
����������
�������

Citation: Gadaleta, D.; Spînu, N.;

Roncaglioni, A.; Cronin, M.T.D.;

Benfenati, E. Prediction of the

Neurotoxic Potential of Chemicals

Based on Modelling of Molecular

Initiating Events Upstream of the

Adverse Outcome Pathways of

(Developmental) Neurotoxicity. Int. J.

Mol. Sci. 2022, 23, 3053. https://

doi.org/10.3390/ijms23063053

Academic Editor: Stephen C. Bondy

Received: 8 February 2022

Accepted: 8 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Prediction of the Neurotoxic Potential of Chemicals Based on
Modelling of Molecular Initiating Events Upstream of the
Adverse Outcome Pathways of (Developmental) Neurotoxicity
Domenico Gadaleta 1,* , Nicoleta Spînu 2, Alessandra Roncaglioni 1, Mark T. D. Cronin 2 and Emilio Benfenati 1

1 Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences,
Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
alessandra.roncaglioni@marionegri.it (A.R.); emilio.benfenati@marionegri.it (E.B.)

2 School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street,
Liverpool L3 3AF, UK; n.spinu@ljmu.ac.uk (N.S.); m.t.cronin@ljmu.ac.uk (M.T.D.C.)

* Correspondence: domenico.gadaleta@marionegri.it

Abstract: Developmental and adult/ageing neurotoxicity is an area needing alternative methods
for chemical risk assessment. The formulation of a strategy to screen large numbers of chemicals is
highly relevant due to potential exposure to compounds that may have long-term adverse health
consequences on the nervous system, leading to neurodegeneration. Adverse Outcome Pathways
(AOPs) provide information on relevant molecular initiating events (MIEs) and key events (KEs) that
could inform the development of computational alternatives for these complex effects. We propose a
screening method integrating multiple Quantitative Structure–Activity Relationship (QSAR) models.
The MIEs of existing AOP networks of developmental and adult/ageing neurotoxicity were modelled
to predict neurotoxicity. Random Forests were used to model each MIE. Predictions returned by
single models were integrated and evaluated for their capability to predict neurotoxicity. Specifically,
MIE predictions were used within various types of classifiers and compared with other reference
standards (chemical descriptors and structural fingerprints) to benchmark their predictive capability.
Overall, classifiers based on MIE predictions returned predictive performances comparable to those
based on chemical descriptors and structural fingerprints. The integrated computational approach
described here will be beneficial for large-scale screening and prioritisation of chemicals as a function
of their potential to cause long-term neurotoxic effects.

Keywords: molecular initiating events; neurotoxicity; adverse outcome pathways; QSAR

1. Introduction

The human brain is exceptionally sensitive to injury, and several neurodevelopmental
processes have been shown to be highly vulnerable to external factors [1,2]. Such pro-
cesses include neural progenitor cell proliferation, apoptosis, cell migration, neuronal
and glial differentiation, neurite outgrowth and branching, myelination, synaptogenesis
and neuronal network formation, the ontogeny of neurotransmitters and receptors, the
development of the blood–brain barrier, and the developmental changes in the adolescent
brain [3–5]. Disruption of any of these processes may lead to potentially adverse alterations
in neuroanatomy, neurophysiology, and neurochemistry. It has been estimated that devel-
opmental neurotoxicity (DNT) disorders affect 10–15% of all births [6], and the prevalence
of autism and attention-deficit hyperactivity disorders is increasing worldwide [1]. In addi-
tion, DNT disorders documented in children and adolescents could be a precursor of the
development of neurodegenerative diseases (NDs) later in life [7]. NDs (e.g., Alzheimer’s
and Parkinson’s) are widely investigated pathologies due to the low efficacy of current
therapies [8,9], the severe functional impairments they impose on daily life activities, and
the resulting high familial, social, and financial costs of patient care [10].
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Overall, genetic factors seem to account for about 30–40% of all cases of DNT disor-
ders [11]. Evidence has been reported that exposure to chemical stressors, e.g., industrial
chemicals in the environment, is a key determinant in the occurrence of neurological
disorders [11,12]. Thousands of chemicals have been reported to have adverse effect on
neurodevelopment or to be toxic the nervous system in adults [11,12]. However, the total
number of known neurotoxic substances is likely to be an underestimation of the true num-
ber released into the environment [11]. There is, therefore, a need to develop strategies able
to screen the large number of chemicals to which the population is exposed daily and that
may have possible long-term adverse health consequences to the brain. Guideline-based
DNT studies involve the use of a large number of animals for an extended period of time,
making this kind of study significantly resource-intensive and not suitable for large-scale
screening [13,14].

Computational toxicology has been shown to be a cost- and time-efficient alternative
to traditional toxicity testing methods [15]. Quantitative Structure–Activity Relationship
(QSAR) models are computational methods that have been primarily applied for their
capability to identify the toxicity of chemicals as a function of their structural attributes [16].
The increased availability of data obtained from in vitro bioactivity testing has made the
development of QSARs easier. Moreover, QSARs require relatively few resources and are
rapid, which have been key factors in their increased use assisting in filling toxicological
data gaps for chemicals with high production volumes.

Toxicology has recently undergone a paradigm shift towards the use of alternative
testing methods based on knowledge of the biological modes of action and pathways that
are responsible for adverse effects, defined as adverse outcome pathways (AOPs). An
AOP is a logical construct that connects an upstream molecular initiating event (MIE) (e.g.,
the interaction of a chemical with a molecular target) to a downstream adverse outcome
(AO), progressing through a series of key events (KEs) [17,18]. According to this concept,
compounds of unknown hazards can be assigned to various levels of concern based on the
number of activated MIEs and the extent of their activation. Moreover, chemicals activating
similar MIEs/KEs with respect to known toxic chemicals will be more likely to be toxic
themselves [19]. Several authors have recently highlighted a possible synergism between
the AOP concept and QSAR modelling in toxicology [19–26]. Thus, it is possible to utilise
QSAR models to predict the potential of chemicals to modulate MIEs and to prioritise
chemicals as a function of their toxicological profile.

In the present manuscript, we present an integrated computational system to predict
neurotoxic potential that relies on the identification of the MIEs activated by chemicals.
MIEs upstream of neurotoxicity were identified from recently published AOP networks,
then QSAR models were developed for the prediction of each MIE. Predictions from QSARs
for individual MIEs were evaluated for their capability to discriminate neurotoxic and
non-neurotoxic compounds as part of an integrated computational prediction system. MIEs
were used as independent variables in various machine learning approaches and compared
for their predictive power with other widely used methods for chemical description, i.e.,
fingerprints and molecular descriptors. The predictions returned by QSARs presented here
may represent an effective first tier of an Integrated Approaches to Testing and Assess-
ment (IATA) to rapidly screen many chemicals, providing information regarding potential
MIEs and associated mechanisms of toxicity and thus, helping to prioritise chemicals for
additional and better-targeted screening/testing, e.g., in vitro testing [27,28].

2. Results

Performance statistics from external validation for the QSARs for MIEs are reported in
Table 1. A complete description of the MIEs listed in Table 1 and of their abbreviations is
reported in Section 4.1.
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Table 1. External validation of QSAR models for MIEs based on ChEMBL data. For each MIE
predicting QSAR the average number of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) were reported. The metrics for evaluating the predictivity of the models
were sensitivity (SEN), specificity (SPE), balanced accuracy (BA), Matthew’s correlation coefficient
(MCC) and area under the ROC curve (AUC). Performance is the average of metrics obtained over
100 different training-test splits.

MIE TP FP TN FN SEN SPE BA MCC AUC

AChE 555.6 63.0 887.2 68.0 0.89 0.93 0.91 0.83 0.96
AMPAR 13.4 20.0 651.0 1.2 0.92 0.97 0.94 0.60 0.99

CAR 9.0 6.8 668.6 1.2 0.88 0.99 0.94 0.72 0.95
CYP2E1 4.0 35.2 645.2 1.0 0.80 0.95 0.87 0.29 0.90
GABAR 20.0 11.0 649.0 6.0 0.77 0.98 0.88 0.69 0.96

KAR 4.4 17.4 663.0 0.6 0.88 0.97 0.93 0.42 0.97
NADHOX 15.2 4.4 665.4 0.4 0.97 0.99 0.98 0.87 1.00

NIS 11.0 0.6 673.4 0.4 0.97 1.00 0.98 0.96 1.00
NMDAR 50.0 27.8 604.4 3.4 0.94 0.96 0.95 0.75 0.98

PXR 35.8 35.8 601.8 13.0 0.73 0.94 0.84 0.57 0.92
RYR 11.0 0.6 673.6 0.2 0.98 1.00 0.99 0.96 0.99

THRα 60.0 23.4 599.2 2.8 0.96 0.96 0.96 0.81 0.99
THRβ 110.2 37.8 500.0 38.4 0.74 0.93 0.84 0.67 0.93
TTR 14.8 44.0 624.0 3.8 0.80 0.93 0.87 0.42 0.94

VGSC 28.4 12.8 639.2 5.0 0.85 0.98 0.92 0.76 0.97

The statistics of the balanced random forest (BRF) models for MIEs were extremely
good and confirmed the high quality of the information included in ChEMBL database and
its suitability as a source of data for modelling the interactions of ligands with molecular
targets upstream of biological pathways (e.g., nuclear receptors and enzymes) [29,30]. One
possible reason for this high performance is the high structural homogeneity of the active
samples. This is not surprising, as many records included in ChEMBL are congeneric
sets of candidate drugs, while negative samples in the MIE datasets are more structurally
heterogeneous. This aspect is reasonable, as ligands for enzymes and receptors are often
required to possess specific pharmacophoric features to interact with binding sites, leading
to preferred structural moieties being shared among the different ligands.

External validation returned BA values in the range of 0.84–0.99. The statistics were
balanced between sensitivity (SEN) and specificity (SPE); although SEN was higher in most
cases, slightly lower values for the inactive class were most common in all datasets. As
for Matthews Correlation Coefficient (MCC) values, several of the models showed values
below the average, such as the BRFs for CYP2E1, KAR, and TTR. MCC has beenproposed
for the evaluation of classification between two very unbalanced categories; however, it was
observed that this parameter can sometimes be biased by high unbalance datasets on terms
of the categories (i.e., fewer than 20% of chemicals included in the smallest category) [24].
Indeed, the datasets mentioned above are among those with a lower number of actives.

Table 2 shows statistics for the neurotoxicity-predicting models. The performance of
each classifier was calculated as the average of 100 iterations of five-fold cross validation.
Figure 1 (Figure 1a: k-nearest neighbours (k-NN); Figure 1b: random forest (RF); Figure 1c:
neural network (NNET)) shows the distribution of the BAs of models based on MIE
predictions compared with DRAGON descriptors and extended fingerprints. In the case of
k-NN classifiers, the MIE predictions show higher performance (BA avg = 0.72) with respect
to chemical descriptors (BA avg = 0.70), and fingerprints do not perform as well. MIEs and
descriptors have a similar peak in the distribution of BAs between 0.70–0.75. RFs are the
top-performing classifiers overall with respect to kNN and NNET, always reaching average
BAs higher than 0.65 and having maximum values closer to 0.90. In this case, DRAGON
descriptors were the top-performing variables (BA avg = 0.83), followed by predictions of
QSARs based on fingerprints (BA avg = 0.74) and MIEs (BA avg = 0.73). In the case of NNET,
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MIE predictions and DRAGON descriptors (BA avg = 0.74) were characterised by an almost
equal distribution profile, while fingerprints had lower performance (BA avg = 0.67).

Table 2. Performance of the three classifiers (kNN, RF, NNET) using MIE predictions, chemical
descriptors, and extended fingerprints as independent variables. For each method, the average
number of true positives (TP), false positives (FP), true negatives (TN) false negatives (FN) and not
classified (NC) were reported. The metrics to evaluate the predictivity of the models were sensitivity
(SEN), specificity (SPE), balanced accuracy (BA), Matthew’s correlation coefficient (MCC), and area
under the ROC curve (AUC). Performance is the average of five-fold cross-validation results obtained
over 500 iterations (100 fold-splitting procedures and five parameter combinations).

Classifier Variable TP FP TN FN NC SEN SPE BA MCC AUC

K-NN
MIE predictions 30.5 11.4 19.6 7.5 0.0 0.80 0.63 0.72 0.44 0.76

Descriptors 29.5 11.5 19.5 8.5 0.0 0.78 0.63 0.70 0.41 0.76
Fingerprints 14.6 2.3 28.5 22.2 1.4 0.40 0.92 0.66 0.37 0.75

MLP-
NNET

MIE predictions 29.4 9.4 21.6 8.6 0.0 0.77 0.70 0.74 0.47 0.78
Descriptors 30.2 9.8 21.2 7.8 0.0 0.79 0.68 0.74 0.48 0.79
Fingerprints 28.1 12.4 18.6 9.9 0.0 0.74 0.60 0.67 0.34 0.69

RF
MIE predictions 31.1 11.6 19.2 6.4 0.7 0.83 0.62 0.73 0.47 0.77

Descriptors 32.9 6.4 24.4 4.9 0.4 0.87 0.79 0.83 0.66 0.91
Fingerprints 32.9 11.9 18.8 4.8 0.5 0.87 0.61 0.74 0.51 0.80

Figure 1. Distribution of balanced accuracies calculated among the various QSARs developed to
predict neurotoxic potential. Balanced accuracies are grouped based on the algorithm used: (a)
k-Nearest Neighbours; (b) Random Forest; (c) Neural Network. Blue bars refer to models developed
based on MIE predictions, red bars refer to models based on DRAGON descriptors, and yellow bars
refer to models based on Extended Fingerprints. Dashed lines indicate the mean accuracy value
achieved by each group of models.

The relative importance of MIEs for neurotoxicity prediction was evaluated using the
methods described in Section 4.6. Table S1 in the Supplementary Materials reports the
impact of the removal of specific MIEs on the performance (BAs) of models for neurotoxicity,
while Table S2 sorts the various MIEs included in the RF models for neurotoxicity by their
variable importance. Both BAs and variable importance are an average of the values
calculated over the various modelling iterations; see Section 4.5.

Thyroid elements seem to be relevant (THRs, TPO and TTR) to neurotoxicity; in
particular, the exclusion of TTR always leads to a reduction in BA average. TTR is the fourth
MIE in terms of variable importance. THRs, TPO and TTR are involved in the biosynthesis,
metabolism, and transportation of the thyroid hormone, respectively. Among the two
isoforms of thyroid receptors, THRβ is consistently the most important (first descriptor for
variable importance), while the removal of THRα did not negatively affect performance.
Among ionotropic glutamate receptors, AMPAR and KAR seem to be more linked to
neurotoxicity than NMDAR. AMPA/kainite receptor-mediated neurotoxicity was reported



Int. J. Mol. Sci. 2022, 23, 3053 5 of 18

to possibly play a role in neuronal neurodegeneration in amyotrophic lateral sclerosis [31]
and in the injury of basal forebrain cholinergic neurons in diseases such as Alzheimer’s [32].
VGSC and, to a lesser extent, GABAR are consistently relevant within models developed
for neurotoxicity (Table S1). The relevance of VGSC and GABAR is confirmed in the RF
variable importance analyses (Table S4). The role of SMARTS for protein adduct formation
is unclear: the descriptor is the least relevant from the variable importance analyses, and
on the whole, its exclusion does not affect the average performance of RFs. On the other
hand, its removal has a detrimental effect on the performance of both the K-NN and
NNET models.

3. Discussion

In the present work, a new integrated computational system was proposed for predict-
ing the neurotoxic potential of chemicals as a function of their capability to trigger MIE (i.e.,
interaction and modulation of relevant receptors and enzymes) upstream of neurotoxicity.
QSARs were developed to predict MIE induction while BRFs were applied to handle the
unbalanced training data. In the last part of the manuscript, MIE predictions were used to
classify neurotoxic and non-neurotoxic compounds and compared for their predictivity
with other approaches to describe the structure of chemicals, namely, chemical descriptors
and extended fingerprints.

Overall, in two out of three cases MIEs perform comparably with chemical descriptors
and better than fingerprints, which are considered the gold standard for describing chemical
structures within QSARs [33]. The only exception is given by neurotoxicity models based on
RF, where DRAGON descriptors (BA avg = 0.83) performed better than their counterparts
based on MIEs (BA avg = 0.73). This is likely to be due to the fact that RFs perform better if
trained on a larger pool of variables, such as the pool of descriptors provided by DRAGON
(i.e., several thousand) [34,35].

Despite this, one of the key advantages afforded by the use of MIE responses in place of
the classical structural representation of molecules is the interpretability of the predictions.
Indeed, a complete profile of the neuronal receptors and enzymes that are activated is
given together with the overall neurotoxicity outcome, providing insights into the possible
mode of action of a predicted neurotoxic chemical. This aspect was further verified by
predicting a series of known neurotoxicants with the models predicting MIEs. The mode
of action for these neurotoxicants was reported in a review by Masjosthusmann and
coworkers [36] who gathered information from the literature about the targets upstream of
the neurotoxicological pathway of these chemicals [11,12,37]. Interestingly, QSARs for the
prediction of MIEs were able to identify the correct mode of action of several neurotoxicants.
For example, dichlofenthion (97-17-6), Parathion (56-38-2), paraoxon (311-45-5), diazinon
(333-41-5), physostigmin (57-47-6), ibogaine (83-74-9), and dichlovoros (62-73-7) were
correctly predicted to stimulate cholinergic neurotransmission through AChE inhibition,
while 3-Nitropropionic acid (504-88-1), glyphosate (1071-83-6), and argiopine (105029-41-2)
were predicted to interact with NAMDR receptors. Indeed, the two former chemicals
are reported to stimulate glutamatergic neurotransmission and cause excitotoxicity after
activation of NMDA, leading to oxidative stress and cell death, while the latter was reported
to inhibit glutamatergic neurotransmission after blockage of the post-synaptic receptors.
Rotenone (83-79-4) and dieldrin (60-57-1) were correctly predicted to inhibit complex I
(NADH dehydrogenase) and to cause reactive oxygen species (ROS)-induced degeneration
of dopaminergic neurons and locomotor deficit.

In addition to increased biological relevance, MIE predictions simplify models to a
reduced number of variables (i.e., fewer than 20), while in the case of descriptors and
fingerprints several hundred variables may be included in the models.

The RFs developed here for the prediction of single MIEs returned satisfactory predic-
tive performance and were confirmed to be a valuable method in the field of computational
toxicology. The statistical performance of the models presented here confirmed our previ-
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ous findings that using RFs with internal balancing of categories (BRF) represents one of
the best methods for handling the unbalanced distribution typical of biological data [24,38].

In the present manuscript, the use of biological information (i.e., MIEs) instead of the
classical structural description of molecules was proposed for the development of QSARs.
The use of biological data (e.g., biological assays) utilised as input variables to develop
QSARs has been increasingly explored in the recent literature [39]. This strategy is justified
by the fact that QSARs historically had difficulty predicting complex systemic endpoints
encompassing several mechanisms, which are difficult to model together. In the case
of neurotoxicity, the brain is an extremely complex organ comprising a variety of highly
specialised neuronal cell types that differ in function, expression of brain regions, and stages
of development [40]. These different cells are all potential targets that can be disrupted
by neurotoxicants with different possible mechanisms of toxicity [4]. Another limitation
of QSARs is that they rely on the principle that analogies in chemical structure always
result in analogies in toxicity. However, the existence of activity cliffs, i.e., compounds
with high structural similarity together with unexpectedly high activity differences, were
reported for high-tier endpoints characterised by multiple mechanisms of toxicity [41]. On
the other hand, the use of information from AOPs and biological assays allows for the
fragmentation of complex endpoints into simpler ones based on mechanistic knowledge.
These “sub-endpoints” are easier to address with a single computational model, as they
describe the interaction of a chemical with a single molecular target that triggers a specific
response. Overall, this strategy allows for a reduction in the complexity of the challenge of
capturing the complex relationships existing between the structure of a chemical and its
high-level systemic toxicity [4].

The development of new machine learning and artificial intelligence-based approaches
is highly desirable, as it allows for the detection of chemicals with potential neurotoxicity
and DNT effects in a more time- and resource-efficient way compared to traditional in vivo
testing. In addition, data from in silico screenings based on AOPs can provide a scientifically
sound rationale to make decisions relating to assessment of the safety of chemicals. The
mechanistic nature of AOPs provides knowledge to guide the design of new IATAs to meet
regulatory needs [28,42]. In particular, these in silico predictions can be used to provide
information regarding the potential MIEs of chemicals, to help prioritise or deprioritise
certain chemicals for further testing, and to provide indications for better-targeted follow-
up in vitro evaluations [43]. In the specific case of neurotoxicity, a wide range of in vitro
tests has been proposed, each evaluating a different MIE/KE of the complex network
upstream of the adverse outcome [27]. Predictions of MIE provided by QSARs may give
indications of which assays to prioritise among the wide battery of tests available. In this
regard, in silico models represent an ideal first tier of a multi-step IATA for the prediction
of the neurotoxicity of chemicals which involves multiple alternative testing methods.

4. Materials and Methods
4.1. Data Selection for Molecular Initiating Events (MIEs)

MIEs linked to neurotoxicity were identified from the AOP networks [44] published
by Spînu et al. [45] and Li et al. [27]. The MIEs selected along with their associated
molecular targets (i.e., receptors, enzymes) are reported in Table 3. In certain cases, multiple
molecular targets are associated with a single MIE (e.g., three different glutamate receptors
were considered for MIE A), while a single target may be repeated in multiple MIEs (e.g.,
NADHOX was common to MIEs C and N). The molecular targets involved in the MIEs
and their relevance in neurotoxicity are briefly described below.

• Glutamate ionotropic receptors, i.e., N-methyl-D-aspartate (NMDAR), alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionate (AMPAR) and kainate (KAR) are responsible
for excitatory synaptic transmission and synaptic plasticity, which are fundamental
for learning and memory [46]. Sustained over-activation of these receptors (MIE A)
can induce excitotoxicity due to increased Ca2+ influx, with consequent cell death,
memory problems, and convulsions [4]. Analogously, the chronic blockage of NMDAR
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by chemicals during synaptogenesis (MIE B) disrupts neuronal network formation,
resulting in the impairment of learning and memory processes [47] and increasing the
risk of developing Alzheimer’s-type NDs in later life [2].

• Protein adduct formation is the covalent interaction between an electrophilic chemical
and the nucleophilic part of a protein, and may lead to damage of the protein and the
potential loss of its function. This may affect thiol- and seleno-containing proteins,
which offer antioxidant protection [48]. The binding of xenobiotics (e.g., heavy metals
and mercury) to these or other proteins during brain development (MIE D and H) may
lead to several functional impairments, such as in learning and memory. Cytochrome
P450 2E1 (CYP2E1) is relevant to this mechanism as well, as it is one of the enzymes
responsible for the metabolism of small compounds. The induction of CYP2E1 (MIE
E) leads to an increase in reactive metabolites, which can form protein adducts. For
example, a high concentration of ethanol leads to an increased expression of CYP2E1
and consequent increased production of acetaldehyde metabolite, which can form
protein adducts [49]. The consequences include oxidative stress, lipid peroxidation,
unfolded protein responses and, ultimately the apoptosis of neuronal cells [50].

• The function of the Na+/I− symporter (NIS) is critical for the physiological production
and maintenance of thyroid hormone levels in the serum, as it mediates the transport
of iodide into thyroid cells. Its inhibition (MIE F) results in decreased thyroid hormone
synthesis, with effects on neurocognitive function in children [51,52].

• Acetylcholinesterase (AChE) is an enzyme present in both central and peripheral
nervous systems and in muscular motor plaques. It is responsible for the enzymatic
cleavage of the neurotransmitter acetylcholine [53]. Inhibition of AChE (MIE I), e.g.,
by organophosphates and carbamates, leads to an increase in levels of acetylcholine
and overstimulation of both muscarinic and nicotinic receptors, resulting in multiple
adverse outcomes affecting a wide variety of functions [54].

• Ryanodine-sensitive Ca2+ channels (RyR) contribute to neurotransmission and synap-
tic plasticity. Polychlorinated biphenyl (PCB) exposure has been reported to alter
intracellular Ca2+ levels and to interfere with normal neuronal dendritic growth and
plasticity in a RyR-dependent manner (MIE L) [55].

• Thyroid hormone receptors α and β (THRα and THRβ) mediate the effects of thy-
roid hormones, while thyroperoxidase (TPO) and deionidase are involved in the
biosynthesis/catabolism of thyroid hormones. Transtyretrin serum binding protein
(TTR), monocarboxylate transporters 8 and 10, and the solute carrier organic anion
transporter family member 1C14 (OATP1C1) are involved in the transportation of
thyroid hormones at various levels [56]. Interference at any of these levels (MIEs G
and Q-T) may lead to decreased thyroxine (T4) and thyroid hormones in the brain,
and ultimately alter neurodevelopmental processes such as neuronal proliferation,
apoptosis, migration, neurite outgrowth, and neuronal network connectivity [57,58],
culminating in irreversible mental retardation and motor deficits [59]. It has been
reported that PCBs induce activation of xenobiotic nuclear receptors, e.g., the constitu-
tive androstane receptor (CAR) and the pregnane X receptor (PXR), which represent
MIE P, leading to thyroid hormone disruption during cochlear development and
potentially resulting in permanent auditory loss [60].

• The complexes of the respiratory chain play a pivotal role in neuronal and glial cell sur-
vival and cell death, as they regulate both energy metabolism and apoptotic/necrotic
pathways. The interaction of xenobiotics with these enzymes can interfere in various
ways with their normal functionality, e.g., inhibiting the production of ATP (MIE
M) or interfering with the redox cycle (MIE N and O), with consequent increased
production of ROS and oxidative stress. Oxidative stress contributes to a loss of func-
tion of hippocampal neural progenitor cells and a decline in learning and memory
performance [4]. Moreover, the inhibition of NADH-quinone oxidoreductase (NAD-
HOX) (MIE C) by pesticides or toxins (e.g., neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, MPTP) has been reported to cause mitochondrial dysfunction
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and degeneration of dopaminergic neurons of the nigro-striatal area, with consequent
motor deficits typical of Parkinson’s disease [61].

• Voltage-gated sodium channels (VGSC) are the primary molecules responsible for the
control of the electrophysiological potentials of electrically excitable cells. Various
isoforms exist, with isoforms 1, 2, 3, and 6 reported to be mainly expressed in the
central nervous system [62]. Neurotoxic effects in mammals have been associated
with the ability of some neurotoxicants (e.g., p,p’-DDT and pyrethroids) to bind to and
disrupt VGSC (MIE U), with consequent behavioural effects [4,63].

• Ionotropic GABA receptors (GABAR) are ligand-gated ion channels which play im-
portant roles in inhibitory neurotransmission [64]. Interference with GABA signalling
(MIE V) during development and after brain maturation is likely to cause such varied
adverse outcomes as autism, mental retardation, epilepsy, and schizophrenia [59].
Chemically-induced epileptic seizures can be caused by the binding of neurotoxicants
(e.g., barbiturates, benzodiazepines, and picrotoxin) to the active sites of the GABA
receptor [65].

Data relative to each of the molecular targets identified in Table 3 were extracted
from the ChEMBL database [66] using a protocol adapted from Bosc et al. [30]. ChEMBL
Target IDs for each molecular target linked to an MIE are listed in Table 4. When available,
only data relative to Homo sapiens were considered. For each target, only bioactivities
with pChEMBL values were chosen. This term refers to all the comparable measures of
half-maximal responses (molar IC50, XC50, EC50, AC50, Ki, Kd, potency and ED50) on a
negative logarithmic scale [67]. Different pChEMBL thresholds to classify bioactivity values
were evaluated. Ultimately, selected pChEMBL data were flagged as active or inactive based
on a pChEMBL threshold of 5.0 (10 µM), providing datasets with a reasonable number of
active samples for modelling. pChEMBL-like activities with standard relation “>“ or “≥“
(i.e., not associated with a precise activity value) were included as inactive. Only activities
that were not flagged as potential duplicates, with no data_validity_comment and with an
activity_comment that was not ‘inconclusive’, ‘undetermined’, or ‘not determined’ were
considered. Endpoints characterised by few or no active compounds (i.e., thyroid hormone
transporters, monocarboxylate transporters 8 and 10 and OATP1C1, NADH-cytochrome b5
reductase, deiodinase, and thyroperoxidase) were excluded from the modelling. For the
modelling of NADH oxide reductase activity Bos taurus data were used, as human data
were not available. pCheMBL data distributions were heavily skewed in the majority of
cases towards positive values.

Table 3. Molecular Initiating Events associated with Developmental Neurotoxicity, adapted from
Spînu et al. [45] and Li et al. [27].

ID MIE Target Reference

A Binding of agonist, Ionotropic
glutamate receptors Glutamate [NMDA] receptor [45]

A Binding of agonist, Ionotropic
glutamate receptors Glutamate receptor ionotropic kainate [45]

A Binding of agonist, Ionotropic
glutamate receptors Glutamate receptor ionotropic AMPA [45]

B Binding of antagonist, NMDA receptors Glutamate [NMDA] receptor [45]

C Binding of inhibitor, NADH-ubiquinone
oxidoreductase (complex I)

Mitochondrial complex I (NADH
dehydrogenase) [45]

D Binding, SH/SeH proteins involved in
protection against oxidative stress Aspecific1 [45]

E CYP2E1 Activation Cytochrome P450 2E1 [45]
F Inhibition, Na+/I− symporter (NIS) Sodium/iodide cotransporter [45]
G Thyroperoxidase, Inhibition Thyroid peroxidase 1 [45]
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Table 3. Cont.

ID MIE Target Reference

H Protein Adduct Formation Aspecific 2 [45]

I Binding of inhibitors to
acetylcholinesterase (AChE) Acetylcholinesterase [27]

L Binding of non-dioxin-like polychlorinated
biphenyls with ryanodine receptor (RyR) Ryanodine receptors 1, 2 and 3 [27]

M Interaction uncouplers with
oxidative phosphorylation Aspecific 3 [27]

N Binding of redox cycling chemicals with
NADH-quinone oxidoreductase

Mitochondrial complex I (NADH
dehydrogenase) [27]

O Binding of redox cycling chemicals with NADH
cytochrome b5 reductase NADH-cytochrome b5 reductase [27]

P Xenobiotic nuclear receptor activation Pregnane X receptor [27]

P Xenobiotic nuclear receptor activation Nuclear receptor subfamily 1 group I member 3
(Constitutive Androstane Receptor) [27]

Q Interference with thyroid serum binding protein Transthyretin [27]
R Deiodinase inhibition Deiodinase 4 [27]
S Thyroid receptor binding Thyroid hormone receptor beta [27]
S Thyroid receptor binding Thyroid hormone receptor alpha [27]
T Thyroid hormone transporter interference Monocarboxylate transporter 8 4 [27]
T Thyroid hormone transporter interference Monocarboxylate transporter 10 4 [27]

T Thyroid hormone transporter interference Solute carrier organic anion transporter family
member 1C1 4 [27]

U Binding of pyrethroids to voltage-gated sodium
channels (VGSC) Sodium channel protein type N alpha subunit [27]

V Binding of antagonist to γ-aminobutyric acid
receptor GABAAR GABA-A receptor; alpha-1/beta-2/gamma-2 [27]

1 No data found in ChEMBL, QSAR from Gadaleta et al. [68] was used. 2 Replaced with the use of reactivity
SMARTS [69]. 3 No specific targets, not considered for modelling. 4 No data found in ChEMBL, not considered
for modelling.

Table 4. List of endpoints modelled using ChEMBL data. For each endpoint, the reference MIE,
ChEMBL ID relative to the molecular target, species, and composition of the Training and Test sets are
reported; ACT is the number of active compounds, while INA is the number of inactive compounds.

Target Code CheMBL ID Species MIE ACT INA

Acetylcholinesterase AChE CHEMBL220 Human I 3076 4793
Glutamate receptor
ionotropic AMPA AMPAR CHEMBL2096670 Human A 73 3355

Nuclear receptor subfamily 1
group I member 3 (Constitutive

Androstane Receptor)
CAR CHEMBL5503 Human P 51 3377

Cytochrome P450 2E1 CYP2E1 CHEMBL5281 Human E 25 3402
GABA-A receptor;

alpha-1/beta-2/gamma-2 GABAR CHEMBL2095172 Human V 129 3298

Glutamate receptor
ionotropic kainate KAR CHEMBL2109241 Human A 25 3402

Mitochondrial complex I (NADH
dehydrogenase) NADHOX CHEMBL614865 Bos taurus C, N 78 3349

Sodium/iodide cotransporter NIS CHEMBL2331047 Human F 56 3371
Glutamate [NMDA] receptor NMDAR CHEMBL2094124 Human A, B 267 3161

Pregnane X receptor PXR CHEMBL3401 Human P 244 3188

Ryanodine receptors 1 RYR
CHEMBL2062
CHEMBL4403
CHEMBL1846

Human L 56 3371

Thyroid hormone receptor alpha THRα CHEMBL1860 Human S 311 3116
Thyroid hormone receptor beta THRβ CHEMBL1947 Human S 728 2704
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Table 4. Cont.

Target Code CheMBL ID Species MIE ACT INA

Transthyretin TTR CHEMBL3194 Human Q 93 3340

Sodium channel protein type N
alpha subunit 2 VGSC

CHEMBL1845
CHEMBL4187
CHEMBL5163
CHEMBL5202

Human U 167 3260

1 All the three isoforms of RYR were considered. 2 Isoforms 1, 2, 3 and 6 were considered.

In order to prevent skew towards positive values, which is different from the natural
distribution of biological data (i.e., few active, many inactive compounds), each dataset was
further enriched with the chemicals included in the datasets of the remaining endpoints.
These chemicals were treated as ‘decoys’ and assumed to be inactive. Due to the very large
number of data available, AChE data were not used to enrich inactive samples of other
endpoints to avoid the creation of datasets excessively unbalanced towards inactives. A
semi-automated curation procedure [70] was applied to SMILES strings retrieved from
ChEMBL in order to neutralise ionised chemical structures, remove counterions, and
discard inorganics, organometallics, and mixtures. Removal of duplicate structures was
carried out automatically at the InChI level. The entry with the maximum pChEMBL
activity was selected in the case of duplicate structures in order to maximise the number of
active samples.

Table 4 reports the final distribution of active and inactive chemicals for each dataset.
The training sets for each of the modelled MIEs are available in the Supplementary Materials
(Table S3).

4.2. QSARs for Molecular Initiating Events

ChEMBL datasets from Table 4 were used to develop 15 QSARs for molecular targets
involved in the MIEs. Extended fingerprints (Daylight Chemical Information Systems,
Inc., 2019) were calculated for each compound with a KNIME implementation [71] of the
CDK toolkit (https://cdk.github.io/ (accessed on 7 March 2022)) and used as input for
QSAR modelling. The BRF [72] implemented in KNIME was used for QSAR development.
This technique artificially alters the class distribution in each tree. A sampling without
repetition was made to select compounds, allowing all of the active compounds to always
be selected together with an equal number of randomly selected inactive compounds from
the training set in order to assure balancing between categories [73]. The number of trees
in each BRF was set to 100.

Models were validated by splitting each data set into a training (80%) and a test set
(20%) by applying a stratification sampling to the activity classes. The splitting procedure
was repeated 100 times using different random splits, ensuring that each chemical in the
datasets was included in the test set the same number of times in order to avoid bias
due to the molecules present in the different sets. The performance using the test set was
calculated for each iteration, then the final performance of each model was calculated
by averaging the statistical parameters obtained using the test sets relative to each of the
100 iterations.

4.3. Thyroperoxidase (TPO) Modelling

As no data were found for TPO inhibition from ChEMBL, the QSAR model for predict-
ing TPO inhibition proposed by Gadaleta et al. [68] was used. The model was developed
from data related to the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay. For posi-
tive hit-calls, only high selective inhibitors were used for the development of the model.
These data were characterised by a demarcated separation of the AUR-TPO assay log IC20
value from confounding activities reported by a luciferase inhibition assay (flagging for
non-specific enzyme inhibition) and a cytotoxicity assay. The QSAR was based on a BRF
developed with the imbalance-learner and scikit-learn Python libraries [74] and based on

https://cdk.github.io/
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160 DRAGON descriptors [75] with a training set of 723 chemicals. Additional details on
the predictive performance of the model can be found in [68].

4.4. Reactivity SMARTS

MIEs D (Binding and SH/SeH proteins involved in protection against oxidative
stress) and H (Protein Adduct Formation) do not refer to an interaction with a specific
receptor/enzyme; rather, they describe non-specific covalent binding to biological macro-
molecules (i.e., proteins.). Because this type of binding refers to the intrinsic reactivity of
molecules, SMARTS compiled by Enoch et al. [69] describing electrophilic protein binding
reactions (71 SMARTS) were used to account for the two MIEs. Chemicals matching at least
one of the SMARTS were flagged as positive (1); otherwise, they were negative (0).

4.5. Neurotoxicity Data

Predictions using single QSARs for MIEs of neurotoxicity were evaluated for their
capability to predict the neurotoxic potential of chemicals. Neurotoxicity data were re-
trieved from Kosnik et al. [76], who listed data for a total of 73 compounds (41 neuroactive
and 32 non-neuroactive). This is a sub-selection of a list of the EPA’s ToxCast chemicals,
previously tested by Strickland et al. [77] for their neural network function in vitro as mea-
sured on primary cortical cultures grown on microelectrode arrays and then subsequently
retested to confirm the measured activities. SMILES were retrieved from the chemical name
and CAS number using the semi-automated data retrieval and curation procedure from
Gadaleta et al. [70]. Four compounds (three neuroactive and one non-neuroactive) were
removed because they were mixtures, inorganics, and/or organometallics, leading to a
final dataset of 69 chemicals.

The final list of 69 compounds along with their neurotoxic classification is reported in
the Supplementary Materials (Table S4).

4.6. Neurotoxicity Modelling

The MIEs for the 69 chemicals with data for neuroactivity were predicted with the
15 BRFs developed from the entire datasets in Table 4 using the BRF model to predict
AUR-TPO from Gadaleta et al. [68], and were profiled with the SMARTS for electrophilic
activity compiled by Enoch et al. [69].

The predictions for the 69 chemicals from Kosnik et al. [76] were reported in the form
of probabilities associated with predictions, and are shown in Table S4 of the Supplementary
Materials. Probabilities ranged from 0 to 1, and in the case of BRF are the percentage of trees
within the BRF returning a ‘positive’ prediction. As a consequence, probabilities higher
than 0.50 flag for positive predictions, while probabilities lower than 0.50 flag for negative
predictions. Predictions equal to 0.50 were considered “not classified”.

The predictions generated by the MIE models for the 69 chemicals were used as inde-
pendent variables to develop new integrated QSAR models for predicting the neurotoxicity
of chemicals.

Three different classifiers able to naturally handle a high number of independent
variables were trained based on the neurotoxicity data. Five different settings were applied
for the various classifiers, as implemented in KNIME [71].

1. K-Nearest Neighbours (k-NN) [78]: Euclidean distance was used to calculate the
similarity between the target and the neighbours. K was varied from 1 and 9, with a
step of 2.

2. Random Forest (RF) [79]: the number of trees was varied from 50 and 250, with a step
of 50.

3. Multi-linear Perceptron–Artificial Neural Networks (NNET) [80,81]: one hidden layer
was used, with the number of hidden neurons varied from 2 to 12 with a step of 2.

In order to verify the capability of MIE prediction to discriminate neuroactive and
non-neuroactive compounds, QSARs based on MIEs were compared with other models
developed with the same algorithms (kNN, RF and NNET) and different independent



Int. J. Mol. Sci. 2022, 23, 3053 12 of 18

variables (i.e., extended structural fingerprints [82] and chemical descriptors). Chemical
descriptors were calculated by means of DRAGON software [75,83]. The initial pool of
descriptors calculated by DRAGON was pruned by constant and semi-constant values
(standard deviation < 0.001). Descriptors having at least one missing value were also
discarded. In the case of highly correlated descriptors (absolute pair correlation > 0.90),
only the one with the highest number of correlated descriptors was retained, while the
others were discarded. This procedure led to a final pool of 747 descriptors.

Model performance was evaluated by five-fold cross validation. Fold-splitting was
performed by applying a stratified sampling of the neurotoxicity categories. For each
classifier and each selection of parameters, the seed applied when performing the split
was maintained; thus, the various folds were always the same. The splitting procedure
was repeated 100 times using the same list of 100 random seeds for each combination of
classifiers and parameters; then, statistics were collected for each iteration. Considering the
variation of splits and parameters, a total of 500 iterations were performed for each of the
three classifiers.

The same procedure was repeated in turns using MIE predictions, fingerprints, and
DRAGON descriptors as independent variables, for a total of 1500 models developed. In
the case of NNETs, DRAGON descriptors were preliminarily normalised in a range of 0–1,
as NNETs are sensitive to the normalisation of independent variables.

Figure 2 summarises the entire procedure described above, including data extraction
and curation, MIE modelling, and neurotoxicity modeling.

4.7. Evaluation of MIE Relative Importance

The relative importance of the various MIEs on the neurotoxicity predictions was
evaluated in two ways.

(1) MIEs were iteratively removed, then QSARs for neurotoxicity were developed with
the remaining features, as described in Section 4.6. BAs were averaged among the
various iterations and compared to the reference values of models developed using
all of the variables. A reduction in performance after the removal of a specific MIE
flags a strong relationship between the excluded MIE and neurotoxicity. On the
contrary, MIEs are considered less relevant if their exclusion does not vary or improve
baseline performance.

(2) Variable importance was calculated for each MIE within RF models. A score was
calculated based on the attribute usage statistics in the RF for each descriptor by
counting how many times it was selected for a split (#split) and at which rank (“level”;
the first two levels were considered) among all available attributes (#candidates) in
the trees of the ensemble:

Variable importance = #splits(level 0)/#candidates(level 0) + #splits(level 1)/#candidates(level 1) (1)

Variable importance calculated in this way was averaged among the various mod-
elling iterations.
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Figure 2. Modeling workflow. The colours of the various blocks refer to the paragraph in Materials
and Methods that describes the specific steps of the workflow. Data from ChEMBL for 15 targets
relevant for the MIEs of neurotoxicity (red) were classified based on the threshold pChEMBL = 5;
negative samples were enriched with data using “>” and “≥” qualifiers and with chemicals from
other MIE data that were treated as decoys. QSARs for MIEs (blue) were developed from these
datasets using the BRF method. Datasets were iteratively partitioned into training and test sets
and their external performance was calculated as the average of the various iterations; then, the
models were retrained on the whole datasets. Neurotoxicity data (green) were retrieved from [76]
and curated at the SMILES level. Predictions from the thyroperoxidase model (violet) by [72] and
reactivity SMARTS (cyan) by [75] were combined with the predictions from the 15 MIE modes and
used as independent variables to develop neurotoxicity QSAR models (orange). kNN, RF, and NNET
were used to develop models. The use of MIE predictions as independent variables was benchmarked
with fingerprints and DRAGON descriptors; then, the performance of the obtained models was
compared with five-fold cross validation.
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5. Conclusions

In the present manuscript, a new take on the traditional QSAR methodology was
proposed to predict neurotoxicity by employing the biological information associated with
chemicals (in the form of ligand-based predictions of MIE activation data) in place of the
traditional structural data. The main advantage of this approach is that it can both return
a prediction of the adverse outcome and provide insights into the specific mechanisms
and molecular events that trigger toxicity. Emphasising the specific mechanisms of ac-
tion behind neurotoxicity will increase the confidence of scientists and regulators in the
predictions returned by these models. Having information about the activated molecular
targets that are responsible for an apical effect may, in some cases, provide indications to
chemists of possible modifications to the structure of hazardous chemicals, allowing for the
designing of safe alternatives.

Despite their increasing usage, the application of the AOP framework in computational
toxicology remains hampered by numerous and serious challenges. In general, an AOP
is always a simplification of more complex and articulated biological pathways. Indeed,
for certain biological processes, there are gaps in definitive knowledge of all responsible
molecular determinants and mechanisms. In the case of neurotoxicity, there is a lack of
understanding of all the MIEs involved in the alteration of downstream KEs as well as
the occurrence of the AOs [4]. Several of the MIEs initially identified from AOPs were not
included in the modelling presented here due to the shortage of data. Gaps in knowledge
regarding chemical concentrations and time of exposure to trigger MIE/KEs prevent the
development of quantitative approaches and limit the development of AOPs for adult
and developmental neurotoxicity mainly to qualitative ones [4,27]. Considering the fact
that the AOPs studied in this work are likely to be incomplete, the results described here
are even more encouraging. Indeed, the future availability of more high-quality data is
likely to improve the predictive capability of single QSARs for MIEs, while the future
availability of more detailed AOPs and the inclusion of additional MIEs will complete
the overall infrastructure, possibly leading to a more accurate and reliable prediction of
apical endpoints. The incorporation of exposure and toxicokinetics, i.e., absorption (e.g.,
blood–brain barrier penetration), distribution, metabolism, and excretion data represent a
possible additional improvement of the results presented herein [84].
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AOP adverse outcome pathway
AUC area under the ROC curve
AUR-TPO Amplex UltraRed-thyroperoxidase
BA balanced accuracy
BRF balanced random forest
CAR constitutive androstane receptor
CYP2E1 cytochrome P450 2E1
DNT developmental neurotoxicity
FN false negative
FP false positive
GABAR GABA receptor
IATA integrated approaches to testing and assessment
KA kainite receptor
KE key event
k-NN k-nearest neighbors
MCC Matthew’s correlation coefficient
MIE molecular initiating event
NADHOX NADH-quinone oxidoreductase
NIS Na+/I− symporter
ND neurodegenerative disease
NNET neural networks
NMDAR N-methyl-D-aspartate receptor
OATP1C1 solute carrier organic anion transporter family member 1C14
PCB polychlorinated biphenyls
PXR pregnane X receptor
QSAR quantitative structure-activity relationship
RF random forest
ROS reactive oxygen species
RyR ryanodine-sensitive Ca2+ channel
SEN sensitivity
SPE specificity
THRα thyroid hormone receptor α
THRβ thyroid hormone receptor β
TN true negative
TP true positive
TPO thyroperoxidase
TTR transtyretrin serum binding protein
VGSC voltage-gated sodium channel
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