleNeg
and pDC cells but split CD141 cells into two clusters. ItCLUST mix
up all cells, regardless of batch and cell type, suggesting that it
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Figure 4. CLEAR is helpful for pseudo-time inference. (A) CLEAR’s performance on the pseudo-time inference for the Yan dataset. Left: Cells from the
Yan dataset ordered by pseudo-time inferred from CLEAR. Ideally, the points should fall on the diagonal. Right: UMAP visualization of time trajectory
inferred from CLEAR. (D) CLEAR’s performance on the pseudo-time inference for the Deng dataset. (B, E) Monocle3’s performance on the pseudo-time
inference for the Yan and Deng dataset. (C, F) SCANPY’s performance on the pseudo-time inference for the Yan and Deng dataset.

could not handle the dataset. Harmony [47] and iMAP [48] can
mix cells from different batches quite well as they are designed
for batch effect removal, but the two methods tend to overfit and
mix the CD141 with the CD1C cells. Although it is less balanced
than CLEAR, it is much better than SIMLR and ItClust. HDMC
[49], which is also a contrastive-learning-based method that is
specifically designed for batch effect removal tasks, achieves a
similar but less balanced performance compared with that of
CLEAR.

We further quantify the performance of different methods
regarding batch effect removal with two metrics, average silhou-
ette width (ASW) and ARI, on six datasets (Datasets). We further
calculate each metric in three aspects: cell type (cARI, cASW),
batch mixing (1 − bARI, 1 − bASW) and the harmonic mean of the
two (f1_ARI, f1_ASW). As shown in Figure 3B, CLEAR achieves the
best balance between cell type identification and batch mixing.
Furthermore, CLEAR outperforms all the other baselines under
various complex batch effects settings, even though it was not
designed to do so (Supplementary Figures 15–20). In particular, on
the Tabular Muris Senis cell atlas, which covers the lifespan of a
mouse and contains many batches, including cells from several
mouses with different identities, ages, genders and from different
chips, we used the bladder tissue (Supplementary Figure 15), the

diaphragm tissue (Supplementary Figure 16), the limb muscle
tissue (Supplementary Figure 18) and the mammary gland tis-
sue (Supplementary Figure 19) as annotated experiments. CLEAR
mixes all the cells of the same type from different batches while
separating distinct cell types well.

Pseudo-time inference
Another thriving topic in scRNA-seq data analysis is pseudo-time
inference, also known as trajectory inference. It aims to infer
the ordering of cells along a one-dimensional manifold (pseudo-
time) from the gene expression profiles. Usually, the inferring
algorithms will benefit much from better data representations.
Here, we evaluate whether the representation produced by CLEAR
can facilitate the downstream pseudo-time inference. We use
the CLEAR embeddings and the PAGA [50] algorithm to generate
the pseudo-time. We compare it with state-of-the-art methods
for inferring pseudo-time, Slingshot [51], SCDHA [22], SCANPY
[14] and Monocle3 [52], using two mouse embryo development
datasets: Yan [37] and Deng [36].

Figure 4A shows the cells from Yan dataset ordered by pseudo-
time (left) and the 2D UMAP embeddings of the cells (right), gener-
ated by CLEAR. Ideally, the points in the left figure should fall on
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a monotonic curve, indicating the monotonically related relation-
ship between the cells and pseudo-time. The time inferred with
CLEAR is strongly correlated with the true development stages. In
comparison, Monocle3 (Figure 4B) and Slingshot (Figure 4C) mixed
the cells from different development stages. We also use the
Spearman’s correlation coefficient to quantify the performance.
CLEAR achieves the highest value (spcc = 0.971), compared with
Monocle3 (spcc = 0.938) and Slingshot (spcc = 0.867). We further
illustrate the cell embeddings in the 2D space with UMAP, as
shown in the right figure. The smooth lines indicate the time tra-
jectory from CLEAR (Figure 4A), Monocle3 (Figure 4B) and Sling-
shot (Figure 4C). The trajectories inferred by CLEAR follow the
development stages precisely. It starts at the zygote, goes through
2 cells, 4 cells, 8 cells and 16 cells, and finally stops at the blast
cells. However, for Monocle3, there is no clear trajectory among
the cells. The cells in the early stages tend to mix, while cells in
the late stages form another big group.

For the Deng dataset, we did a similar analysis (Figure 4D–F).
CLEAR and Slingshot correctly reconstruct the time trajectory,
where Monocle3 failed to infer the pseudo-time for 4 cells, 8
cells, 16 cells and blast. Although the Spearman’s correlation
coefficient of Slingshot is marginally higher than that of CLEAR,
it is worth noting that CLEAR preserved better internal structure
between 8 cells and 16 cells compared with Slingshot. The results
of SCANPY and scDHA are shown in Supplementary Figure 21.
Taking all the experimental results together, the cell embeddings
from CLEAR can facilitate the downstream algorithms in produc-
ing biologically meaningful trajectories.

CLEAR illustrates peripheral immune cells atlas
and inflammatory-related mechanisms in
COVID-19
To demonstrate the application potential of CLEAR on real-world
biological research, we apply it to analyze a newly published
COVID-19 dataset [53] (GEO accession number GSE150728),
containing 44 721 cells (43 695 cells after quality control) collected
from six healthy controls and seven COVID-19 samples. Four
of the seven COVID samples are collected from patients with
acute respiratory distress syndrome (ARDS) in clinical settings
(Figure 5A, Supplementary Table 7). We perform dimensionality
reduction by CLEAR and graph-based clustering, identifying 32
clusters and visualizing them via UMAP. We calculate each
cluster’s differential expressed genes to annotate cell types
manually (Supplementary Table 9). The cell types of monocytes
(CD14+ and CD16+), T cells (CD4+ and CD8+), natural killer
(NK) cells, B cells, plasmablasts, conventional dendritic cells
(DCs), plasmacytoid dendritic cells (pDC), stem cell, eosinophil,
neutrophil, platelets, and red blood cells are identified (Figure 5B
and D, Supplementary Table 8).

To assess the general atlas of immune responses and per-
turbation during different COVID-19 statuses, we quantify the
proportions of immune cell subsets in health donors (HDs), mod-
erate (without ARDS) or severe COVID-19 (with ARDS) individu-
als (Figure 5C). Consistent with previous reports [53–55], several
immune cell subsets vary between healthy donors and COVID-19
samples, and we observe a significant depletion of NK cells, DC,
pDC and CD16+ monocytes. We also note an elevated frequency
of plasmablasts, especially in patients with ARDS, which indicates
that, together with the published clinical observations [56], acute
COVID-19 response may be associated with a severe humoral
immune response.

Several previous studies have shown that severe COVID-19
has been associated with dysregulated immune responses, which

may be induced by the abnormal activation or suppression of
inflammatory reaction [57–60]. To reveal inflammatory-related
mechanisms in COVID-19, we perform transcription level analysis
on monocytes in more granularity. We examine the expression
level of the marker genes of the cytokine storm. We choose
a set of genes from published papers, including IL1B, IL2, IL6,
IL10 and TNF [61, 62], all of which encode cytokines. Consistent
with recent research with deeper profiling of immune cells [53,
59], we do not find significant expression of these proinflam-
matory genes in monocytes (Figure 5E), suggesting that COVID-
19 may also present an immune suppression status. Notably,
IL2 and IL10 come from different cell populations; IL2 mainly
comes from lymphocytes, but IL10 is primarily produced by mono-
cytes, which may indicate that both monocytes and T/B cells
are repressed. To further analyze transcription changes driving
monocyte response remodeling in COVID-19, we conduct dif-
ferential expression analysis and cellular pathway analysis by
comparing COVID samples with HDs. Given that the dysregulation
of CD14+ monocyte plays a more dominant role in COVID-19
progress [63], we especially investigate the transcription profile
changes in CD14+ monocytes. An increased IFN-stimulated gene
(ISG) set and decreased major histocompatibility complex (MHC)
molecules in CD14+ monocyte compared to HDs are observed
(Figure 5F, Supplementary Table 10,11). Interestingly, our method
also suggests not only a decrease in the MHC II molecules in
CD14+ monocyte in COVID patients, but also the MHC I (HLA-C,
HLA-E, etc.) molecules decrease in monocytes. This may further
tell that SARS-CoV-2 inhibits not only the expression of MHC
class II genes but also MHC class I genes. Together, scoring the
samples with published MHC-related genes and ISGs respectively
also reveal that downregulation of MHC gene expression and
upregulation of ISGs are significant in CD14+ monocytes across
all the COVID patients (Figure 5G and H, Supplementary Table
12). The dominant effect of the IFN response is consistent with
acute viral infection. But the suppression of MHC molecules may
hinder the ability to activate lymphocytes and raise an effective
anti-viral response. We then apply Gene Ontology (GO) analysis,
combined with gene set enrichment analysis (GSEA), to study the
biological pathway changes in CD14+ monocytes with different
COVID statuses. Significant ISG upregulation in CD14+ monocyte
in moderate samples is also reflected in the pathway analysis,
such as type I interferon response (Figure 5I), which may indicate
a more active interferon level in moderate COVID patients and
have the potential to become a clinical blood test marker to moni-
tor COVID progress. Interestingly, we also find a secretion pathway
and myeloid leukocyte activation upregulation in severe samples
(Figure 5J). This may suggest a dysregulated CD14+ monocytes
activation in patients with ARDS. Furthermore, corresponding
with our finding in Figure 5F that S100A8 and S100A9 genes
are upregulated in severe samples, our method gives a potential
target, S100A8/A9, to eliminate immune damage in severe COVID
and thus raise patient survival rate.

CLEAR handles million-scale scRNA-seq datasets
With the unprecedented increase in sequencing scale of the
recent scRNA-seq experiment platform, the ability to process
million-scale single-cell sequencing datasets is increasingly
essential. However, many published tools require complicated
parameter setting tuning and cause burdens on the users with
the split-merge process [9]. CLEAR can perform million-level
dataset dimension reduction in parallel while getting rid of the
tedious parameter tuning process. To test the scalability of CLEAR,
we apply it to a million-level COVID PBMC scRNA-seq dataset
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Figure 5. Peripheral immune cells atlas and inflammatory-related mechanisms in COVID-19 revealed by CLEAR. (A, B) UMAP visualization of the COVID-
19 cell atlas (A) colored by COVID status and (B) colored by 13 cell type clusters (n = 43 695 cells). (C) Bar plot showing the relative percentage of different
cell types comparing three COVID-19 statuses (HDs, moderate status and severe status). (D) Stacked violin plot overview of the top-important marker
genes expression for each cell type. (E) UMAP visualization of the key proinflammatory cytokines expression in both CD14+ and CD16+ monocytes.
(F) Heatmap of IFN-stimulated genes and MHC-related genes in CD14+ monocyte. (G, H) Boxplots showing the mean (G) MHC-related score and (H)
ISG score in CD14+ monocyte colored by different COVID statuses (HDs—blue, moderate—orange and severe (ARDS)—red). (I, J) GSEA of differential
expressed gene (|LogFC| > 0.25) sets between (I) moderate CD14+ monocyte and healthy donor CD14+ monocyte and (J) severe CD14+ monocyte and
healthy donor CD14+ monocyte. Red represents upregulated GO biological pathway, and blue represents downregulated GO biological pathway.

(GEO accession number GSE158055), which contains around
1.5 million cells from COVID samples. We use CLEAR with the
default parameters to conduct dimension reduction, visualizing
the produced representations of the dataset with UMAP. CLEAR
identifies 40 clusters in 3 h on a NVIDIA V100 Tensor Core GPU,
which are then annotated manually according to each cluster’s

top 100 differential expressed genes (Figure 6A). Among them, we
find 13 subtypes and then plot selected marker genes for each cell
type. Satisfyingly, a significant expression track of these marker
genes is obtained for these subtypes (Figure 6B), which could be a
solid support to the cell type labeling. Performing sensitive feature
extraction while eliminating technical noise on the million-scale



Self-supervised CLEAR data analysis | 9

Figure 6. COVID-19 PBMC cell atlas based on million-scale scRNA-seq dataset. (A) UMAP embedding of PBMCs from all samples (n = 1.46 million cells)
colored by manually added cell types. (B) Dot plot showing percent expression and average expression of the selected marker genes for each cell type.

dataset, CLEAR is an easy-to-use and well-performed large-scale
scRNA-seq data analysis tool, which has the potential to assist
the construction and refinement of cell atlases.

DISCUSSION
scRNA-seq has become a powerful and essential tool in biologi-
cal research. With the accumulated data and the emerging cell
atlases, the demand for practical computational tools to process
and analyze such data has never been fully satisfied. Here, we
introduce such a framework, CLEAR, based on self-supervised
contrastive learning. By introducing noise during training and
forcing the model to pull together the representation of func-
tionally similar cells while pushing apart dissimilar cells with a
carefully designed task, we manage to train the model to produce
effective representations for the single-cell profile.

The major difference of CLEAR compared with other contrastive-
learning-based methods is the novel augmentation functions.
While all previous methods focused on simple augmentations
masking or shuffling, the inductive bias introduced through
simple augmentations may hurt model generalization ability
[64]. Our augmentations consist of modules derived from the
genetic algorithm, which have been proven to be effective
for data exploration. Instead of mapping cells into the biased
embedding space invariant to masking or shuffling, CLEAR
learns to construct a general embedding space that captures

the invariant to the biologically meaningful signals. Through
comprehensive experiments, CLEAR shows its ability as a real
problem-solving tool.

Although self-supervised contrastive learning may help us
learn a robust representation of the single-cell data with aug-
mented data, it may also distort the structure of the space in
such a way that differences among individual cells from the
same clusters are not measurable anymore. Besides, improper
augmentation steps will lead to unstable and bad embedding
features. We noticed that an ideal encoder would discriminate
between cells using multiple distinguishing features like gene co-
expression patterns instead of simple suppressed features, and
the encoder perform stable across multiple runs. It is less likely
that cells from the same cluster are separated, and the clusters
vary among multiple runs, given the ideal encoder. Inspired by
this, we performed extensive experiments and adjusted the dif-
ficulty of the instance discrimination task, which is proven to
be effective for the encoder to grab multiple features in some
computer vision tasks [65, 66]. In the future, we will investigate
proposing a powerful contrastive objective function considering
the global features, better augmentation procedure and incorpo-
rating our prior knowledge about the data distribution into the
learning framework, which helps us eliminate the noise while
preserving the meaningful biological difference between different
cells. In the future, CLEAR can be further developed from both the
biological aspect and the machine learning aspect. CLEAR is a very
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flexible framework to perform data integration, regardless of the
single-omics, multi-dataset integration (cell atlases construction)
or multi-omics integration (e.g. the integration of scRNA-seq and
scATAC-seq data). In terms of the machine learning technical
details, more advanced methods to handle data imbalance, per-
form data augmentation and incorporate prior knowledge, such
as partially labeled data, should be developed. We believe that our
framework, CLEAR, will become a powerful alternative approach
for single-cell data analysis.

METHODS
The CLEAR framework
The key idea of CLEAR is to learn effective cell representations,
considering noise in the data, and to pull together the repre-
sentation of functionally similar cells, while pushing apart dis-
similar cells. We achieved the goal with self-supervised con-
trastive learning. Given the single-cell gene expression profile,
we added different simulated noise, such as Gaussian noise and
simulated dropout events, to it (data augmentation), resulting in
distorted profiles (augmented data). The two distorted profiles
from the same cell are considered positive pairs, while the profiles
from different cells are negative pairs. When training the model,
we forced the model to produce similar representations for the
positive pairs while distinct for the negative pairs (contrastive
learning). More specifically, by discriminating the positive pairs
from a large number of negatives, CLEAR learns a locally smooth
nonlinear mapping function fθ that pulls together multiple distor-
tions of a cell in the embedding space and pushes away the other
samples. In the transformed space, cells with similar expression
patterns form clusters, which are likely to be cells of the same cell
types. The function fθ is parameterized by a deep neural network,
whose parameters can be optimized in an end-to-end manner.
The detailed workflows are as follows.

(i) Data augmentation. We first performed data augmentation
to generate training pairs. Each cell will have two augmented
versions, and thus a minibatch of N cells is augmented to 2N cells.
This step will be discussed in detail in Supplementary Method 6.

(ii) Constructing negative labels with data from multiple mini-
batches. For data in one minibatch, we can consider the two
data points generated from the same gene expression profile as a
positive pair while the other combinations as negatives. To make
the locally smooth function fθ have a global effect, we used neg-
atives from other minibatches. We achieved that by maintaining
a queue with data from multiple minibatches. When the current
minibatch is enqueued, the oldest minibatch will be dequeued.
Within the queue, a specific distorted profile only has one positive
pair match, while all the other profiles are negatives for it.

(iii) Loss function. Let X = {xk ∈ RG}2MN
k=1 be the queue consisting

of a number of gene expression profiles, where G denotes the
number of genes; N stands for the batch size; M stands for the
number of batches stored in the queue. In one batch, N samples
are augmented into 2N samples. Consequently, the queue con-
sisting of M minibatches contains 2MN augmented samples. xk

denotes the k-th (distorted) cell embeddings in the queue. For
a pair of positive samples xi and xj (derived from one original
sample), the other 2MN − 2samples are treated as negatives.
To distinguish the positive pair from the negatives, we use the
following pairwise contrastive InfoNCE loss:

Li,j = − log
e
(
xi•

xj
τ

)

∑2MN
k=1,k �=i e

(
xi• xk

τ

) . (1)

Note that Li,j is asymmetrical. Suppose we put all the pairs in
an order, such that 2i − 1 and 2idenote the paired augmentations,
then the summed-up loss is:

L = 1
2N

∑N
i=1

(
L2i−1,2i + L2i,2i−1

)
. (2)

(iv). Momentum update. As suggested by He et al. [67, 68], a rapidly
changing encoder network will reduce the representations’ con-
sistency, resulting in poor performance. To deal with the problem,
we utilize two encoders: a slow-evolving key encoder fk and a
fast-evolving query encoderfq. Denoting the parameters of fq as
θq and those of fk as θk, we updated the query encoder by the
normal backpropagation. For the key encoder, we updated it with
momentum, which helps the model update in a consistent direc-
tion. Each time the key encoder is updated with a much smaller
step: by taking a linear combination of the previous key encoder
parameters and the newly computed query encoder parameters,
we kept the information from previous steps.

θk ← mθk + (1 − m) θq (3)

Here m ∈ [0, 1) is a momentum coefficient. A large m makes the
key encoder updates slowly, while small m forces the key encoder
to become much like the query encoder. The momentum update
makes the encoder network evolve smoothly.

(v). Inference. After we trained the model, the query encoder
network fq is the final productive network, which outputs the rep-
resentation (a 128-d vector) of a single cell gene expression profile.
After obtaining the representations of all the cells in a dataset,
we clustered the cells with the common clustering algorithms
(e.g. k-means algorithm, Louvain algorithm and Leiden algorithm).
Finally, cell types are assigned to the discovered clusters based on
the differential expression genes in the cluster.

Architecture and hyperparameters
The encoder neural network in CLEAR consists of two fully con-
nected layers. The query encoder and the key encoder share the
same architecture. The first layer has 1024 nodes, while the sec-
ond layer has 128 nodes. The ReLU function, defined as ReLU(x) =
max(0, x), is used as the nonlinear activation function after the
linear transformation. We used Adam optimizer with the learning
rate as 1 and the cosine learning schedule. We trained the paired
neural networks for 200 epochs. Temperature, τ , in the CLEAR’s
objective function, is set to be 0.2. The momentum coefficient m
is 0.999. The hyperparameters are determined using grid search
with cross-validation.

Data augmentation
Data augmentation is critical to the success of self-supervised
contrastive learning. We use the following ways of data aug-
mentation, considering noise during real experiments. Note that
the augmentations are performed in a specific order (as shown
below). Not all the steps will be certainly conducted, with each
step having a probability of being chosen or dropped.

(i) Random mask. We randomly replaced some gene expression
values with zero in the profile of the target cell. The mask
percentage is 0.2, while the probability of executing the
step is 0.5. Notice that this synthetic noise is similar to the
dropout events in the single-cell sequencing experiments.

(ii) Gaussian noise. We adopted the idea from limma [69],
used the linear regression model to model the scRNA-
seq data, with a Gaussian distribution to model the noise,
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and then generated augmentations from the Gaussian
distribution parameters. We randomly modified some
gene expression values in the target cell profile by adding
numbers drawn from the Gaussian distribution. To speed
up the entire pipeline and prevent overfitting, we did not
fit an independent regression model per gene; instead, we
set a predefined Gaussian distribution according to the
experimental result. The noise percentage is 0.8. The mean of
Gaussian distribution is 0, while the SD is 0.2. The probability
of executing this step is 0.5.

(iii) Random swap. For a gene expression profile, we randomly
chose an even number of gene expression values and con-
structed pairs from the subset and then swapped the gene
expression values inside each pair. The total percentage that
performs swapping is 0.1. The probability of execution is 0.5.

(iv) Crossover with another cell. Inspired by the genetic algo-
rithm, we used the crossover operation to generate efficient
distorted profiles. We randomly chose another cell in the
dataset as the crossover source and then selected some
genes from the target gene expression profile, swapping the
gene expression value between the two cells. 25% of the
gene expression data in one cell will be exchanged with the
other cell. The probability of executing this step is 0.5. This
exchanging step will not influence the next batch or the next
training epoch. Typically, this step could help batch mixing as
it pushes the distorted swapped profiles with the raw profiles
together. With a small crossover percentage (25%), the model
learns the dominant features between the generations while
ignoring the side effect features.

(v) Crossover with many cells. We randomly chose several cells
in the dataset as the crossover source and some genes from
the target gene expression profile and swapped the expres-
sion values between the source cell and the target cells. The
25% of the gene expression data in the cell will be exchanged
with the selected cells. The probability of execution is 0.5.
This step would not influence the next batch or the next
training epoch.

Key Points

• CLEAR is a self-supervised contrastive learning-based
approach that produces effective representations for the
scRNA-seq data.

• By creating positive pairs through data augmentation
that simulates different noise (batch effect, technical
noise, dropout), the novel contrastive loss will encourage
cells with same cell type to be clustered together despite
the noise in the data.

• CLEAR outperforms existing methods on popular tasks
such as clustering, batch effect removal and dropout
correction, and trajectory inference.

• The representations of CLEAR enable the downstream
analysis. We apply CLEAR on a COVID-19 dataset for
identification of differential expressed genes between
patients under different severity of COVID for potential
target genes in therapeutics.

Data availability
We used 10 datasets for evaluating the performance of clustering
and dropouts, one dataset for benchmarking the batch effects

removal. Two COVID-PBMC datasets for case study. The detailed
information and the links to the publicly available sources of
the 13 datasets can be found in the Supplementary Data part.
An open-source implementation of CLEAR is available at GitHub:
https://github.com/ml4bio/CLEAR, under the MIT license.
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