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Abstract. It is known that the symptoms of Parkinson’s disease (PD) progress successively, early and accurate diagnosis of the
disease is of great importance, which slows the disease deterioration further and alleviates mental and physical suffering. In
this paper, we propose a joint regression and classification scheme for PD diagnosis using baseline multi-modal neuroimaging
data. Specifically, we devise a new feature selection method via relational learning in a unified multi-task feature selection
model. Three kinds of relationships (e.g., relationships among features, responses, and subjects) are integrated to represent the
similarities among features, responses, and subjects. Our proposed method exploits five regression variables (depression, sleep,
olfaction, cognition scores and a clinical label) to jointly select the most discriminative features for clinical scores prediction
and class label identification. Extensive experiments are conducted to demonstrate the effectiveness of the proposed method on
the Parkinson’s Progression Markers Initiative (PPMI) dataset. Our experimental results demonstrate that multi-modal data can
effectively enhance the performance in class label identification compared with single modal data. Our proposed method can
greatly improve the performance in clinical scores prediction and outperforms the state-of-art methods as well. The identified
brain regions can be recognized for further medical analysis and diagnosis.
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1. Introduction

Parkinson’s disease (PD) is characterized as an irreversible neurodegenerative disorder in the elderly.
Due to the progressive occurrence of diseases, middle or late patients sustain unending mental and
physical suffering. PD is mainly characterized by four motor symptoms (tremor, rigidity, bradykine-
sia, and postural instability) and four non-motor symptoms (depression, sleep, olfaction, and cognition
disorders) [1]. These symptoms bring great inconvenience to the patient’s life. For this reason, early
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PD diagnosis plays an important role in monitoring disease progression and alleviates the mental and
physical suffering. The main PD symptoms are from the death of dopamine neurons in an area of the
brain called as the substantianigra. The study of the cause of their deaths has made some preliminary
progress [2,3]. While the cause of PD remains a mystery, scientists believe that these symptoms arise as
the result of the degeneration of certain nerve cells called dopamine neurons [4]. Studies visualized the
dopaminergic pathway using nuclear imaging, which identified some subjects via asymmetrical resting
tremor. However, there is no evidence to explain dopaminergic deficit (i.e., scans without evidence of
dopamine deficit (SWEDDs)) [5].

In computer-aided PD diagnosis, the subject size is quite limited, but the feature dimensionality is
relatively high. For example, the subject number used in [6] is as small as 202, while the feature dimen-
sionality (including both MRI and PET features) was hundreds. The limited subject number makes it
difficult to generate a good model. Meanwhile, the high dimensional data easily result in the overfitting
issue since the number of intrinsic features may be quite small [7]. To address this issue, feature selection
model using the disease-related characteristics is an effective way.

Most existing studies mainly concentrate on the separate classification and regression model. Also,
existing methods mainly take advantage of single modality feature for joint PD diagnosis and clini-
cal score prediction [8,9]. However, different modes can reflect the brain’s information from different
aspects. Meanwhile, existing methods hardly use four clinical scores (depression, sleep, olfaction, cog-
nition scores) to jointly select the discriminative features in PD diagnosis [10]. Motivated by the studies
in [10–12], we propose a united multi-task feature selection method to perform simultaneous classifi-
cation and clinical sores prediction via multimodal features. Specifically, the term “united” means that
we use five regression variables (depression, sleep, olfaction, cognition scores, and a clinical label) to
jointly select the most discriminative features for clinical scores prediction and class label identification.
We combine four kinds of features, fractional anisotropy (FA) coefficient of diffusion-weighted tensor
imaging (DTI), cerebrospinal fluid (CSF) and gray matter (GM) of magnetic resonance imaging (MRI),
and CSF biomarkers [13], to discriminate PD, SWEDD and normal control (NC). We also jointly predict
four clinical scores, i.e., depression scores, sleep scores, olfaction scores, and cognition scores.

2. Materials and methods

2.1. Materials and dataset

All experimental data in this paper is based on the public available PPMI database,1 which is the
first all-around, broad-scale, multi-focus, observational, international study to identify PD progression
biomarkers [14]. MRI and DTI data are collected by the Siemens MAGNETOM Trio 3.0 T MRI scanner.
For MRI images, the selection criteria are as follows: acquisition plane = SAGITTAL, pulse sequence =
GR/IR, field strength = 3, slice thickness = 1, flip angle = 9, TE = 2.98, and TR = 2300. We select the
DTI images using the following parameters: pulse sequence = EP, gradient directions = 64, processed
data label = FA map-MRI, field strength = 3, slice thickness = 2, flip angle = 90, TE = 88, and TR =
600–1000.

2.2. Subjects

In this paper, a total of 208 subjects including 56 NC subjects, 123 PD subjects, 29 SWEDD subjects

1http://www.ppmi-info.org.
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Table 1
Clinical detail of all subjects (mean ± stand deviation)

NC PD SWEDD
Number 56 123 29
Female/male 22/34 47/76 12/17
Age 60.7 ± 10.8 61.3 ± 9.0 60.3 ± 9.9
Weight (kg) 77.3 ± 15.7 82.2 ± 16.9 81.6 ± 12.4
Depression scores 5.1 ± 1.0 5.3 ± 1.5 5.8 ± 1.5
Sleep scores 6.4 ± 3.9 5.9 ± 3.3 8.8 ± 4.3
Olfaction scores 33.5 ± 4.1 22.5 ± 8.6 30.7 ± 7.0
Cognition scores 28.1 ± 1.2 27.6 ± 2.1 27.0 ± 2.7

are used for performance evaluation. We use the baseline MRI, DTI, and 3 CSF biomarkers (Abeta42,
T-tau, and P-tau181p). The depression, sleep, olfaction, and cognition scores are evaluated by Geriatric
Depression Scale (GDS), Epworth Sleepiness Scale (ESS), University of Pennsylvania Smell Identifica-
tion Test (UPSIT), and Montreal Cognitive Assessment (MoCA), respectively. For depression scores, it
is obtained by answering a total of 15 yes or no questions from GDS. The depression range is as follows:

– 0–4 is normal;
– 5–7 is slight depression;
– 8–11 is medium depression;
– 12–15 is serious depression.
For sleep scores, it is evaluated by the sum of weighted responses from several questions from ESS.

The sleep range is as follows:
– 0–9 is normal;
– 10–24 is sleepy.
For olfaction scores, it is difficult to describe their levels because they are not normalized for the

subject, gender or age. The range of raw olfaction score of UPSIT is between 0 and 40. Lower olfaction
scores indicate that subject has lost more of their sense of smell.

For cognition scores, one point is appended to the score for a subject who has 12 years or below of
formal education. A subject can score a maximum of 30 points. Both individual question scores and the
total score are available. The clinical information of experimental subjects is summarized in Table 1.

2.3. Data preprocessing

As for data preprocessing, we first perform anterior commissure-posterior commissure (ACPC) cor-
rection in all MRI and DTI images using center of mass (COM) algorithm, and then we make use of
statistical parametric mapping (SPM8)2 to correct the geometric distortion and head movement. Then
we need to implement skull-stripping using graph-cut. For MRI images, we register it with International
Consortium for Brain Mapping (ICBM) template and divide it into GM and CSF. Meanwhile, all images
are resampled to the isotropic resolution of 1.5 mm to make the resolution invariant. In addition, we
exploit 60-mm full width at half maximum (FWHM) Gaussian kernel to spatially smooth the surface of
MRI images. We partition 116 Regions-Of-Interest (ROIs) from GM and CSF which is spatially nor-
malized by automated anatomical labeling (AAL) atlas with high-resolution 3D brain atlas. We extract
mean tissue density value of each region. For DTI data, we use FSL tool [15] to correct DTI data and
calculate diffusion tensors.

2http://www.fil.ion.ucl.ac.uk/spm.
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Fig. 1. Illustration of proposed method (Note that large square in different colors means diverse features and response vari-
ables, respectively, the star denotes feature-feature relation, triangle represents response-response relation, and circle means
subject-subject relation).

First, the software corrects the b0 distortion by using b0 field map data. Second, the tool rectifies the
motion and eddy current distortion by 12-DOF linear registration. Next, the script adjusts the b-vector
by employing rotations determined by motion estimation. Finally, it computes the diffusion tensors. All
in all, for MRI images, we obtain 116 GM tissue volumes and 116 CSF volumes. For DTI images, we
get 116 mean FA intensities from each FA map image. We linearly connect all features into a long vector
of 348 features, which fuse MRI and DTI modality together. These features are integrated into a united
multi-mask framework for feature selection, and then the computed features are combined with the three
CSF biomarkers to form the final feature.

3. Methodology

3.1. System overview

The overall procedures for clinical scores prediction and class label classification are presented in
Fig. 1. First, we extract the feature from GM, CSF, and DTI. Then we obtain a linear connected matrix X
constructed from multi-modality features. Meanwhile, we build a response matrix Y by concatenating
clinical scores (e.g., depression, sleep, olfaction, and MoCA scores) and class label of different samples
(e.g., NC, PD, and SWEDD). Our proposed relational regularization feature selection method is based
on improved loss function to obtain disease-related features, which could avoid the over-fitting problem.
Finally, we use support vector regression (SVR) and support vector classification (SVC) with sigmoid
kernel to train four regression models and a classification model, respectively.
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3.2. Notations

In this study, uppercase boldface letters (e.g., X) denote matrices, and lowercase boldface letters
denote vectors. For a matrix X = [xkl], xk and xl denote its k-th row and l-th column, respectively.
The norm of vector is defined as ‖X‖. We denote the Frobenius norm and `2,1-norm of a matrix X as
‖X‖F =

√∑
k ‖Xk‖22, and ‖X‖2,1 =

∑
k ‖Xk‖2.

3.3. Relational regularization

Let X ∈ Rn×d and Y ∈ Rn×s denote the training data and response matrix of n subjects,3 d features
and s response scores, respectively (i.e., depression scores, sleep scores, olfaction scores, MoCA scores,
and class label in this paper). In general, joint regression and classification is denoted by a least square
regression model as follows:

F(W ) = ‖Y −XW ‖2F = ‖Y − Ŷ ‖2F (1)

where W ∈ Rd×s is a weight coefficient matrix and each column of W contains different weighted
coefficients of each feature and Ŷ = XW . Equation (1) has been effectively exploited in many occa-
sions. To the best of our knowledge, the solution is often overfitted to the dataset with small subjects
and high-dimensional features, especially, in the neuroimaging analysis. There are many regularization
terms proposed to avoid the overfitting problem and enhance generalized ability [16,17], which is de-
noted mathematically as

minw F(W ) +R(W ), (2)

whereR(W ) denotes a series of regularization terms.
In this paper, we extract features from ROIs, which are relevant to each other, and there exist relations

among these features. If two features are strongly interrelated, their corresponding weight coefficients
should be similar. However, the previous regression methods do not consider the property in their so-
lutions. We devise a regularization term with the assumption that, if some feature, e.g., xk and xl, are
related to each other, their corresponding weight coefficients (i.e., wk and wl) should be similar since
the k-th feature xk in X corresponds to the k-th row wk in W in our regression framework. We refer to
this relation as relationships among features in this paper. We consider that some response variables are
related to each other and some samples are related to each other. Also, we consider relationships among
responses and subjects, respectively. Finally, we define the three regularization relations as

R(W ) = λ1
∑d

k,l
hkl‖wk −wl‖22 + λ2

∑s

k,l
ukl‖wk −wl‖22 + λ3

∑n

k,l
vkl‖ŷk − ŷl‖22 (3)

where λ1, λ2, λ3 are controlling parameters of the regularization terms. hkl is an element in the feature
similarity matrix H = [Hkl] ∈ Rd×d which quantizes the relation among features in the subjects. ukl
quantizes the relation among response variables and vkl quantizes the relation among subjects in the
samples. To measure the similarity among vectors of a and b, we exploit a radial basis function kernel
defined as follows:

g(a, b) = exp

(
−‖a− b‖22

2σ2

)
(4)

3In this work, we have one sample per subject.
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where σ denotes the kernel width. For the similarity matrix H , we build a data adjacency graph and
regard each vector as a node using p nearest neighbors along with a heat kernel function defined in
Eq. (4) to compute the edge weights, i.e., similarities. For example, if a sample xk is chosen as one of
the k nearest neighbors of a sample xl, then the similarity vkl between two nodes is set to the value of
g
(
xk,xl

)
, otherwise, the similarity is set to zero, i.e., vkl = 0. hkl and ukl are computed the same as vkl

as described above.
For feature selection, we consider that the potential brain mechanisms can simultaneously affect the

clinical scores and class labels. In other words, if a feature predicts one response variable, it will influence
the prediction of another response variable as well. We use the same features for class label identification
and clinical scores prediction, formulated by an `2,1-norm regularization term on W . Finally, our loss
function is formulated as

minw F(W ) +R(W ) + α‖W ‖2,1 (5)

where α denotes weighting parameter that diminishes the weight as the feature as value of α increases.

4. Experimental results

Various experiments are conducted using a 10-fold cross-validation method to validate the perfor-
mance of the proposed method [14]. We divide our dataset randomly into 10 subsets, where ten percent
of the dataset is used for testing and the remaining is used for training. For model selection, i.e., tun-
ing parameters in Eq. (5) and SVR/SVC parameters,4 we conduct the grid search on the parameter
with the spaces of λi ∈ {10−6, . . . , 102}, i ∈ {1, 2, 3}, and α ∈ {102, . . . , 108} using single modal-
ity data. For multimodal data, the feature dimensionality is too high, which weaken the similarities
between these subjects. Therefore, the values of λ3 are zero (i.e., λ3 ∈ {0}). We carry out comprehen-
sively grid search on the parameter with the spaces of λ1 ∈ {102, . . . , 1010}, λ2 ∈ {10−6, . . . , 102},
and α ∈ {10−3, . . . , 105} in GCD of NC vs. PD, λ1 ∈ {10−5, . . . , 104}, λ2 ∈ {10−6, . . . , 103}, and
α ∈ {10−9, . . . , 10−2} in GCD of NC vs. SWEDD, and λ1 ∈ {10−7, . . . , 101}, λ2 ∈ {10−7, . . . , 102},
and α ∈ {10−1, . . . , 105} in GCD of PD vs. SWEDD. We empirically set p = 3 and σ = 1 to compute
three kinds of similarity, such as hkl, ukl and vkl in Eq. (3). We use the tuning parameters that produce
the best performance in the SVR and SVM models. This process is repeated for 10 times and the final
results are obtained by averaging the repeated results.

4.1. Experimental settings

In our experiments, we consider three binary classification problems: NC vs. PD, NC vs. SWEDD,
and PD vs. SWEDD. For each set of experiments, we train feature selection model using four different
feature sets, i.e., GM of MRI (T1G for short), CSF of MRI (T1C for short), FA coefficient of DTI, and
T1G + T1C + DTI (GCD for short). The obtained features are combined with three columns of CSF
biomarkers to form the final features. For each feature set, we build four regression models to predict
depression scores, sleep scores, olfaction scores, and MoCA scores, respectively, and a classification
model for class label identification.

4C ∈ {2−10, . . . , 210} and G ∈ {10−5, . . . , 105} in our experiments.
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Table 2
Classification performance of proposed method including with and without three CSF biomarkers. Boldface denotes the best
performance

Feature NC vs. PD NC vs. SWEDD PD vs. SWEDD
ACC SEN PREC AUC ACC SEN PREC AUC ACC SEN PREC AUC

GCD. 84.3 74.0 83.5 84.9 91.7 100.0 92.6 96.7 87.5 100.0 86.9 86.2
GCD + 3CSFs 84.4 75.8 83.1 84.4 91.7 100.0 90.7 96.4 87.0 100.0 87.5 86.3

Table 3
Classification performance of all methods used in this study. Boldface denotes the best performance

Feature Method NC vs. PD NC vs. SWEDD PD vs. SWEDD
ACC SEN PREC AUC ACC SEN PREC AUC ACC SEN PREC AUC

T1G Baseline 72.1 56.0 61.5 80.2 85.8 94.7 86.9 89.3 83.0 99.2 83.3 84.9
Lasso 70.5 56.0 59.6 76.3 83.6 98.3 85.0 85.5 84.3 98.3 85.3 83.8
Elastic 70.5 57.7 57.4 80.7 83.5 98.3 82.5 88.1 84.3 100.0 84.0 82.1
M3T 72.7 63.3 62.4 80.7 84.9 100.0 86.1 92.7 83.0 100.0 83.3 84.9
Lei et al. 80.5 66.3 80.7 82.7 89.6 100.0 90.7 95.7 87.7 100.0 87.1 86.0
Proposed 81.1 65.0 81.7 82.1 90.6 100.0 92.6 95.6 87.0 100.0 86.5 89.1

T1C Baseline 71.6 62.7 54.0 72.4 77.6 96.3 77.6 77.9 88.2 97.6 89.5 87.0
Lasso 74.4 54.0 64.5 72.9 80.4 98.0 79.3 80.8 88.2 97.6 89.4 85.1
Elastic 73.2 59.3 61.4 73.8 80.1 100.0 78.3 84.9 85.6 99.2 85.6 86.4
M3T 74.3 62.7 63.4 77.1 81.1 100.0 80.5 80.7 87.5 99.2 88.9 87.1
Lei et al. 78.2 68.0 71.5 80.0 86.0 100.0 84.9 87.6 88.9 100.0 90.1 89.0
Proposed 81.1 66.3 79.3 80.7 86.0 100.0 87.4 90.6 89.5 100.0 88.6 89.4

DTI Baseline 73.7 54.7 64.5 76.0 80.0 96.7 79.4 80.6 84.8 100.0 84.4 78.6
Lasso 73.1 48.0 63.0 76.6 76.5 98.0 75.8 74.4 84.1 100.0 83.8 79.5
Elastic 74.2 53.0 66.6 76.0 77.8 98.0 78.9 75.6 84.8 100.0 84.3 78.1
M3T 73.7 54.7 64.5 76.3 80.0 100.0 79.4 81.8 84.8 100.0 84.4 82.6
Lei et al. 78.1 57.3 81.0 80.2 81.3 100.0 83.7 85.6 86.9 100.0 86.3 85.6
Proposed 79.8 61.0 81.0 81.4 82.6 100.0 84.1 84.7 88.2 100.0 88.3 92.4

GCD Baseline 79.8 64.7 71.1 80.9 83.8 96.3 82.9 87.6 85.6 100.0 85.0 76.5
Lasso 79.8 59.3 76.0 82.0 83.7 93.0 86.0 91.2 85.6 98.3 86.4 73.8
Elastic 80.9 63.0 73.7 83.6 86.0 94.7 85.6 92.5 84.9 98.4 85.5 77.7
M3T 82.1 72.0 76.6 82.9 85.9 100.0 84.8 89.4 85.6 100.0 85.0 83.1
Lei et al. 84.4 72.3 86.3 84.2 93.2 100.0 95.2 95.9 88.9 100.0 89.3 87.2
Proposed 84.4 75.7 83.1 84.4 91.7 100.0 90.7 96.4 87.0 100.0 87.5 86.3

4.2. Method description

We compare the present methods with state-of-the-art methods, and the descriptions of these methods
are as below:

Baseline: The method is an original method without any feature selection.
Least absolute shrinkage and selection operator method (Lasso) [18]: Lasso is a regularization tech-

nique useful for feature selection to avoid over-fitting of training data. It penalizes the sum of absolute
value (`1-norm) of weights by regression analysis, and shrinks some coefficients with the others reset to
0. The informative features are obtained by ridge regression and subset selection.

Elastic net [19]: The elastic net is a regularized regression method, it contains the main penalty func-
tion built by `1 and `2 penalties of the Lasso and ridge methods. Similar to Lasso, the elastic net simul-
taneously carries out variable selection automatically and shrinkage continuously and it can choose sets
of highly relevant features.

Multi-modal Multi-task (M3T) [20]: The M3T method contains two essential steps: (1) training a
selection model to obtain a joint subset consists of common relevant features using multi-task feature
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Fig. 2. Classification accuracy comparison of all methods with single modality (T1G, T1C, and DTI) and multi-modality (GCD).

Fig. 3. ROC curves for 4 different types of data using all methods (Top: NC vs. PD, middle: NC vs. SWEDD, and bottom: PD
vs. SWEDD).

selection from each modality for multiple response variables, and (2) fusing these selected features from
every modality using a kernel-based fusion method.

Lei et al. [10]: Lei et al.’s method simultaneously performs classification and clinical scores prediction
based on an improved loss function that considers the relations among rows or the information among
columns in response variables.
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Fig. 4. Comparison of correlation coefficient of depression scores, sleep scores, olfaction scores, and MoCA scores among all
competing methods and proposed method using different features (Top: NC vs. PD, bottom: NC vs. SWEDD).

4.3. Performance evaluation

To estimate the performance, we utilize the quantitative measurements including accuracy (ACC),
sensitivity (SEN), precision (PREC), F-scores (F1), and area under the receiver operating characteristic
(ROC) curve (AUC), which are defined as:

ACC = (TP + TN)/(TP + TN + FP + FN)

SEN = TP/(TP + FN)

PREC = TP/(TP + FP)

F1 = 2TP/(2TP + FP + FN)

where TP, FP, TN and FN are true positive, false positive, true negative and false negative, respectively.
To validate the effectiveness of regression between the predicted and target clinical sores, we further
calculate the correlation coefficient (CC) and root mean squared error (RMSE).

4.4. Classification performance

Table 2 shows the classification performances of NC vs. PD, NC vs. SWEDD, and PD vs. SWEDD in
GCD including with and without three CSF biomarkers. We can obverse that there is not much difference
in the classification performances. In the follow-up, we added 3 CSF biomarkers by default. Table 3
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Fig. 5. Top 10 discriminative brain regions gained from proposed method for (a) NC vs. PD, and NC vs. SWEDD. Brain regions
are color-coded. Moreover, suffix ‘_L’ means left brains, suffix ‘_R’ means right brains, and different colors show different brain
regions.

shows the classification performances of NC vs. PD, NC vs. SWEDD, and PD vs. SWEDD from single
modality and multi-modality features. As for the classification performance of NC and PD, the proposed
method is superior to the competing methods in all cases of T1G, T1C, DTI, and GCD. In the NC vs.
SWEDD classification, in general, we can see that the proposed method is superior to the other methods
in all cases, though the proposed method has a slightly lower accuracy (e.g., 91.7% vs. 93.2% with GCD)
than Lei et al.’s method. In the PD vs. SWEDD, our proposed method has the best performance. The
best performance with single modality feature of T1C is 89.5% (ACC).

Figure 2 illustrates that multi-modality data can improve the classification performances compared
with single modal data in NC vs. PD and NC vs. SWEDD. In general, the classification performances
with multi-modality features (i.e., GCD) are better than those with single modality features (i.e., T1G,
T1C, and DTI). Compared with the existing methods, the proposed method has an accuracy of 84.4%,
a sensitivity of 75.8%, a precision of 83.1%, and an AUC of 84.4% in NC vs. PD classification with
multi-modality data, and 91.7% (ACC), 100.0% (SEN), 90.7% (PREC), 96.4% (AUC), respectively, in
NC vs. SWEDD classification with multi-modality data. Figure 3 shows various ROC curves. Obviously,
the proposed method with GCD achieves the best results especially in NC vs. SWEDD classification.

4.5. Regression performance

The values of CC and RMSE are used to evaluate the performance of regression model, and results
of CC are given in Fig. 4. Different from classification, multi-modality data cannot always enhance the
regression performance no matter what method we choose. The best performance is mainly based on
T1C features or GCD features.

In NC vs. PD, our proposed method has the best performance in prediction of depression, sleep,
and MoCA scores. The best performance with single modality feature of T1C is 0.606 (CC) and 1.255
(RMSE) in depression scores. In sleep scores, the best performance with multi-modal feature of GCD is
0.585 (CC) and 3.101 (RMSE). Meanwhile, in MoCA scores, the best performance with single modality
feature of DTI is 0.587 (CC) and 1.611 (RMSE). For olfaction scores, Lei et al.’s method has the best
performance with multi-modal feature of GCD (e.g., 0.624 (CC) and 7.760 (RMSE)).

In NC vs. SWEDD, our proposed method has the best performance in prediction of olfaction and
MoCA scores. The best performance with multi-modal feature of GCD is 0.837 (CC) and 3.978 (RMSE)
in olfaction scores, and 0.852 (CC) and 1.404 (RMSE) in MoCA scores. Lei et al.’s method achieves the
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best performance in depression and sleep scores. In depression scores, the best performance with multi-
modal feature of GCD is 0.836 (CC) and 0.867 (RMSE). In the meantime, the best performance with
single modality feature of T1C is 0.831 (CC) and 3.422 (RMSE) in sleep scores.

In PD vs. SWEDD, our proposed method has the best performance in prediction of depression, sleep,
and olfaction scores. The best performance with single modality feature of DTI is 0.713 (CC) and 1.262
(RMSE) in depression scores, 0.705 (CC) and 3.275 (RMSE) in sleep scores, 0.676 (CC) and 8.100
(RMSE) in olfaction scores. Lei et al.’s method achieves the best performance in MoCA scores. In
MoCA scores, the best performance with multi-modal feature of GCD is 0.661 (CC) and 1.707 (RMSE).
Overall, the best performance is obtained by our proposed method.

4.6. Result summary

From our experimental results, we observe that fusing different modalities is an effective approach
to improve the classification performance. We also observe that the proposed method outperforms the
other competing methods using multi-modalities. Though multi-modal features may not always improve
the performance whatever method we choose in the regression problem, the proposed method largely
outperforms its counterparts for prediction of clinical scores. We illustrate the top 10 discriminative brain
regions with multi-modal feature of GCD using BrainNet Viewer [21] in Fig. 5.

5. Conclusion

In this study, a united multi-task feature selection framework is proposed to simultaneously conduct
three binary classifications and four clinical scores prediction for PD disease diagnosis using multi-
modal neuroimaging data. Our extensive experiments based on PPMI dataset suggest that the perfor-
mance of the proposed method outperforms its counterparts. In future, we can use larger automated
anatomical labeling (AAL) atlas to extract detailed and robust features. Also, we can exploit complex
multi-modal data fusion method to fuse the selected features for the more excellent performance.
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