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This study was aimed at investigating the mutations in colorectal cancer (CRC) for recurrent neoantigen identification. A total of
1779 samples with whole exome sequencing (WES) data were obtained from 7 published CRC cohorts. Common HLA genotypes
were used to predict the probability of neoantigens at high-frequency mutants in the dataset. Based on the WES data, we not only
obtained the most comprehensive CRC mutation landscape so far but also found 1550 mutations which could be identified in at
least 5 patients, including KRAS G12D (8%), KRAS G12V (5.8%), PIK3CA E545K (3.5%), PIK3CA H1047R (2.5%), and BMPR2
N583Tfs∗44 (2.8%). These mutations can also be recognized by multiple common HLA molecules in Chinese and TCGA cohort
as potential “public” neoantigens. Many of these mutations also have high mutation rates in metastatic pan-cancers, suggesting
their value as therapeutic targets in different cancer types. Overall, our analysis provides recurrent neoantigens as potential
cancer immunotherapy targets.

1. Introduction

Colorectal cancer (CRC) is the third most common malig-
nancy in the world and the second leading cause of cancer-
related mortality [1, 2]. Traditional treatments, such as
surgery, chemotherapy, and radiation, have been important
in prolonging patients’ survival, but for patients with advanced
CRC, especially those withmetastatic disease, these treatments
are limited and often intolerant [3].

In recent years, immunotherapy, including immune check-
point inhibitors (ICIs), cancer vaccines, and neoantigen-based
tumor-infiltrating lymphocytes (TILs), has played an increas-
ingly important role in cancer therapy [4]. Certain CRC
patients with high microsatellite instability (MSI-H) could
potentially benefit from ICIs treatment [5]. However, not all
CRC patients with MSI-H show clinical efficacy in ICI treat-
ment. Neoantigen-based immunotherapy is complementary
to ICIs since it has no specific requirement for patient’s
MSI status nor tumor mutation burden (TMB) [6, 7]. Previ-
ous studies on CRC genomics mainly focused on the mech-

anism of tumor development and metastasis and less
involves neoantigen and neoantigen-based immunotherapy
[8–13]. By integrating the mutation data of already existing
CRC cohorts and combining the common HLA genotypes in
these populations [14, 15], our study is expected to find the
common neoantigens in CRC patients and facilitate further
development of off-the-shelf neoantigen-based immunotherapy.

2. Materials and Methods

2.1. Genomic Data of CRC. This study was approved by the
Institutional Review Board on Bioethics and Biosafety of BGI
group. All somatic mutations, including single-nucleotide
variants (SNVs) and short insertion/deletion (indels), were
downloaded from the latest publications (Table 1 and Supple-
mentary Table S1), which represent seven geographically
diverse study groups involving 1779 CRC patients. Since all
data used in this study were from public databases with
informed consent from participants in the original genome
study, no additional informed consent was required.
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Table 1: Summary of clinical information of CRC cohort, including patients from seven studies.

Characteristic
Baylor Beijing COCA-CN Genetech Harvard TCGA Texas Total

(n = 110) (n = 98) (n = 321) (n = 74) (n = 619) (n = 528) (n = 29) (n = 1779)
Age (years)

<60 38 (34.5%) 48 (49.0%) 155 (48.3%) 0 (0%) 67 (10.8%) 158 (29.9%) 0 (0%) 466 (26.2%)

≥60 70 (63.6%) 50 (51.0%) 166 (51.7%) 0 (0%) 550 (88.9%) 366 (69.3%) 0 (0%) 1202 (67.6%)

Unknown 2 (1.8%) 0 (0%) 0 (0%) 74 (100%) 2 (0.3%) 4 (0.8%) 29 (100%) 111 (6.2%)

Sex

Female 65 (59.1%) 50 (51.0%) 127 (39.6%) 0 (0%) 380 (61.4%) 253 (47.9%) 15 (51.7%) 890 (50.0%)

Male 45 (40.9%) 48 (49.0%) 194 (60.4%) 0 (0%) 239 (38.6%) 273 (51.7%) 14 (48.3%) 813 (45.7%)

Unknown 0 (0%) 0 (0%) 0 (0%) 74 (100%) 0 (0%) 2 (0.4%) 0 (0%) 76 (4.3%)

Stage

I 12 (10.9%) 10 (10.2%) 40 (12.5%) 0 (0%) 152 (24.6%) 94 (17.8%) 0 (0%) 308 (17.3%)

II 42 (38.2%) 44 (44.9%) 94 (29.3%) 0 (0%) 187 (30.2%) 196 (37.1%) 0 (0%) 563 (31.6%)

III 48 (43.6%) 39 (39.8%) 130 (40.5%) 0 (0%) 159 (25.7%) 150 (28.4%) 1 (3.4%) 527 (29.6%)

IV 8 (7.3%) 4 (4.1%) 56 (17.4%) 0 (0%) 65 (10.5%) 69 (13.1%) 28 (96.6%) 230 (12.9%)

Unknown 0 (0%) 1 (1.0%) 1 (0.3%) 74 (100%) 56 (9.0%) 19 (3.6%) 0 (0%) 151 (8.5%)

MSI status

MSI-H 24 (21.8%) 8 (8.2%) 0 (0%) 15 (20.3%) 91 (14.7%) 65 (12.3%) 0 (0%) 203 (11.4%)

MSI-L 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 77 (14.6%) 0 (0%) 77 (4.3%)

MSS 81 (73.6%) 32 (32.7%) 0 (0%) 59 (79.7%) 438 (70.8%) 346 (65.5%) 29 (100%) 985 (55.4%)

Unknown 5 (4.5%) 58 (59.2%) 321 (100%) 0 (0%) 90 (14.5%) 40 (7.6%) 0 (0%) 514 (28.9%)
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Figure 1: The mutation landscape in the CRC cohort. (a) From left to right, counts of each variant classification, counts of each variant
type, and counts of each SNV class. (b) From left to right, variant number per sample, variant classification, and top 10 significantly
mutated genes.

2 BioMed Research International



2.2. Pipeline for Neoantigen Prediction. For neoantigen
prediction, a total of 43 HLA genotypes were selected with
frequencies greater than 5% in the Chinese or TCGA
cohort. Mutations present in at least 5 patients, including
476 SNVs and 974 indels, were selected for subsequent
neoantigen analysis. A total of five software are used for
affinity prediction between neoantigen peptide and HLA
alleles, which are NetMHC [16], NetMHCpan [17], Pick-
Pocket [18], PSSMHCpan [19], and SMM [20]. Candidate
high-affinity peptides were further predicted by EPIC [21].
EPIC is a neoantigen prediction software based on mass
spectrometry-derived motifs and tissue-specific expression
profiles. It considers various complex factors in antigen pre-
sentation process, such as affinity and tumour-specific gene
expression, and can accurately predict epitope presentation.
If the sample is not quantified for gene expression, the soft-
ware’s default expression value (TPM= 4) is used. According
to our previous research [22], neoantigen peptides need to
meet the following four criteria: (1) between 8 and 11 meters
in length; (2) affinity IC50 < 500 nM in at least two tools; (3)
mutant (MT) peptides affinity score lower than the wild type
(WT); and (4) the presentation score of EPIC > 0:5.

2.3. Statistical Analysis. The statistical analysis was done in R-
studio and the mutation analysis and drawing were done
with the maftools package [23]. If no special instructions
were given, P < 0:05 was considered significant.

3. Results

3.1. The Integrated Mutation Landscape of CRC Patients. The
mutation profiles of all CRC samples are shown in Figure 1
and Figure S1. In general, missense mutation is the main
type of mutations. At the base substitution level, C>T is the
dominant mutant type, followed by C>A (Figure S2), which
is consistent with TCGA and previous reports [24, 25]. The
median number of mutations in each sample was 110, and
APC, MUC16, TP53, SYNE1, KRAS, and PIK3CA were the
most frequently mutated genes. Apart from the samples
without MSI status, there are 203 MSI-H samples in the
combined cohort (Table 1), accounting for 11.4%. The
mutation load of MSI-H samples was higher than that of
MSS samples (Figure S3-S4). Interestingly, through the

integration analysis of the MSS samples, we found the
mutation of four genes, including TENM1, SOX9, PIK3CA,
and KRAS, and the mutation of TP53 gene were mutually
exclusive (Fisher’s exact test, P < 0:05, Figure S5). This
different mutation pattern may suggest that the carcinogenic
mechanisms are different in CRC patients carrying mutations
in these four genes and in those carrying TP53 mutation.
Correspondingly, there is no such mutual exclusion effect in
the MSI-H samples (Figure S6).

There are many hotspot mutations in CRC samples. Of
these, 1550 recurrent mutations could be identified in at least
5 patients, with 476 SNVs and 974 indels. Previous studies
have shown that common neoantigens in cancers could be
used as potential immunotherapy targets [22, 26]. Therefore,
in order to find out whether there are common neoantigens
in CRC populations, we used these mutations in downstream
analyses to predict tumour-specific neoantigens.

3.2. Neoantigens Shared among CRC Patients. Due to the
difference in the frequency of HLA in different populations,
in order to search for “public” neoantigens in CRC
populations, we selected high-frequency HLA in Chinese
(HLA frequency > 5% in Han Chinese [15]) and high-
frequency HLA in TCGA (HLA frequency > 5% in TCGA

Table 2: Top ten SNVs and the corresponding neoantigens in the CRC cohort.

Chr Location Gene AA change Peptide Frequency HLA types

chr12 25398284 KRAS G12D VVVGADGVGK 143 A11:01

chr12 25398284 KRAS G12V VVGAVGVGK 104 A11:01

chr3 1.79E+08 PIK3CA E545K STRDPLSEITK 63 A03:01; A11:01

chr3 1.79E+08 PIK3CA E545K ITKQEKDFLW 63 B57:01

chr3 1.79E+08 PIK3CA H1047R ARHGGWTTK 45 B27:05

chr3 1.79E+08 PIK3CA R88Q REEFFDETRQL 30 B40:01

chr2 70315174 PCBP1 L100Q RPPVTQRLVV 28 B07:02

chr2 70315174 PCBP1 L100Q SRPPVTQRL 28 C06:02; C07:01; C07:02

chr22 29091840 CHEK2 K373E SEILGETSL 21 B18:01; B40:01

chr12 25398284 KRAS G12A VVVGAAGVGK 19 A11:01

Table 3: Top ten indels and the corresponding frequency in the
CRC cohort.

Chr Location Gene AA change Frequency

chr2 203420130 BMPR2 N583Tfs∗44 50

chr10 890939 LARP4B T163Hfs∗47 37

chr1 1290110 MXRA8 R301Gfs∗107 31

chr18 34205516 FHOD3 S336Vfs∗138 29

chr15 45003781 B2M L15Ffs∗41 28

chr12 110019240 MVK A141Rfs∗18 27

chr3 168833257 MECOM G614Efs∗30 26

chr22 20130522 ZDHHC8 T459Rfs∗177 20

chr8 103289349 UBR5 E2121Kfs∗28 20

chr6 158508009 SYNJ2 P1113Lfs∗5 19
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[27]) for neoantigen analysis. Finally, a total of 43 HLA alleles
were used for neoantigen prediction (Table S2).

We detected 274 SNV-derived neoantigens and 1269
indel-derived neoantigens (Table S3-4). Each SNV usually
produces 1-2 high-affinity peptides, while each indel can
produce multiple high-affinity peptides. The top ten high-
frequency SNV and indel-related neoantigens are shown in
Tables 2 and 3, respectively. In terms of SNV, mutations of
KRAS, PIK3CA, PCBP1, and CHEK2 can produce 10
neoantigens with the highest frequency (Table 2 and
Table S3). In terms of indel, although the mutation frequency
is not as high as SNV’s, generally one indel can produce
about 5-10 neoantigen peptides (Table 3 and Table S4).

3.3. Comparison of Neoantigens in Different Subtypes of CRC.
By comparing the neoantigen profiles of different subtypes of
CRC, we found that there were more SNV- and indel-derived

neoantigens in MSI-H patients than in MSS patients (Fisher’s
exact test, P < 0:01, Figure 2(a)). The 1269 indel-related
neoantigens can cover 86.7% of patients with MSI-H CRC,
but only 3.9% of MSS patients were covered, indicating that
indel is the main source neoantigens of MSI-H CRC. SNV-
derived neoantigens can cover 41% of MSS patients and
66% of MSI-H patients.

Patients older than 60 carry more neoantigens than those
under 60 years of age (Fisher’s exact test, P < 0:01,
Figure 2(b)). Women tend to carry more neoantigens than
men, especially those derived from indels. Female patients
accounted for 62.2% in the MSI-H cohort and 51.2% in
the MSS cohort. The proportion of MSI-H subtypes was
higher in female CRC patients (Fisher’s exact test, P value
= 0.007); this may partly explain why the results show that
women have a higher neoantigen load than men. In terms
of cancer stage, Stage II CRC patients carry the most
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Figure 2: The comparison of neoantigens between different subgroups: (a) between different MSI statuses; (b) between age ≥ 60 and age < 60
groups; (c) between female and male groups; (d) between different stages. These analyses excluded patients with unknown subtypes.
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abundant neoantigens, which may be related to the muta-
tion load of the corresponding subgroup (Figures 2(c) and
2(d)). We compared the percentage of patients with MSI-H
in Stage II and other stages, finding 28% of patients are MSI-
H in Stage II while 10.1% in other stages (Fisher’s exact test,
P value < 0.001). We also analyzed the mutated rates of KRAS
and PIK3CA in Stage II CRC patients. ForKRAS, the mutation
rate was 28.8% in Stage II while 28.4% in other stages, without
significant difference. For PIK3CA, the mutation rate of
PIK3CA in Stage II patients was higher than that in other
stages, with the mutation rate of 25.6% and 17.1%, respectively
(Fisher’s exact test, P value < 0.001). According to the above
analysis results, the higher neoantigen load of patients at Stage
II may be due to the higher proportion of MSI-H or the higher
mutation rate of PIK3CA in these patients.

3.4. Hotspot Mutation-Related Neoantigens That May Be a
Potential Source of Immunotherapy Target in CRC and
Pan-Cancer. To further investigate the potential significance
of these high-frequency neoantigens, we focused on muta-
tions with the highest frequency, including KRAS G12D,

KRAS G12V, PIK3CA E545K, and PIK3CA H1047R,
because these mutations not only produce recurrent
neoantigens but also have a higher frequency in the CRC
cohort (Figures 3(a) and 3(b)).

KRAS Gly12 (including G12V, G12C, and G12D) is a
classic driver mutation that occurs more than 20% in the
metastatic pancreatic and appendiceal cancers [24]. Both
G12D and G12V are highly mutated in multiple metastatic
cancers, including endometrial, CRC, and non-small cell
lung cancer (Figures 4(a) and 4(b)). Mayakonda et al. have
reported the high frequency of KRAS G12D mutations in
pancreatic cancer [23, 25]. Liang et al. also demonstrated
by mass spectrometry in 2019 that KRAS G12V-mutated
neoantigen can be presented by HLA-A11:01 cell lines
[28]. And as far as we know, clinical trials for KRAS
G12V mutations in patients with HLA-A11:01 are already
under way (NCT03190941).

PIK3CA is one of the driver genes in gastrointestinal
malignancies [29, 30]. PIK3CA E545K is a hotspot muta-
tion in breast cancer and has corresponding first-line
drugs (Alpelisib and Fulvestrant) [31]. In addition to
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Figure 3: Mutational spectrum of KRAS (a) and PIK3CA (b) in 1179 CRC patients.
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breast cancer, this mutation could be found in more than 5%
bladder, head and neck, and colorectal cancer patients
(Figure 4(c)). PIK3CA H1047R is most commonly found in
breast cancer [32] and is also frequently mutated among mul-
tiple tumor types in the MSK-IMPACT metastatic cancers
(Figure 4(d)). Our previous work has shown that the epitopes
of this mutation can be presented by multiple HLA molecules
(e.g., HLA-C07:02, HLA-C 07:01, HLA-A30:01, and HLA-
B58:01) and can be a potential neoantigen in patients with
gastric cancer [22]. Combined with the results of this study,
it is suggested that this mutation can be used as an important
therapeutic target for patients with gastrointestinal tumors.

4. Discussion

There are many different types of antigens that can be used as
targets for immunotherapy, such as tumor-associated anti-
gens, cancer-testis antigens, and neoantigens [33]. Tumor-
associated antigens (e.g., ERBB2/HER2) are highly expressed
in tumor and poorly expressed in normal tissues, so they may
serve as therapeutic targets for some tumor types, but the
disadvantage is that they may cause nonspecific immune
responses. Cancer-testis antigens (e.g., NY-ESO-1 antigen
[34] and MAGE [35]) are not expressed in normal adult cells
except in reproductive tissues (e.g., testis, fetal ovaries, and
trophoblast cells). However, both tumor-associated antigens
and cancer-testis antigens are prone to severe immune
responses. For example, attempts to target melanoma-
associated antigen 3 (MAGE-A3) with adoptive cell therapy
have resulted in severe neurotoxicity and death, which

may be related to the expression in the brain of MAGE-A
family members that has not been previously recognized
[36]. Compared with the above two antigen types, neoanti-
gen has stronger immunogenicity and tumor specificity, so
it is an ideal target for immunotherapy [37, 38]. However,
due to the difference of neoantigen among patients, the
current neoantigen-based immunotherapy is completely indi-
vidualized. Since the human exome region is about 30M, the
probability of the samemutation between different individuals
is relatively low, and the epitope of the mutation is presented
by specific HLA allele, so the possibility of the same neoanti-
gen epitope between different individuals is very low.

However, not all mutations in tumors are random.
Current genomic studies have shown that there are many
hotspot mutations in driver genes, and the neoantigen
epitopes formed by these mutations are potential “public”
immunotherapy targets, such as KRAS G12D/V and
CDK4 R24C/L [39]. In CRC, the frequency of frameshift
mutations is higher in patients with MSI-H subtype, and
it has been reported that frameshift peptides have been
used in the clinical treatment of CRC (NCT01461148).
In our study, we also found that indel-related neoantigens
can cover a large proportion of MSI-H CRC patients. At
present, 10-20 neoantigen peptides are usually synthesized
at the same time to prepare vaccines or other immuno-
therapy products [40, 41]. If combined with the neoanti-
gens corresponding to hotspot point mutations and
frameshift mutations, it is believed that these neoantigen
can cover more CRC patients, so that more patients can
benefit from neoantigen-based immunotherapy.
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Figure 4: Mutation frequency in MSK-IMPACT cohorts. KRAS G12D (a), KRAS G12V (b), PIK3CA E545K (c), and PIK3CA H1047R (d) in
MSK-IMPACT pan-cancer cohorts.
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5. Conclusion

Based on the analysis of the published WES data of CRC, the
most complete mutation landscape of CRC was obtained. We
selected HLA subtypes with high frequency in Chinese and
TCGA cohort to predict the common neoantigens in the
population. The high-frequency mutations, including KRAS
G12D (8%), KRAS G12V (5.8%), PIK3CA E545K (3.5%),
PIK3CA H1047R (2.5%), and BMPR2 N583Tfs∗44 (2.8%),
can be recognized and presented by many HLA genotypes,
such as HLA-A1101, HLA-A03:01, and HLA-B57:01. These
HLA genotypes are the main HLA subtypes in Chinese and
Americans, indicating the broad spectrum of the neoantigens
we identified. In conclusion, we have found a series of
“public” neoantigens for CRC, which provide important
resources for immunotherapy of CRC in the future.
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