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Background: A more accurate preoperative prediction of lymph node involvement (LNI)
in prostate cancer (PCa) would improve clinical treatment and follow-up strategies of this
disease. We developed a predictive model based on machine learning (ML) combined
with big data to achieve this.

Methods: Clinicopathological characteristics of 2,884 PCa patients who underwent
extended pelvic lymph node dissection (ePLND) were collected from the U.S. National
Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) database from
2010 to 2015. Eight variables were included to establish an ML model. Model
performance was evaluated by the receiver operating characteristic (ROC) curves and
calibration plots for predictive accuracy. Decision curve analysis (DCA) and cutoff values
were obtained to estimate its clinical utility.

Results: Three hundred and forty-four (11.9%) patients were identified with LNI. The five
most important factors were the Gleason score, T stage of disease, percentage of positive
cores, tumor size, and prostate-specific antigen levels with 158, 137, 128, 113, and 88
points, respectively. The XGBoost (XGB) model showed the best predictive performance
and had the highest net benefit when compared with the other algorithms, achieving an
area under the curve of 0.883. With a 5%~20% cutoff value, the XGB model performed
best in reducing omissions and avoiding overtreatment of patients when dealing with LNI.
This model also had a lower false-negative rate and a higher percentage of ePLND was
avoided. In addition, DCA showed it has the highest net benefit across the whole range of
threshold probabilities.

Conclusions: We established an ML model based on big data for predicting LNI in PCa,
and it could lead to a reduction of approximately 50% of ePLND cases. In addition, only
≤3% of patients were misdiagnosed with a cutoff value ranging from 5% to 20%. This
promising study warrants further validation by using a larger prospective dataset.
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INTRODUCTION

Prostate cancer (PCa) is the most common type of malignant
tumor in American men and accounts for nearly 15% of all
cancer cases. Recurrence and metastasis are the most common
causes of death in PCa patients (1). Radical prostatectomy (RP) is
the gold-standard treatment for patients with PCa and those with
either organ-confined or locally advanced PCa can benefit from
it (2–4). Because of the biological characteristics of this disease
and its response to effective treatment, patients with PCa
generally have an excellent long-term prognosis with the vast
majority of patients surviving over 5 years (5). However, if a PCa
patient is diagnosed with lymph node involvement (LNI), the
probability of tumor recurrence will increase, and the prognosis
will deteriorate significantly (6, 7).

For a lymph node (LN)-positive PCa patient, extended pelvic
lymph node dissection (ePLND) can often offer a better cancer-
specific outcome either with or without adjuvant androgen
deprivation therapy (ADT) (8, 9). As LNI is a significant
component in the prognosis of a patient, it can influence any
clinical decisions made by the surgeon. Before surgery, it is essential
to know the precise clinical status of LNI in patients with PCa. To
this end, researchers have reported several approaches and tools
that can help the clinician to estimate the occurrence of LNI,
including prostate-specific membrane antigen-positron emission
tomography (PSMA-PET) scans, multiparametric magnetic
resonance imaging (mpMRI), and the use of some emerging
molecular biomarkers (10–13). However, these imaging
techniques are not accurate and most of the molecular
biomarkers are unproven. Therefore, the most commonly used
tools available are Briganti, Partin, and Memorial Sloan Kettering
Cancer Center (MSKCC) nomograms which have an accuracy of
less than 80% (14–17). Machine learning (ML) is an emerging
intersection approach involving many fields that allows for accurate
prediction of outcomes from multiple unrelated datasets, which
would otherwise be discrete and difficult to associate (18).

With the rapid development of evidence-based medicine, vast
and complex medical datasets need more advanced techniques
for their interpretation, and ML is becoming a promising option
for the diagnosis and prognosis/prediction of many diseases (19,
20). In addition, ML has demonstrated excellent performance of
predictive abilities and a good potential application in several
areas of medicine (21). Our goal was to develop a new decision-
support ML model based on big data for predicting the risk of
LNI in PCa patients. We used area under the curves (AUCs),
calibration plots, and decision curve analysis (DCA) to evaluate
the performance of the model. We further validated the accuracy
of our ML model by using a validation set.
MATERIAL AND METHODS

Data Source and Study Population
In this study, we used the Surveillance, Epidemiology, and End
Results (SEER) database (https://seer.cancer.gov/) from the
National Cancer Institute, a freely available cancer registry in
Frontiers in Oncology | www.frontiersin.org 2
the United States. We obtained permission to access the files of
the SEER database and all authors followed the SEER database
regulations throughout the study. No personally identifiable
information was used in this study and informed consent was
not necessary from individual participants. The Medical Ethics
Committee at Jinan University’s First Affiliated Hospital
examined and approved this work.

Data of the patients were downloaded from the SEER 18 Regs
Research Data Nov 2018 Sub (1975–2016) by using the SEER*Stat
8.3.9.1 software. The selection criteria included men aged 35–
90 years who were diagnosed with histologically confirmed
prostatic adenocarcinoma (site code C61.9, morphology code
8140/3). The patients were diagnosed between 2010 and 2015
and PCa was the first malignant tumor found. All cases were
treated with radical prostatectomy (RP) and ePLND without
neoadjuvant systematic therapy. However, as the data obtained
did not include ePLND as defined by anatomical location, we
referred to the literature and defined this as more than or equal to
10 LNs being removed from the patients (22, 23). The T stage of
the tumors was derived from preoperative examination and
postoperative specimens. The number of needle cores examined
was between 4 and 24, and the autopsy cases were excluded. The
downloaded data of the patients were obtained from 3,257 cases.
The exclusion criteria were as follows: unknown information from
the American Joint Committee on Cancer seventh TNM stage,
race, marital status, prostate-specific antigen (PSA) levels before
biopsy, and the absence of Gleason scores (GS). From the 3,257
initial cases considered, 2,884 patients remained in the final cohort
for use in model development. The population data selection
procedure used is shown in Figure 1. The validation set was
derived from the same SEER database and cases were diagnosed in
2016. Besides the above criteria, an extra one from the Briganti
nomogram was chosen: patients with PSA >50 ng/ml were
excluded from the validation set. A total of 535 patients were
included in the analysis as the validation set.

Variable Selection
Several readily available clinical and demographic characteristics
were chosen as independent variables for analysis. Since the
SEER database does not include tumor size based on
preoperative imaging, this parameter is prone to some errors.
However, the tumor size of postoperative specimens in most
patients did not differ significantly from the tumor size evaluated
by imaging, and therefore, we considered this error to be within
an acceptable range (24–27). At last, eight demographic and
clinicopathological variables, namely, age at diagnosis, race,
marital status, T stage, tumor size, PSA levels before biopsy,
GS on biopsy, and percentage of positive cores (PPC), were
selected as independent variables for analysis.

Model Establishment and Development
All statistical analyses in the study were performed using SPSS
(version 22, IBM SPSS Software Foundation) and Python
(version 3.8.1, Python Software Foundation). All variables were
tested for Pearson correlations and the results are presented as a
heat map (Figure 2). All patients studied were randomly divided
into a training set and a test set at a ratio of 7:3 (Table 1). The
October 2021 | Volume 11 | Article 763381
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chi-square test was used to analyze the differences between
the training and test sets. The training set was used to establish
the extreme gradient boosting (XGB) and multivariate logistic
regression (MLR) models, and the test set was then applied to
evaluate both of them. We used 600 trees in XGB to build the ML
model. For MLR, we used an entry variable selection method to
establish the model. Then, the 5%, 10%, 15%, and 20% cutoff
values of the XGB and MLR models were calculated, and these
were used respectively to test their clinical value for directing the
possible treatment options.

Model Improvement
To ensure that the model was stable, a 10-fold cross-validation
was adopted to evaluate the predictive capability of the model.
The training set was randomly divided into 10 groups. In each
iteration of 10-fold cross-validation, nine groups were randomly
Frontiers in Oncology | www.frontiersin.org 3
selected for training, and the remaining group was used as the
test set. This means that each group was chosen as the test set in
turn, which ensured that the evaluation results were not
accidental. Then we averaged the results of the 10 evaluations
in order to reduce the errors caused by any unreasonable
selections made in the test set. To achieve the overall optimum
value in the XGB model, we used the learning curve method to
find the optimal parameters. The learning curve is shown in
Figure 3 where the abscissa axis represents the number of trees
and different learning rates, and the ordinate axis represents the
average AUC of the 10-fold cross-validation. The final optimal
parameter combination was as follows: the number of trees (“n
tree”) = 851 (Figure 3A), the learning rates (“eta”) = 0.16
(Figure 3B), the maximum length from the root node to leaf
node (“max depth”) = 6, the sum of weights of the minimum leaf
node samples (“min child weight”) = 1, and the L2 regularization
FIGURE 1 | Flowchart of the study population selected from the SEER database, based on the inclusion and exclusion criteria outlined above; 2,884 patients were
included in this study.
October 2021 | Volume 11 | Article 763381
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parameters (“reg lambda”) = 120. All other parameters were
selected as default values for the calculations.

Evaluation of Model Performance
The performance analysis used comprised of three components.
Firstly, model discrimination was quantified with receiver
operating characteristic (ROC) curve analysis, and its predictive
accuracy was assessed with the AUCs obtained. Secondly, we used
calibration plots to evaluate the performance of the model, which
indicated the calibration and how far the predictions of the model
deviated from the actual event. Thirdly, clinical usefulness and net
benefits were assessed with DCA which could estimate the net
benefit by calculating the difference between the true- and false-
positive rates and weighted these by the odds of the selected
threshold probability of risks involved. Also, additional ML
algorithms such as decision tree (DT) and support vector
machine (SVM) were introduced for comparison. ROC curves
and calibration plots were used to further evaluate the
appropriateness and generalizability of our model.
RESULTS

Demographic and Clinicopathological
Characteristics
A total of 2,884 PCa patients were analyzed in this study. Three
hundred forty-four patients had LNI (11.9%) and 2,540 (88.1%)
Frontiers in Oncology | www.frontiersin.org 4
did not have and these were classified as none LNI (nLNI). All
patients were completely randomized with a ratio of 7:3 into a
training set (n = 2,018) and a test set (n = 866). The demographic
and clinicopathological variables of the patients are detailed
in Table 1.

Model Analysis and Variable Feature
Importance of the Prediction
The Pearson correlation analysis was performed for all the
factors. A correlation heat map showed weak correlations
between several clinicopathological variables (T stage, tumor
size, PSA, GS, and PPC), and there was a moderate correlation
between T stage and tumor size (Figure 2). For the MLR model,
five of the eight variables were identified as independent risk
factors, namely, T stage (p < 0.001), tumor size (p < 0.001), PSA
before biopsy (p < 0.001), GS (p < 0.001), and PPC (p = 0.006)
(Table 2). For the XGB model, we identified the feature of
importance by the size of the gain value for each variable, with
the higher values indicating more importance for the prediction
target: GS (158 points), T stage (137 points), PPC (128 points),
tumor size (113 points), PSA (88 points), race (64 points), age at
diagnosis (51 points), and marital status (36 points) (Figure 4).

Model Performance
ROC curves, calibration plots, and DCA for the training set
(n = 2,018) and the test set (n = 866) were constructed in order to
determine the accuracy of our models. The XGB model had the
FIGURE 2 | The results of Pearson correlation analysis between all the variables. The heat map shows the correlation between the variables. Abbreviations: PSA,
prostate-specific antigen; PPC, percentage of positive cores.
October 2021 | Volume 11 | Article 763381
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best performance in both training and test sets (AUC = 0.907 and
0.883, respectively), compared with SVM (AUC = 0.837 and
0.831, respectively), DT (AUC = 0.873 and 0.853, respectively),
and MLR (AUC = 0.769 and 0.763, respectively) (Figures 5A, B).
Frontiers in Oncology | www.frontiersin.org 5
The sensitivity, specificity, and cutoff values of the predictions of
the two models were also calculated for the patients having LNI
or not. In addition, the predictive accuracy and error when the
patients were predicted to be at risk of LNI are given in Table 3.
A B

FIGURE 3 | (A) AUC values for nTree values from 1 iterates to 1,000 in the improved XGB model. (B) AUC values for learn rate from 0.01 iterates to 0.4 in the
improved XGB model.
TABLE 1 | Clinical and pathological characteristics of the training and test sets.

Variables Training set Test set p-value

NLNI (n = 1,787) (%) LNI (n = 231) (%) NLNI (n = 753) (%) LNI (n = 113) (%)

Age at diagnosis 0.072
<62 801 (44.8) 111 (48.1) 362 (48.1) 61 (46.0)
≥62 986 (55.2) 120 (51.9) 391 (51.9) 52 (54.0)

Race 0.578
Black 203 (11.3) 24 (10.4) 99 (13.2) 15 (13.4)
Other 138 (7.7) 13 (5.6) 37 (4.9) 8 (7.0)
White 1,446 (81.0) 194 (84.0) 617 (81.9) 90 (79.6)

Marital status 0.683
Unmarried 178 (9.9) 33 (14.3) 79 (10.5) 16 (14.2)
Married 1,609 (90.1) 198 (85.7) 674 (89.5) 97 (85.8)

T stage 0.371
T1 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
T2 1,092 (61.2) 26 (11.2) 458 (60.8) 12 (10.6)
T3 693 (38.8) 199 (86.1) 291 (38.7) 96 (84.9)
T4 1 (0.0) 6 (2.7) 4 (0.5) 5 (4.5)

Tumor size 0.415
0~10 mm 260 (14.5) 8 (3.5) 104 (13.8) 3 (2.7)
10~20 mm 812 (45.4) 51 (22.1) 344 (45.7) 22 (19.5)
20~30 mm 442 (24.7) 69 (29.9) 186 (24.7) 39 (34.5)
>30 mm 273 (15.4) 103 (44.5) 119 (15.8) 49 (43.3)

PSA before biopsy 0.859
0~4 ng/ml 205 (11.5) 15 (6.5) 82 (10.9) 6 (5.3)
4~10 ng/ml 1,144 (64.0) 102 (44.1) 495 (65.7) 43 (38.1)
10~20 ng/ml 316 (17.7) 57 (24.7) 139 (18.5) 29 (25.7)
>20 ng/ml 122 (6.8) 57 (24.7) 37 (4.9) 35 (30.9)

Primary biopsy Gleason score 0.223
≤6 323 (18.1) 8 (3.5) 112 (14.9) 5 (4.4)
7 1073 (60.0) 102 (44.2) 446 (59.2) 50 (44.2)
8 249 (13.9) 57 (24.7) 127 (16.9) 29 (25.7)
≥9 142 (8.0) 64 (27.6) 68 (9.0) 29 (25.7)

Positive biopsy percentage 0.650
0~25% 544 (30.4) 27 (11.7) 233 (30.1) 9 (8.0)
25~50% 668 (37.4) 69 (29.9) 279 (37.1) 37 (32.7)
50~75% 359 (20.1) 55 (23.8) 145 (19.3) 26 (23.0)
75~100% 216 (12.1) 80 (34.6) 96 (13.5) 41 (36.3)
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The results showed that whether 5%, 10%, 15%, or 20% was
chosen as the cutoff value, the XGB model was better than the
MLR model in reducing omissions and avoiding overtreatment
of patients, with a lower false-negative rate and a higher
percentage of ePLND avoided. With a 5%–20% cutoff value,
the XGB model could keep the risk of missing patients below 3%
(1.2%–2.9%).

The calibration plots of the two case sets indicated that the
predictive probabilities against observed LNI rates showed
excellent concordance in the XGB model, followed by the SVM
and DT models, respectively. The calibration of the MLR model
tended to underestimate the LNI risk across the entire range of
predicted probabilities compared with the other two
models (Figure 6).

DCA of the four models was subsequently constructed in
our study (Figure 7). The y-axis of the decision curve
represents the net benefit which is a decision-analytic
measure to judge whether any particular clinical decision
results in more benefit than harm. Each point on the x-axis
represents a threshold probability that differentiates between
those patients with and without LNI (LNI vs. nLNI). This shows
that all the models achieved net clinical benefit against a treat-
all-or-none plan. With a risk threshold of less than 80%, the ML
models showed a greater net benefit for patient interventions
in the test set than the MLR model, and the XGB model had
the highest net benefi t across the whole range of
threshold probabilities.

Model Validation
The validation set was used for model validation and the
clinical and pathological characteristics of the validation sets
are detailed in Table 4. In addition, ROC curves and
calibration plots were constructed to compare the accuracy
FIGURE 4 | The XGB model was used to calculate the importance of each feature. The bar chart depicts the relative significance of the variables.
TABLE 2 | Multivariable logistic regression model with the entered variable
selection.

Variables OR (95% CI) p-value

Age at diagnosis
<62 Reference
≥62 0.771 (0.592–1.003) 0.053

Race
Black Reference
Other 1.047 (0.551–1.990) 0.889
White 1.251 (0.826–1.893) 0.290

Marital status
Unmarried Reference
Married 0.883 (0.598–1.305) 0.533

T stage
T1 –

T2 Reference
T3 6.363 (4.409–9.181) <0.001
T4 32.343 (9.977–104.839) <0.001

Tumor size
0~10 mm Reference
10~20 mm 1.376 (0.691–2.737) 0.363
20~30 mm 2.436 (1.233–4.816) 0.010
>30 mm 4.033 (2.044–7.957) <0.001

PSA before biopsy
0~4 ng/ml Reference
4~10 ng/ml 1.123 (0.666–1.895) 0.663
10~20 ng/ml 1.785 (1.026–3.105) 0.040
>20 ng/ml 4.118 (2.310–7.338) <0.001

Gleason’s score
≤6 Reference
7 2.414 (1.315–4.431) 0.004
8 4.393 (2.321–8.315) <0.001
≥9 5.696 (2.986–10.867) <0.001

Positive biopsy percentage
0~25% Reference
25~50% 1.679 (0.929–2.294) 0.662
50~75% 1.961 (0.961–2.379) 0.083
75~100% 4.368 (2.413–7.533) 0.006
October 2021 | Volume 11 | Article 763381
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of our XGB model and the Briganti nomogram. According to
ROC curves, the accuracy of the XGB model is higher than
that of the nomogram (AUC: 0.850 vs. 0.816) (Figure 8A).
Moreover, the calibration plots indicated that the XGB model
Frontiers in Oncology | www.frontiersin.org 7
has better consistency across the 0% to 60% range of
prediction probability. Instead, the calibration of the
nomogram tended to underestimate the LNI risk in the
same range (Figure 8B).
TABLE 3 | Analyses of the cutoff values of the XGB model based on the test set.

Treatment option False positive, n/N (%) False negative, n/N (%) True positive, n/N (%) True negative, n/N (%)

5% cutoff
XGB 287/438 (65.5) 5/428 (1.2) 151/438 (34.5) 423/428 (98.9)
LR 459/630 (72.9) 6/236 (2.5) 171/630 (27.1) 230/236 (97.5)
10% cutoff
XGB 186/322 (57.8) 9/544 (1.7) 136/322 (42.2) 535/544 (98.3)
LR 244/361 (67.6) 20/505 (4.0) 117/361 (32.4) 485/505 (96.0)
15% cutoff
XGB 133/262 (50.8) 15/604 (2.5) 129/262 (49.2) 589/604 (97.5)
LR 139/222 (62.6) 34/644 (5.3) 83/222 (37.4) 610/644 (94.7)
20% cutoff
XGB 81/190 (42.6) 20/676 (2.9) 109/190 (57.4) 656/676 (97.1)
LR 88/151 (58.3) 47/715 (6.6) 63/151 (41.7) 668/715 (93.4)
October 2021 | Vo
A B

FIGURE 6 | Examples of calibration plots for predicting LNI with various models: XGB, SVM, DT, and LR. (A) The training set, and (B) the test set. The 45° straight
line on each graph represents the perfect match between the observed (y-axis) and predicted (x-axis) survival probabilities. A closer distance between two curves
indicates greater accuracy.
A B

FIGURE 5 | ROC curves of the four models: XGB, SVM, DT, and LR. (A) Training set, and (B) test set. XGBoost, extreme gradient boosting; SVM, support vector
machine; DT, decision tree; LR, multivariate logistic regression.
lume 11 | Article 763381
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DISCUSSION

In this study, we developed a more accurate model to predict the
risk of LNI in patients with PCa by combining eight
clinicopathologic parameters. To our knowledge, this is the
first ML model for predicting LNI established by using big
data and readily available clinicopathological parameters.

LNI is found in up to 15% of PCa patients upon
postoperative pathological examination and is associated with
the recurrence and prognosis of PCa (28). As a standard
treatment for PCa patients with LNI, ePLND can accurately
help diagnose occult micrometastases, allowing PCa patients to
get effective treatment and also identifying a more accurate
stage of the disease. This is important for postsurgical follow-up
and the subsequent selection of adjuvant and salvage therapies
(29, 30). However, the rate of detection of an earlier stage or the
presence of low-risk tumors at the time of diagnosis rises with
PSA screening which leads to a higher rate of surgeries in
patients with low- and intermediate-risk tumors. In addition,
the likelihood of finding postsurgery-positive LNs decreases.
Frontiers in Oncology | www.frontiersin.org 8
Our study found that the detection rate of postsurgical positive
LN was lower than that reported in the literature, at
approximately 12% (28). This indicated that some patients
were overtreated, resulting in complications such as pelvic
lymphocele, ileus, thrombosis, scrotal swelling, nerve injury,
and so on (31, 32).

Therefore, determining the LN stage of PCa in patients
before surgery is critical in determining whether they should
receive ePLND. As routine imaging examinations such as CT
scans and MRIs are currently ineffective at detecting nodal
metastases (33), and there are only a few promising biomarkers
in the preclinical stages of PCa (12, 13), ePLND is the only
accurate way of detecting nodal metastases. In order to weigh
the benefits and drawbacks of ePLND, the National
Comprehensive Cancer Network (NCCN) and the European
Association of Urology (EAU) guidelines both recommend the
use of nomograms, such as Briganti, MSKCC, and Partin
nomograms. These nomograms are largely based on
clinicopathologic characteristics that can be easily acquired in
the actual clinical procedure (34, 35). These together with
A B

FIGURE 7 | Decision curve analysis graph showing the net benefit against threshold probabilities based on decisions from model outputs. Three curves were
obtained based on predictions of the four different models, and the two curves obtained were based on two kinds of extreme decisions. The curves referred to as
“All” represent the prediction that all the patients would progress to LNI, and the curves referred to as “None” represent the prediction that all the patients were nLNI.
(A) The training set, and (B) the test set.
A B

FIGURE 8 | ROC curves and calibration plots of XGB and Briganti nomogram for the validation set. (A) ROC curves. (B) Calibration plots.
October 2021 | Volume 11 | Article 763381
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several clinicopathologic characteristics which can be readily
acquired during the clinical procedure may predict the risk of
LNI before surgery. Because of the convenience and practicality
of nomograms, they are the most commonly used tools for LNI
prediction. However, the performance of these old version
nomograms is not always reliable, with a prediction accuracy
below 80% (36), and the new version nomograms are less used
due to the acquisition of some non-conventional variables (37).
Hence, a more advanced prediction model based on the basic
variables is needed. XGB is a gradient boosting algorithm that is
one of the most powerful techniques for constructing
prediction models, and it has been widely used in various
medical studies (38, 39).

We found that the five independent risk factors identified by
the MLR model were identical to the top 5 most important
factors calculated by the XGB model, including T stage, tumor
size, PSA before biopsy, GS, and PPC. GS is an evaluation
method for determining the state of differentiated PCa tumor
cells, and a higher score represents a less differentiated tumor.
This parameter is highly correlated with the aggressiveness of
the malignancy, and highly aggressive tumors progress more
rapidly and are usually associated with LN metastasis. In our
Frontiers in Oncology | www.frontiersin.org 9
study, the XGB model showed that the weight value of GS was
the highest, showing the importance of this parameter and
indicated that it contributed most to the results obtained (40,
41). As our results demonstrated, the XGB model assigned
weighted values to all variables and arranged them by order of
importance, thus allowing for more variables to be involved in
the analysis and helping physicians to better understand the
risk factors.

In this study, the predictive accuracy of our XGB model was
the highest in both training and test sets (AUC = 0.908 and
0.883, respectively). Compared to this, the MLR model was less
accurate in both training and test sets (AUC = 0.769 and 0.763,
respectively). The XGB model was also more accurate than the
Briganti nomogram in the validation set (AUC: 0.850 vs. 0.816).
Previous studies have shown that the predictive accuracy of the
Briganti nomogram was 0.798, which was close to our result
(0.798 and 0.816) (42). Considering that the nomogram is a
visualization tool used in the MLR model, it is established from
the MLR algorithm, and this result was not surprising. In
addition, the calibration plots for the validation set indicated
that the XGB model has a better consistency across the 0% to
60% range of prediction probability. In actual clinical practice,
TABLE 4 | Clinical and pathological characteristics of the test and validation sets.

Variables Validation set Test set p-value

NLNI (n = 481) (%) LNI (n = 54) (%) NLNI (n = 753) (%) LNI (n = 113) (%)

Age at diagnosis 0.006
<62 198 (41.2) 23 (42.6) 362 (48.1) 61 (46.0)
≥62 283 (58.8) 31 (57.4) 391 (51.9) 52 (54.0)

Race 0.316
Black 52 (10.8) 7 (13.0) 99 (13.2) 15 (13.4)
Other 27 (5.6) 4 (7.4) 37 (4.9) 8 (7.0)
White 402 (83.6) 43 (79.6) 617 (81.9) 90 (79.6)

Marital status 0.683
Unmarried 53 (11.1) 2 (3.7) 79 (10.5) 16 (14.2)
Married 428 (88.9) 52 (96.3) 674 (89.5) 97 (85.8)

T stage 0.154
T1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
T2 299 (62.2) 7 (13.0) 458 (60.8) 12 (10.6)
T3 182 (37.8) 47 (87.0) 291 (38.7) 96 (84.9)
T4 0 (0.0) 0 (0.0) 4 (0.5) 5 (4.5)

Tumor size <0.001
0~10 mm 75 (15.6) 0 (0.0) 104 (13.8) 3 (2.7)
10~20 mm 249 (51.8) 16 (29.6) 344 (45.7) 22 (19.5)
20~30 mm 101 (21.0) 22 (40.8) 186 (24.7) 39 (34.5)
>30 mm 56 (11.6) 16 (29.6) 119 (15.8) 49 (43.3)

PSA before biopsy 0.063
0~4 ng/ml 69 (14.3) 3 (5.5) 82 (10.9) 6 (5.3)
4~10 ng/ml 312 (64.9) 25 (46.3) 495 (65.7) 43 (38.1)
10~20 ng/ml 70 (14.6) 13 (24.1) 139 (18.5) 29 (25.7)
>20 ng/ml 30 (6.2) 13 (24.1) 37 (4.9) 35 (30.9)

Primary biopsy Gleason score 0.402
≤6 59 (12.3) 1 (1.9) 112 (14.9) 5 (4.4)
7 328 (68.2) 24 (44.4) 446 (59.2) 50 (44.2)
8 50 (10.4) 12 (22.2) 127 (16.9) 29 (25.7)
≥9 44 (9.1) 17 (31.5) 68 (9.0) 29 (25.7)

Positive biopsy percentage <0.001
0~25% 151 (31.4) 12 (22.2) 233 (30.1) 9 (8.0)
25~50% 218 (45.3) 22 (40.8) 279 (37.1) 37 (32.7)
50~75% 73 (15.2) 4 (7.4) 145 (19.3) 26 (23.0)
75~100% 39 (8.1) 16 (29.6) 96 (13.5) 41 (36.3)
October 2021 | Volume 11 | Article
 763381

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei et al. AI Model for Prostate Cancer
physicians are more concerned with accurately identifying LNI
in low-risk PCa patients. It is exciting that our model has better
consistency within the low-risk range, and conversely, the
nomogram tends to underestimate the risk of LNI in this
range. This indicates that our model is better to avoid
omissions within the low-risk range. Our results indicate that
the MLR model has a weakness in its accuracy when analyzing
the linkages seen in multiple data, whereas the XGB model
excels at accurately predicting outcomes from multiple
unrelated datasets.

Other researchers have tried to use ML to predict LNI. Hou
et al. used an ML algorithm combined with mpMRI to build a
model for predicting lymph node metastasis in PCa patients. It
had a very high prediction accuracy (AUC = 0.906), but the
sample size was small and its practical use might be limited as
mpMRI was not an easily available parameter (43). Instead, our
model was established using a more advanced algorithm based
on a big sample and using basic parameters. Similar results were
obtained from the calibration plots in both the test and validating
sets, which predicted probabilities against observed average LNI
rates, indicating that the XGB model had excellent consistency
with the MLR model. In addition, the XGB AUC curve obtained
here was closer to the ideal line. The MLR model tended to
underestimate the LNI risk across the entire range of predicted
probabilities, indicating that the use of nomograms based on the
MLR model might result in a higher false-negative rate and lead
to some LNI patients being omitted.

The significance of determining a cutoff value for a predictive
model is to guide the physician during clinical decisions, but it
also implies that a certain number of patients below that cutoff
value may be missed. The current EAU guidelines suggest that
the indication for ePLND is based on the risk of LN metastasis
>5% using the Briganti nomogram (44). Using this cutoff, our
model could spare about 50% (428/866) of ePLND and only 1.2%
(5/428) of patients would be missed. Compared with the MLR
model, XGB had a higher positive predictive value (34.5% vs.
27.1%) and a negative predictive value (98.9% vs. 97.5%), but the
percentage of overtreated patients was lower (65.5% vs. 72.9%).
In addition, our model had low false-negative rates in all the 5%–
20% cutoff values. Choosing 20% as the cutoff value can largely
reduce the number of ePLND and the possibility of missing
patients would be as low as 2.9%. These results imply that our
model has a low missing rate, and more LNI patients would be
identified. This is consistent with the results of previous
studies (44).

Considering that physicians focus on different goals in
different situations during clinical practice, DCA was
developed by Vickers and Elkin to evaluate clinical
effectiveness. The method uses the net benefits at different
thresholds to evaluate the clinical utility (45). In our study,
within a threshold of 5% to 20%, the net benefit of our XGB
model was higher than the other models, which indicates that the
value of benefits (i.e., the correct identification of LNI) minus the
drawbacks (i.e., overtreatment and omissions) is the biggest.

However, this study still has several limitations. Firstly, the
model is based on the SEER database which collects data from
Frontiers in Oncology | www.frontiersin.org 10
the North American population, so there may be gaps in
population applicability, necessitating the use of broader
populations in future studies. Secondly, tumor size as
determined by preoperative imaging was not available for our
data and this could cause some errors. We will further improve
our model with more complete external validation data in future
studies. Thirdly, we excluded patients with <10 LNs examined so
as to avoid patients treated with PLND. This is not the ideal
definition of ePLND.

This is the first model to predict LNI in PCa patients based on
standard clinicopathological features and a novel AI algorithm.
Our model performed exceptionally well in predicting LNI in
presurgical PCa patients and could potentially assist clinicians to
make more accurate and personalized medical decisions. The
practical use of this model would be to help surgeons predict the
probability of LNI in PCa patients and so help guide surgical
alternatives. For patients, it could make some who are more at
high risk to be more vigilant, thereby improving their prognosis
of PCa.
CONCLUSIONS

We established an ML model based on big data for predicting
LNI in PCa patients. Our model had excellent predictive
accuracy and practical clinical utility, which might help guide
the decision of the urologist and help patients to improve their
long-term prognosis. This study follows the trend toward
precision medicine for all future patients.
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