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Abstract: Reactive oxygen species (ROS) are produced by host phagocytes and play an important role
in antimicrobial actions against various pathogens. Autoimmune uveitis causes blindness and severe
visual impairment in humans at all ages worldwide. However, the role of ROS in autoimmune uveitis
remains unclear. We used ROS-deficient (Ncf1−/−) mice to investigate the role of ROS in experimental
autoimmune uveitis (EAU). Besides, we also used the antioxidant N-acetylcysteine (NAC) treatment
to evaluate the effect of suppression of ROS on EAU in mice. The EAU disease scores of Ncf1−/−

mice were significantly lower than those of wild-type mice. EAU induction increased the levels of
cytokines (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, and tumor necrosis factor (TNF)-α) and
chemokines (monocyte chemoattractant protein (MCP)-1) in the retinas of wild-type mice but not
in those of Ncf1−/− mice. EAU induction enhanced the level of NF-κB activity in wild-type mice.
However, the level of NF-κB activity in Ncf1−/− mice with EAU induction was low. Treatment with
the antioxidant NAC also decreased the severity of EAU in mice with reduced levels of oxidative
stress, inflammatory mediators, and NF-κB activation in the retina. We successfully revealed a novel
role of ROS in the pathogenesis of EAU and suggest a potential antioxidant role for the treatment of
autoimmune uveitis in the future.

Keywords: reactive oxygen species (ROS); experimental autoimmune uveitis (EAU); NF-κB;
N-acetylcysteine (NAC); neutrophil cytosolic factor 1 (Ncf1)

1. Introduction

Uveitis is among the most important causes of blindness and severe visual impairment worldwide.
Approximately 15% to 30% of uveitis occurs in the choroid and adjacent retina and is therefore
classified as posterior uveitis or uveoretinitis [1]. Posterior uveitis tends to damage photoreceptor
cells and leads to permanent blindness. According to epidemiological data from the United States
of America, uveitis occurs in approximately 0.54% of the population, in which approximately 30%
of cases of uveitis are idiopathic [2]. An autoimmune causality is supported by strong human
leukocyte antigen (HLA) associations and by frequent responses to one or more unique retinal
antigens. In addition, uveitis is often associated with autoimmune or inflammatory disorders, such as
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Behcet’s disease, ankylosing spondylitis, sarcoidosis, psoriatic arthritis, Crohn’s disease, and ulcerative
colitis in patients [2]. Ocular trauma may precipitate uveitis, presumably through a breach of the
blood–ocular barrier and the release of normally sequestered antigens [3,4]. In most uveitis cases,
however, the etiologic triggers are unknown and have been postulated to include antigenic mimicry by
microorganisms in conjunction with a concomitant adjuvant effect, leading to the priming of effector T
lymphocytes capable of recognizing ocular antigens [5]. Autoimmune uveitis is a sight-threatening
inflammatory disorder that affects humans at all ages [1]. Current therapies for uveitis are largely
based on immunosuppressive treatment, including corticosteroids, antimetabolites, and alkylating
agents. Due to the nonspecific nature and the dose-limiting side effects of these drugs, the results of
current treatment for autoimmune-mediated uveitis remain unsatisfactory [6]. Each year, 17.6% of
active uveitis patients experience a transient or permanent loss of vision, and 12.5% of uveitis patients
will develop glaucoma [7]. An improved understanding of uveitis pathogenesis is needed to develop
effective treatments.

A robust model for human uveitis is experimental autoimmune uveitis (EAU) in mice, which can
be induced by immunizing susceptible mouse strains with a retinal antigen, such as interphotoreceptor
retinoid binding protein (IRBP) and retinal arrestin (retinal soluble antigen or S-antigen) [8]. IRBP
functions to transport retinoids, which are essential for the visual cycle, between the retinal pigment
epithelium and the photoreceptors. S-antigen is the visual arrestin that quenches photoactivated
rhodopsin in the process of visual signal transduction. Both proteins are highly evolutionarily
conserved and are major components of the photoreceptor cell layer. The retinal antigens that are
involved in the visual cycle and that can serve as targets in EAU are typically unique not only to the
eye but also to the whole body. The only other site of expression (within the limits of detection of
currently available methods) is the pineal gland (“third eye”), which controls the circadian rhythm and
shares many vision-related proteins with the retina [9].

During EAU progression, the infiltration of inflammatory cells into the retina and/or uvea begins
approximately seven days after induction. The stages before and after day seven postinduction are
defined as the early and amplification phases, respectively. In the early phase, the upregulation
of inducible nitric oxide synthase (iNOS), which catalyzes the production of nitric oxide (NO), is
detected in the photoreceptor mitochondria of retina [10–12]. Inflammation is a natural defense
mechanism against pathogens and it is associated with many pathogenic diseases such as autoimmune
diseases. Oxidative stress refers to the excessive production of reactive oxygen species (ROS) in
the cells and tissues and antioxidant system may not be able to neutralize them, which can lead
to chronic inflammation [13]. ROS are strong stimulators of the transcription factor nuclear factor
kappa B (NF-κB), which increases the transcription of inflammatory cytokines and chemokines [14].
An increase in the oxidative stress response with the generation of ROS, superoxide and hydrogen
peroxide was also found. The major source of these oxidants is nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 2 (NOX2) [15,16]. NO and superoxide rapidly react to form the highly
toxic peroxynitrite OONO−. NO and peroxynitrite are reactive nitrogen species (RNS). Oxidative
stress induces the nitration of photoreceptor mitochondrial proteins and the peroxidation of membrane
lipids. The ROS generated by oxidative stress and RNS are therefore proposed to be initial pathological
events leading to the EAU-induced damage observed during the amplification phase. The role of ROS
in EAU remains elusive.

The release of ROS and its downstream products from phagocytes, which is known as the
respiratory burst, plays a significant role in fighting against invading pathogens. The importance
of the innate immune defense with a functional phagocyte NOX2 is clearly exemplified in chronic
granulomatous disease (CGD), a rare genetic disorder characterized by severe recurrent infections
due to the inability of neutrophils and macrophages to mount a respiratory burst to kill invading
pathogens [17]. In addition to recurrent and severe infections, inflammatory manifestations are also
common in CGD patients, including the gastrointestinal tract (88.2%), lungs (26.4%), the urogenital tract
(17.6%), and eyes (8.8%) [18,19]. NOX2 is composed of five subunits, including p47phox, which is also
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called neutrophil cytosolic factor 1 (Ncf1) [20]. Ncf1 is an essential component of the NOX2 complex
because the absence of Ncf1 leads to undetectable NOX2 activity as measured by the ROS response of
neutrophils in mice [21]. The second most common genetic defect, responsible for approximately 30%
of CGD cases, is an autosomal recessive mutation in Ncf1 [17]. Mice without Ncf1 display augmented
disease severity in two models of autoimmune disorders, experimental autoimmune encephalomyelitis
(EAE) provoked by native myelin oligodendrocyte glycoprotein (MOG) and arthritis caused by
collagen or serum [21,22]. To address the role of ROS in EAU in vivo, we compared wild-type mice
and Ncf1-deficient mice [23] and assessed treatment with N-acetylcysteine (NAC), an ROS inhibitor
used in the clinic. Surprisingly, we discovered that the suppression of ROS due to Ncf1 deficiency or
NAC treatment decreases EAU severity in mice.

2. Results

2.1. ROS Deficiency due to the absence of Ncf1 Decreases the Severity of EAU in Mice with Reduced Levels
of Oxidative Stress, Inflammatory Mediators, and NF-kB Activation in the Retina

2.1.1. Ncf1 Deficiency Reduces Malondialdehyde Levels in the Retinas and Spleens of Mice
with EAU Induction

We monitored the effect of EAU on the stimulation of oxidative stress by measuring
malondialdehyde, which serves as a marker for oxidative stress and is produced upon lipid
peroxidation [24]. To induce EAU, we immunized wild-type mice with human IRBP peptide 1-20
(n = 14), which increased malondialdehyde levels in the retina and spleen after 21 days by more
than 2-fold compared to those of naïve wild-type mice without immunization (n = 10) (Figure 1A,B).
As Ncf1 is an essential component of NOX2 that generates ROS to promote oxidative stress [15,16],
we therefore measured malondialdehyde in immunized Ncf1−/− mice (n = 7), in which a point mutation
occurs at the 22 position of exon 8 to result in the aberrant splicing of transcripts and undetectable
protein expression [25]. The absence of Ncf1 reduced the amount of malondialdehyde in the retina
and spleen of immunized mice to levels comparable to those of wild-type mice without immunization
(Figure 1). Collectively, IRBP immunization enhances oxidative stress, and ROS production contributes
to oxidative stress in mouse tissues.

2.1.2. Absence of Ncf1 Reduces EAU Severity in Mice

To further determine the role of Ncf1 in EAU, we monitored EAU in wild-type (n = 20),
Ncf1+/− (n = 4), and Ncf1−/− (n = 20) mice for 28 days. IRBP progressively intensified the severity
of EAU in wild-type mice with a peak disease score at 21 days after immunization (Figure 2A).
Comparable disease scores were detected in immunized wild-type and Ncf1+/− mice. Notably, the EAU
disease scores of Ncf1−/− mice were significantly lower than those of wild-type and Ncf1+/− mice
after immunization. We performed hematoxylin-eosin staining on the mouse retina. Histologically,
the retinas of naïve wild-type and Ncf1−/− mice without EAU induction were morphologically similar
(Figure 2B). In wild-type mice with EAU induction for 21 days, the retina became thick with edema
and leukocyte infiltration, and the retinal structure was disrupted with folds in the inner and outer
nuclear layers. In Ncf1−/− mice with EAU induction, the retinal edema, leukocyte infiltration, and folds
were absent. The retinal morphology of Ncf1−/− mice with EAU induction was comparable to that of
naïve wild-type and Ncf1−/− mice without EAU induction. The retinal disease score and histology
results are consistent and reveal that the absence of Ncf1 decreases EAU severity in mice.
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Figure 1. Ncf1 deficiency and N-acetylcysteine (NAC) treatment reduce malondialdehyde levels in 
the retinas and spleens of mice with experimental autoimmune uveitis (EAU) induction. (A,B) 
Malondialdehyde levels in retinas and spleens of wild-type (WT) mice without (-) EAU induction (n 
= 10) or WT mice (n = 14) and Ncf1-/- mice (n = 7) with (+) EAU induction are shown. (C,D) 
Malondialdehyde levels in retinas and spleens of wild-type mice without (-) EAU induction (n = 10) 
and wild-type mice with (+) EAU induction and treated with phosphate buffered saline (PBS) (n = 14) 
or NAC (n = 10) are shown. Data show the mean + SE values (error bars). ** p < 0.005, *** p < 0.001. 
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Figure 1. Ncf1 deficiency and N-acetylcysteine (NAC) treatment reduce malondialdehyde levels in the
retinas and spleens of mice with experimental autoimmune uveitis (EAU) induction. (A,B) Malondialdehyde
levels in retinas and spleens of wild-type (WT) mice without (-) EAU induction (n = 10) or WT mice (n = 14)
and Ncf1−/−mice (n = 7) with (+) EAU induction are shown. (C,D) Malondialdehyde levels in retinas and
spleens of wild-type mice without (-) EAU induction (n = 10) and wild-type mice with (+) EAU induction
and treated with phosphate buffered saline (PBS) (n = 14) or NAC (n = 10) are shown. Data show the mean
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Figure 2. Absence of Ncf1 reduces EAU severity in mice. (A) Disease scores of wild-type mice (WT, n 
= 20), Ncf1+/- mice (n = 4), and Ncf1-/- mice (n = 20) after EAU induction are shown. Data show the mean 
± SE values (error bars). * p < 0.05, ** p < 0.005, *** p < 0.001 compared with the Ncf1-/- mice at the same 
time point. (B) Eyes of WT and Ncf1-/- mice without (naïve) or with EAU induction were subjected to 
H&E staining. The retina portion is shown. Images are representative of at least four samples per 
group from two independent experiments. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, 
outer nuclear layer. 
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necrosis factor (TNF)-α) can promote the ROS response [26]. During EAU, leukocytes, macrophages 
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Figure 2. Absence of Ncf1 reduces EAU severity in mice. (A) Disease scores of wild-type mice (WT,
n = 20), Ncf1+/− mice (n = 4), and Ncf1−/− mice (n = 20) after EAU induction are shown. Data show
the mean ± SE values (error bars). * p < 0.05, ** p < 0.005, *** p < 0.001 compared with the Ncf1−/−

mice at the same time point. (B) Eyes of WT and Ncf1−/− mice without (naïve) or with EAU induction
were subjected to H&E staining. The retina portion is shown. Images are representative of at least four
samples per group from two independent experiments. GCL, ganglion cell layer; INL, inner nuclear
layer; ONL, outer nuclear layer.
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2.1.3. The Influence of Ncf1 Deficiency on the Levels of Inflammatory Mediators in the Retinas of Mice
with EAU Induction

Both EAU and ROS can amplify the expression of cytokines and chemokines to affect EAU
severity. We investigated the influence of EAU and Ncf1 deficiency on the expression of cytokines and
chemokines in the mouse retina. Cytokines (interleukin (IL)-1β, interferon (IFN)-γ, and tumor necrosis
factor (TNF)-α) can promote the ROS response [26]. During EAU, leukocytes, macrophages and T
lymphocytes can infiltrate the retina [10]. Monocyte chemoattractant protein (MCP)-1 is a chemokine
capable of recruiting both macrophages and lymphocytes [27]. Th1, Th2, and Th17 responses regulate
EAU [28]. We therefore assessed MCP-1, Th1 cytokines (IFN-γ and IL-12), Th2 cytokines (IL-4 and IL-6),
and Th17 cytokines. EAU induction increased the levels of cytokines (IL-1α, IL-1β, IL-4, IL-6, IL-12,
IL-17, and TNF-α) and the chemokine (MCP-1), but not IFN-γ, in the retina of wild-type mice after 21
days (Figure 3A–I). The absence of Ncf1 failed to increase IL-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, TNF-α,
and MCP-1 levels in the retina of mice with EAU induction. We also performed immunohistochemical
staining on the mouse retina to detect IL-1β, TNF-α, and MCP-1, which were below the detection limit
in naïve wild-type mice without EAU induction (Figure 3J). Abundant IL-1β, TNF-α, and MCP-1 were
detected mostly in the inner nuclear layer of retina of wild-type mice 21 days after EAU induction.
The absence of Ncf1 diminished the expression of IL-1β, TNF-α, and MCP-1 in the retina of mice with
EAU induction. In summary, the absence of Ncf1 suppresses the expression of inflammatory mediators
in the retina of mice with EAU induction.

2.1.4. Absence of Ncf1 Reduces NF-κB Activation in the Retinas of Mice with EAU Induction

Both EAU and ROS can augment the expression and activation of the transcription factor
NF-κB [6,29], which promotes the expression of cytokines and chemokines, such as IL-1β, IL-6, IL-17,
TNF-α, and MCP-1 [30,31]. After NF-κB is activated, its components, p65 and p50, are translocated to
the nucleus [32]. We performed immunofluorescence staining to detect p65 and nuclei. The expression
of p65 was below the detection limit in the retina of naïve wild-type mice without EAU induction
(Figure 4A). In wild-type mice with EAU induction for 21 days, abundant p65 was detected in the
retina, and p65 was located in the nuclei of some retinal cells (Figure 4A). The absence of Ncf1 reduced
p65 expression and nuclear translocation in the retina of mice with EAU induction. We also extracted
nuclear proteins from mouse retinas and assessed NF-κB activity by measuring the binding of NF-κB
to its response element using electrophoretic mobility shift assay (EMSA). The levels of NF-κB activity
were low in both naïve wild-type and Ncf1−/− mice without EAU induction (Figure 4B). EAU enhanced
the level of NF-κB activity in wild-type mice 21 days after induction. However, the level of NF-κB
activity in Ncf1−/− mice with EAU induction was low and comparable to that of naïve wild-type and
Ncf1−/− mice without EAU induction. The NF-κB immunofluorescence and EMSA results obtained
from mouse retinas suggest that EAU increases NF-κB activation and that the absence of Ncf1 inhibits
NF-κB activation.
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mice with EAU induction. Levels of interleukin (IL)-1α (A), IL-1β (B), IL-4 (C), IL-6 (D), IL-12 (E), 
IL-17 (F), tumor necrosis factor (TNF)-α (G), monocyte chemoattractant protein (MCP)-1 (H), and 
interferon (IFN)-γ (I) in the retinas of wild-type (WT) and Ncf1-/- mice with (+) or without (-) EAU 

Figure 3. The influence of Ncf1 deficiency on the levels of inflammatory mediators in the retinas of mice
with EAU induction. Levels of interleukin (IL)-1α (A), IL-1β (B), IL-4 (C), IL-6 (D), IL-12 (E), IL-17 (F),
tumor necrosis factor (TNF)-α (G), monocyte chemoattractant protein (MCP)-1 (H), and interferon
(IFN)-γ (I) in the retinas of wild-type (WT) and Ncf1−/− mice with (+) or without (-) EAU induction
are shown. Data show the mean + SE values (error bars) of at least five samples per group. * p < 0.05,
** p < 0.005, *** p < 0.001. (J) Eyes of WT and Ncf1−/− mice without (naïve) or with EAU induction were
subjected to staining for the indicated inflammatory mediators. The retina portion is shown. Images are
representative of at least four samples per group from two independent experiments. GCL, ganglion
cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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electrophoretic mobility shift assay (EMSA) (B). In panel A, the outer nuclear layer of the retina is 
shown. Images are representative of at least four samples per group from two independent 
experiments. Arrows indicate NF-κB in the nucleus. In panel B, lane 1: p50 subunit of NF-κB; lane 2: 
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Figure 4. Absence of Ncf1 reduces NF-κB activation in the retinas of mice with EAU induction. Eyes
and retinas of wild-type (WT) and Ncf1−/− mice without (naïve) or with EAU induction were subjected
to immunofluorescence staining with DAPI for nuclei and with antibody for NF-κB (p65) (A) and to
electrophoretic mobility shift assay (EMSA) (B). In panel A, the outer nuclear layer of the retina is
shown. Images are representative of at least four samples per group from two independent experiments.
Arrows indicate NF-κB in the nucleus. In panel B, lane 1: p50 subunit of NF-κB; lane 2: free probe;
lane 3: wild-type naïve mice; lane 4: Ncf1−/− naïve mice; lane 5: wild-type EAU mice; lane 6: Ncf1−/−

EAU mice; lane 7: 100-fold molar excess of unlabeled NF-κB probe. Lane 8: biotinylated probe with
anti-p65 antibody. Top bands are the complexes of p50/p65/biotin-labeled DNA probe and bottom
bands are free probe.

2.2. Treatment with the Antioxidant NAC Reduces the Severity of EAU in Mice with Reduced Levels of
Oxidative Stress, Inflammatory Mediators, and NF-kB Activation in the Retina

2.2.1. NAC Treatment Reduces EAU Severity in Mice

As our results suggest that ROS exacerbate EAU progression, we next investigated whether
treatment with an ROS inhibitor can improve EAU. NAC is the precursor of the ROS scavenger
glutathione [33] and has been tested for the treatment of chronic bronchitis in patients [34]. NAC is
also used for antioxidation and detoxification in the clinic [35]. NAC at a dose of 150 mg/kg can reduce
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the disease phenotypes not related to the eye in rats and mice [36–38], so we assessed the effect of
NAC treatment on EAU in wild-type mice using this dose. Compared with phosphate-buffered saline
(PBS) treatment (n = 21), NAC treatment (n = 21) significantly decreased mouse EAU disease scores
(Figure 5A). The body weights of mice with EAU induction and treated with NAC or PBS were not
significantly different (Figure 5B), suggesting that the side effect of NAC is minimal. Histological
staining results showed that the retinal folds, damage, and leukocyte infiltration in mice with EAU
induction were decreased with NAC treatment compared with PBS treatment (Figure 5C).
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Figure 5. NAC treatment reduces EAU severity in mice. Disease scores (A) and body weights (B)
of wild-type mice with EAU induction and treated with PBS (n = 21) or NAC (n = 21) are shown.
Data show the mean ± SE values (error bars). ** p < 0.005, *** p < 0.001 compared with the NAC
treatment group at the same time point. (C) Eyes of mice described above were subjected to staining.
The retinal portion is shown. Images are representative of at least four samples per group from two
independent experiments.

2.2.2. The Influence of NAC Treatment on the Levels of Inflammatory Mediators and NF-κB Activation
in the Retinas of Mice with EAU Induction

Mouse tissues were harvested 21 days after EAU induction for analyses. NAC treatment
significantly decreased malondialdehyde levels in the retina and spleen of mice with EAU
induction (Figure 1C,D), indicating that NAC suppresses the oxidative stress response of EAU mice.
NAC treatment diminished the levels of IL-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, TNF-α, and MCP-1,
but not that of IFN-γ, in the retina of mice with EAU induction (Figure 6A–I). Immunohistochemical
staining results revealed that NAC treatment inhibited the expression of IL-1β, TNF-α, and MCP-1 in
the retina of mice with EAU induction (Figure 6J). The immunofluorescence staining results showed
that NAC treatment diminished p65 expression and nuclear translocation in the retina of mice with
EAU induction (Figure 7). EMSA results showed that NAC treatment reduced the level of NF-κB
activity in the retina of mice with EAU induction (data not shown). The NF-κB immunofluorescence
and EMSA results obtained from mouse retinas reveal that NAC treatment prevents NF-κB activation.
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Figure 6. The influence of NAC treatment on the levels of inflammatory mediators in the retinas of mice
with EAU induction. Levels of IL-1α (A), IL-1β (B), IL-4 (C), IL-6 (D), IL-12 (E), IL-17 (F), TNF-α (G),
MCP-1 (H), and IFN-γ (I) in retinas of wild-type with (+) or without (-) EAU induction and treated with
PBS or NAC are shown. Data show the mean + SE values (error bars) of > eight samples per group.
* p < 0.05, ** p < 0.005, *** p < 0.001. (J) Eyes of wild-type mice without EAU induction (naïve) or with
EAU induction and treated with PBS or NAC were subjected to staining for the indicated inflammatory
mediators. The retinal portion is shown. Images are representative of at least four samples per group
from two independent experiments. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer
nuclear layer.
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3. Discussion

The results of Ncf1 deficiency and NAC treatment are consistent and collectively show that the
suppression of ROS decreases EAU severity in mice. The identification of a single-nucleotide mutation
in the mouse Ncf1 gene that leads to a reduced oxidative burst and suppressed EAU response is indeed
a surprising and challenging finding. Our observation that Ncf1-deficient mice are protected from
IRBP peptide-induced EAU is difficult to reconcile with the findings of aggravated diseases detected
in the same mice induced to develop two other models of autoimmune disorders, EAE induced by
MOG and arthritis caused by collagen or serum [21]. Therefore, the Ncf1 gene has a more general effect
on T cell-dependent autoimmune diseases. The finding that Ncf1-deficient mice showed exacerbated
EAE [21] contrasts several reports demonstrating that NAC treatment inhibits the disease in mice
and rats [36,39,40]. Interestingly, in Ncf1-deficient mice with EAE induction, the native MOG protein
enhanced disease severity, but the immunodominant peptides reduced disease severity [21,22]. This
finding indicates that the immune recognition of native epitopes or the uptake and processing of
protein antigens is important for Ncf1 function because the administration of the peptide will bypass
these steps before binding to MHC class II molecules on antigen-presenting cells [22]. This hypothesis
may partially explain why Ncf1-deficient mice are resistant to MOG peptide-induced EAE and, as in
our study, IRBP peptide-induced EAU.

During EAU, TNF-α, mitochondrial DNA damage, and macrophages can induce the ROS
response [10–12,41]. The abundant infiltration of leukocytes, such as macrophages followed by T
lymphocytes, into the retina is detected more than 5 days after induction [10,11]. Retinal cells are
likely to be the initial sources of TNF-α and mitochondrial DNA damage, which are increased 3 and 4
days after induction, respectively [12,41]. In the amplification phase of EAU, when the disease score
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reached a peak in the mouse retina 21 days after induction, we found elevated levels of ROS, which
are likely produced by both retina cells and infiltrating leukocytes. Indeed, ROS inducers (TNF-α
and IL-1β) and a macrophage chemokine (MCP-1) were detected in the damaged mouse retina with
both retina cells and infiltrating leukocytes after EAU induction. RNS can also elicit ROS and has
been proposed to initiate EAU with ROS [10–12]. However, the RNS producer iNOS is reported to
be dispensable for EAU pathogenesis, as iNOS knockout mice develop EAU with scores and cellular
responses similar to wild-type mice after IRBP immunization [42]. Nevertheless, a highly selective
inhibitor of iNOS enhances the EAU induced by S-antigen [43]. We also found that unlike other
cytokines, IFN-γ was not induced in the EAU group. Rajendram, R. et al. found that IFN-γ transcripts
were significantly upregulated from day 5 to day 14 in the retinas of EAU mice [10]. However, we assess
IFN-γ on day 21 after EAU induction. Therefore, the possibility that the level of IFN-γ in the retinas of
EAU mice has returned to normal after three weeks of EAU induction cannot be ruled out. Besides,
IFN-γ-deficient mice on the C57BL/6 background are equally susceptible to IRBP-induced EAU as
wild-type mice [44]. Th17 cells, and their related cytokines, such as IL-6 and IL-17, are likely to be
more important inflammatory mediators in autoimmune uveitis [45].

A report demonstrated that NAC reduces the disease score and histopathology of IRBP-induced
EAU in mice without details on the mechanism [46]. The same report also tested two kinds of
structurally related mineral oils with pro-oxidative effects to treat EAU in mice. Paradoxically, phytol
failed to affect EAU, but pristane, which can induce autoimmune diseases (rheumatoid arthritis and
lupus) [47,48], protected mice from EAU. Since we found that ROS production and EAU severity were
decreased in Ncf1-deficient mice compared with wild-type mice, we assessed the effect of treatment
with NAC, which could decrease ROS production. We found that NAC treatment in IRBP-immunized
wild-type mice significantly ameliorated the clinical course of the EAU response. The capacity of NAC
to ameliorate inflammatory disease was also reported in rats and mice with EAE [40]. In the rat study,
NAC treatment reduced TNF-α, IL-1β, IFN-γ, and iNOS levels in the central nervous system and
attenuated EAE induced by myelin basic protein [39]. The EAE studies indicate that NAC treatment
may be of therapeutic value in multiple sclerosis against the inflammatory process associated with
the infiltration of activated mononuclear cells into the central nervous system [40]. Our additional
findings that NAC has the capacity to suppress oxidative stress, the expression of chemokines and
proinflammatory cytokines, the transmigration of inflammatory cells into the retina of EAU mice,
and NF-kB activation identify a potential drug for the treatment of human uveitis in the future.

4. Materials and Methods

4.1. EAU Induction and NAC Treatment in Mice

C57BL/6J mice and C57BL/6J-derived mice deficient in Ncf1 (B6(Cg)-Ncf1m1J/J, No. 004742) were
purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and bred in our college animal center.
All mouse experiments were performed in compliance with a protocol approved by the Institutional
Animal Care and Use Committee of National Cheng Kung University (with the approval number
of 101030) and with the statement of the Association for Research in Vision and Ophthalmology (ARVO)
for the Use of Animals in Ophthalmic and Vision Research. To induce EAU, 8- to 12-week-old female
mice were immunized with human IRBP peptide 1-20 (GPTHLFQPSLVLDMAKVLLD) in complete
Freund’s adjuvant containing inactivated Mycobacterium tuberculosis H37RA (Difco Laboratories,
Detroit, MI, USA) at two sites on the lower back, followed by an intraperitoneal injection of pertussis
toxin as previously described [6]. Wild-type mice were treated with one administration of NAC
(Sigma-Aldrich, Saint Louis, MO, USA) at a dose of 150 mg/kg or PBS every other day by intraperitoneal
injection starting one hour before EAU induction. EAU scoring was performed by examining the ocular
fundus of mouse eyes with a slit lamp. The severity of inflammation was graded on the following scale
of 1–5 as previously described [6]: 0, no inflammation; 1, ≤5 focal vasculitis spots or soft exudates;
2, linear vasculitis or spotted exudates in <50% of the retina; 3, linear vasculitis or spotted exudates in
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≥50% of the retina; 4, retinal hemorrhage or severe exudates and vasculitis; and 5, exudative retinal
detachment or subretinal (or vitreous) hemorrhage. The severity of uveitis is represented as the highest
clinical score achieved by either eye in a mouse. After EAU induction for 21 days, mouse eyes and
spleens were harvested, and retinas were extracted for assays.

4.2. Malondialdehyde Assays

The eyes were enucleated from euthanized mice. The eyeballs were cut at the equator around
the ora serrata, and the posterior pole of the eyes was separated from the anterior pole and lens.
From the posterior pole, the neurosensory retina was extracted from retinal pigment epithelial layer.
The extract from six retinas was placed in 300 µL of 0.5% NP-40 (Abcam, Cambridge, UK) on ice
(one minute) and briefly sonicated five times for 10 s (MicrosonTM XL2000 Ultrasonic liquid processor,
Qsonica, LLC, Newton, CT, USA). After removal of the insoluble material by centrifugation (200× g
for 5 min), the protein concentration of the retinal extract was measured at 280 nm on ND-1000
Spectrophotometer as previously described [6]. Spleens were processed in the same manner as retinas.
Briefly, one spleen was placed in 300 µL of 0.5% NP-40, ground, sonicated, and centrifuged. The protein
concentration of supernatants was measured at 280 nm by a ND-1000 spectrophotometer. Retina and
spleen lysate supernatants were subjected to malondialdehyde and Luminex assays. Quantification
of malondialdehyde was performed with a kit (NWLSSTM Malondialdehyde Assay, Northwest Life
Science Specialties, LLC, Vancouver, WA, USA).

4.3. Luminex Assay

Quantification of IL-1α, IL-1β, IL-4, IL-6, IL-12, IL-17, IFN-γ, TNF-α, and MCP-1 in retinal
lysate supernatants was carried out using murine multiplexing bead immunoassays (Invitrogen,
Carlsbad, CA, USA) according to manufacturer’s instruction. Briefly, 25µL of retinal samples in PBS was
incubated with antibody-coupled beads. After a series of washes, a biotinylated detection antibody was
added to the beads, and the reaction mixture was detected by the addition of streptavidin-phycoerythrin.
The bead set was analyzed using a flow-based Luminex 200 suspension array system (Invitrogen,
Carlsbad, CA, USA).

4.4. Histological, Immunohistochemical, and Immunofluorescence Staining

The eyes were processed, sectioned, and stained with hematoxylin and eosin as previously
described [6]. Sections were also subjected to immunohistochemical staining with antibodies against
mouse IL-1β, TNF-α, or MCP-1 (Abcam, Cambridge, MA, USA). Additionally, sections were subjected
to immunofluorescence staining with DAPI (4′,6-diamidino-2-phenylindole) for DNA and the antibody
against mouse p65 (Abcam, Cambridge, MA, USA).

4.5. EMSA of NF-κB

Retinas were processed to extract nuclear proteins, and the protein concentration of the samples was
determined by a bicinchoninic acid assay kit (Pierce Biotechnology, Rockford, IL, USA) as previously
described [6]. EMSA was performed with a kit (NF-κB DNA-binding protein detection system,
Pierce Biotechnology, Rockford, IL, USA) according to the manufacturer’s instructions as previously
described [6]. Briefly, nuclear protein (10 µg) was incubated with a biotin-labeled NF-κB consensus
oligonucleotide probe (5′-AGTTGAGGGGACTTTCCCAGGC-3′). The specificity of the DNA protein
binding was determined by adding a 100-fold molar excess of unlabeled NF-κB oligonucleotide for
competitive binding 10 min before adding the biotin-labeled probe.
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4.6. Statistical Analyses

Data are expressed as the mean ± SEM. For statistical comparison, EAU disease scores were
analyzed by the Wilcoxon signed-rank test, and the remaining data were analyzed by the Mann–Whitney
U test using Prism 8.0 software. A p value of <0.05 was considered statistically significant.

5. Conclusions

In conclusion, ROS play an important role in the pathogenesis of EAU in mice. NAC treatment
with ameliorated ROS production seems to be a novel therapy for autoimmune uveitis in human in
the future.
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ROS Reactive oxygen species
EAU Experimental autoimmune uveitis
NAC N-acetylcysteine
IRBP Interphotoreceptor retinoid binding protein
iNOS inducible nitric oxide synthase
NADPH Nicotinamide adenine dinucleotide phosphate
NOX2 NADPH oxidase 2
RNS Reactive nitrogen species
CGD Chronic granulomatous disease
Ncf1 Neutrophil cytosolic factor 1
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IFN Interferon
TNF Tumor necrosis factor
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