
toxins

Article

Assessment of the Antimicrobial Activity and the
Entomocidal Potential of Bacillus thuringiensis
Isolates from Algeria

Zahia Djenane 1,2,3, Farida Nateche 1, Meriam Amziane 1, Joaquín Gomis-Cebolla 2,
Fairouz El-Aichar 1, Hassiba Khorf 1 and Juan Ferré 2,*

1 Microbiology Group, Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences,
University of Science and Technology Houari Boumediene (USTHB), BP 32, EL ALIA, Bab Ezzouar,
16111 Algiers, Algeria; zad@uv.es (Z.D.); fnateche@yahoo.fr (F.N.); mer.amziane@gmail.com (M.A.);
fifiel07@yahoo.fr (F.E.-A.); hassibakhorf@gmail.com (H.K.)

2 ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT,
46100 Valencia, Spain; joaquin.gomis@uv.es

3 Department of Science and Technology, Faculty of Science, University Dr Yahia Frès, 26000 Médéa, Algeria
* Correspondence: juan.ferre@uv.es; Tel.: +34-96-354-4506

Academic Editor: Vernon L. Tesh
Received: 14 March 2017; Accepted: 11 April 2017; Published: 13 April 2017

Abstract: This work represents the first initiative to analyze the distribution of B. thuringiensis in
Algeria and to evaluate the biological potential of the isolates. A total of 157 isolates were recovered,
with at least one isolate in 94.4% of the samples. The highest Bt index was found in samples from
rhizospheric soil (0.48) and from the Mediterranean area (0.44). Most isolates showed antifungal
activity (98.5%), in contrast to the few that had antibacterial activity (29.9%). A high genetic diversity
was made evident by the finding of many different crystal shapes and various combinations of shapes
within a single isolate (in 58.4% of the isolates). Also, over 50% of the isolates harbored cry1, cry2,
or cry9 genes, and 69.3% contained a vip3 gene. A good correlation between the presence of chitinase
genes and antifungal activity was observed. More than half of the isolates with a broad spectrum
of antifungal activity harbored both endochitinase and exochitinase genes. Interestingly, 15 isolates
contained the two chitinase genes and all of the above cry family genes, with some of them harboring
a vip3 gene as well. The combination of this large number of genes coding for entomopathogenic
proteins suggests a putative wide range of entomotoxic activity.
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1. Introduction

The economies of most countries worldwide are based on agriculture, which are threatened by
various phytopathogens such as bacteria, fungi, or insects. Up to now, B. thuringiensis is the most used
biological agent for the control of insect pests, mainly Lepidopteran species, the most injurious pests
of cereals [1,2], and palms [3,4], which are the most important cultivated crops in North Africa.

Bacillus thuringiensis is a ubiquitous Gram positive bacterium found in various ecological habitats
such as soil, sediment, stored products, dust, dead insects, phylloplane, and aquatic environments [5–11].
It has been the subject of most of the research and applications in the biological control of phytopathogenic
insects, mainly due to the entomotoxic properties of some strains. The main interest of its use is to
replace chemical pesticides with a new sustainable alternative, that is biodegradable and friendly to
the environment and public health. Cry and Vip proteins, synthesized during the stationary and the
vegetative phase, respectively, form the primary axis in B. thuringiensis based biological control of insect
pests. In addition, other molecules synthesized by this bacterium can either act in synergy with Cry
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and Vip proteins or as an antimicrobial agent against several pathogenic and/or phytopathogenic
bacteria and fungi. These could be chitinases [12,13], acylhomoserine lactone lactonase [14,15], some
lipopeptides [16–18], and certain antibiotics such as zwittermycin [19,20].

The Cry proteins (or δ-endotoxins) accumulate during sporulation producing crystalline
inclusions with several morphologies [21–24]. They exhibit specific activity against one or several
orders of insects belonging to the orders Lepidoptera, Diptera, and Coleoptera [22,25,26], mainly due
to the specificity of membrane receptors [27,28]. These receptors are absent in beneficial insects, plants,
and mammals [26,29]. The identification of B. thuringiensis isolates carrying a wide variety of cry genes
suggests a broad entomotoxic spectrum against different insect hosts [30,31].

Vip proteins are known to complement or synergize the insecticidal activities of Cry proteins [32].
They are produced by certain B. thuringiensis strains and bind to receptors that are different from those
of Cry proteins [33,34], and thus, they have a spectrum of activity complementary to that of the Cry
proteins. Therefore, a combination of Cry and Vip proteins could broaden the spectrum of insecticidal
activity [35–38] and prevent the evolution of resistance of insects to Cry proteins [39–41].

A threat to the B. thuringiensis-based insecticides is the development of resistance by the insect
populations exposed to them or to transgenic crops expressing their insecticidal proteins (Bt-crops) [39,42].
Therefore, the search for novel genes or new alleles encoding for insecticidal proteins, or other type of
biomolecules that could synergize the action of the Cry and Vip proteins, is highly desirable.

Chitinases are enzymes that hydrolyze chitin (β-1,4-N-acetyl-aligned-glucosamine polymer),
the main component of the invertebrates’ exoskeleton and fungi outer wall. They have been used for a long
time to control several fungal pests [12,13,43–45], as synergistic agents to increase the entomotoxicity of
biopesticides [46–50] and in the production of recombinant strains of B. thuringiensis [51,52] or transgenic
plants [53,54]. Within the insect, chitinase potentiates the toxicity of the B. thuringiensis Cry proteins
by perforating the peritrophic barrier of the midgut of the larvae, and thus, increasing the access of
δ-endotoxins to the receptors located in the outer membrane of the epithelial cells [47]. The subsequent
pores that are formed facilitate the penetration of spores in the hemolymph [46,48].

The aim of the present study was to screen B. thuringiensis isolates for the presence of a wide variety
of biomolecules with the potential for insect, bacterial, and fungi control. This is the first initiative to
perform a country-wide study of this bacterial species in Algeria, a Mediterranean country with a vast
area (about 2382 million km2), large landscape diversity, and a high variability of climatic regions
(Mediterranean, Sub-arid, and Desert).

2. Results

2.1. Isolation and Distribution of B. thuringiensis Isolates

A total of 157 crystalliferous colonies (B. thuringingiensis) were isolated from 54 samples collected
from five ecological niches (rhizospheric and non rhizospheric soil, sediment, dead insects, and grain
storage) distributed over three geographical areas of Algeria viz., Mediterranean, Semi-arid, and Desert
(Table 1 and Figure 1).

As shown in Table 1, B. thuringiensis was found in 51 (94.4%) out of the 54 collected samples.
It was present with a high recovery (more than 50%) in all the ecological sources. With respect to
the geographical origin, 100% of the samples collected from the Mediterranean and Semi-arid area
harbored B. thuringiensis isolates, whereas their frequency in the Desert was 78.6%. The global Bt index
was 0.41 and it varied considerably depending on the sample source. Within the different ecological
niches, it ranged from 0.27 (in the non-rhizospheric soil) to 0.48 (in the rhizospheric soil). Regarding
the geographical distribution, the Bt index varied from 0.32 (in samples from the Semi-arid area) to
0.44 (in samples from the Mediterranean area). The highest Bt index (0.51) was obtained with samples
collected from rhizospheric soil either in the Mediterranean area or from the Desert.

From the original 157 B. thuringingiensis isolates, 137 were chosen for further phenotypic,
biological, and molecular characterization.
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Table 1. Description of the origin of B. thuringiensis isolates and the samples from where they were isolated.

Source of Samples
Samples Mediterranean Area Semi-Arid Area Desert

Global Bt IndexNo. of Isolates
Bt Index d No. of Isolates

Bt Index d No. of Isolates
Bt Index d

Total Analyzed Bt Positive a Bacillus-Like b Bt c Bacillus-Like b Bt c Bacillus-Like b Bt c

Telluric (soil)

Rhizospheric 18 18 68 35 0.51 39 14 0.36 77 39 0.51 0.48
Non rhizospheric 10 8 11 4 0.36 12 2 0.17 43 12 0.28 0.27

Non telluric

Sediment 3 2 13 5 0.38 0 0 / 1 0 0 0.36
Dead insects 4 4 28 10 0.36 0 0 / 0 0 / 0.36
Grain storage 19 19 62 26 0.42 31 10 0.32 0 0 / 0.39

Total 54 51 182 80 0.44 e 82 26 0.32 e 121 51 0.42 e 0.41 f

a Sample with at least one B. thuringiensis colony; b Colonies examined by microscopy; c Crystaliferous colonies identified as B. thuringiensis; d B. thuringiensis as a fraction of Bacillus-like
isolates; e Global Bt index in each geographic area; f Global Bt index of B. thuringiensis collection.
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2.2. Phenotypic Characterization of Parasporal Crystals

Based on the morphology of the crystalline inclusions (independent of whether they were present
alone or in combination with other shapes), the isolates were classified into seven groups (Table 2).
The most abundant shape was spherical (64.2% of isolates) and the least abundant one was the elongate
crystal (3.6%). An example of the observed shapes is shown in Figure 2.

Table 2. Description of the crystal shape variability in B. thuringiensis isolates.

Crystal Shape
No. of Isolates Containing Crystals with a Given Shape

Alone Combined with Other Crystals Total (%)

Spherical 30 58 88 (64.2%)
Bipyramidal 4 42 46 (33.6%)

Irregular/Geometrical 19 36 55 (40.1%)
Triangular 2 16 18 (13.1%)
Cuboidal 0 16 16 (11.7%)

Ovoid 2 8 10 (7.3%)
Elongate 0 5 5 (3.6%)
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Figure 2. Scanning electronic microscopy (SEM) of B. thuringiensis isolates, showing some of the 
characterized parasporal inclusion shapes. Sp: spore, C: crystal (CB: bipyramidal, CC: cuboidal, CE: 
elongate, CG: geometrical, CI: irregular, CO: ovoid, CS: spherical, CS-At: spherical attached to the 
spore/sporangium, CT: triangular). 

Figure 2. Scanning electronic microscopy (SEM) of B. thuringiensis isolates, showing some of the
characterized parasporal inclusion shapes. Sp: spore, C: crystal (CB: bipyramidal, CC: cuboidal, CE:
elongate, CG: geometrical, CI: irregular, CO: ovoid, CS: spherical, CS-At: spherical attached to the
spore/sporangium, CT: triangular).

Regarding the number of different crystal shapes found within the same strain, 57 out
of the 137 isolates (41.6%) harbored only one crystal shape, while 80 isolates (58.4%) had
several shapes including 59 (43.1%) with two shapes and 21 (15.3%) having more than two
shapes. We also observed that the most abundant combination was spherical-bipyramidal (10.9%)
followed by spherical-geometrical (8%), spherical-triangular (4.4%), bipyramidal-geometrical (3.6%),
and spherical-cuboidal (2.9%). The cuboidal and elongate crystal shapes were present only when
combined with other crystal shapes.
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2.3. Screening of the Biological Activity

2.3.1. Antibacterial Activity

Bacillus thuringiensis isolates were tested for their antibacterial activity against four pathogenic
bacteria, two Gram positive (Staphylococcus aureus including a wild type variant (SM) and a resistant
to methicillin variant (RM)), and two Gram negative (Escherichia coli and Pseudomonas aeruginosa)
(Figure 3A). Among the 137 B. thuringiensis isolates, 41 (29.9%) showed activity against at least one
tested pathogenic bacteria (Table 3). Considering each test bacterium independently, 30 B. thuringiensis
isolates were active against S. aureus SM (21.9%), 27 isolates were active against S. aureus RM (19.7%),
20 against E. coli (14.6%), and 10 against P. aeruginosa (7.3%). Table 3 summarizes the combined/single
antibacterial activity of those isolates.
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Figure 3. Antimicrobial activity of B. thuringiensis isolates. Panel (A): Antibacterial activity evaluated
by the agar plug diffusion method. Plugs from four or five Bt isolates were tested on each Mueller
Hinton Agar (MHA) plate. The pathogenic test bacteria (indicator) grew on the whole surface.
A clear zone (+) around some Bt plugs indicated the presence of antibacterial activity (synthesis
and diffusion of antibacterial molecules). A1: Staphylococcus aureus sensitive to methicillin ATCC25923,
A2: Staphylococcus aureus resistant to methicillin ATCC34300, A3: Escherichia coli ATCC25922, and A4:
Pseudomonas aeruginosa ATCC25853. Panel (B): Antifungal activity assay evaluated by the dual culture
method. Each Potato Dextrose Agar (PDA) plate contained the fungal plug of one test fungus (center of
the Petri dish) and three to four bacterial plugs (corresponding to three different Bt isolates) deposited
radially 2.5 cm away. A fourth position in the plate was left empty as a negative control. The antifungal
activity of the Bt isolates was revealed by the inhibition of fungal growth facing that bacterial plug as
compared with the fungal growth facing the control area. The fungus grew around the plugs of bacteria
that lack antifungal activity. B1: Fusarium sp., B2: Monelia sp., B3: Coletotricum sp., B4: Thielaviopsis sp.,
B5: Aspergilus niger.

Table 3. Profile of the antibacterial activity of B. thuringienis isolates.

Spectrum of Activity
Gram Positive a Gram Negative b

SaSM SaRM Ec Pa n c

Against both Gram positive and Gram negative
pathogenic bacteria (n = 20)

+ + + + 3
+ + + − 9
+ + − + 4
+ − + − 2
− + + − 2

Against Gram positive pathogenic bacteria (n = 14)
+ + − − 7
+ − − − 5
− + − − 2

Against Gram negative pathogenic bacteria (n = 7) − − + − 4
− − − + 3

Total Bt isolates positive for each bacterium type 30 27 20 10
a SaSM: S. aureus sensitive to methicillin ATCC25923; SaRM: S. aureus resistant to methicillin ATCC34300; b Ec: E. coli
ATCC25922; Pa: P. aeruginosa ATCC25853; c Number of B. thuringiensis isolates with activity against pathogenic
bacteria within the reported profile.
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2.3.2. Antifungal Activity

The antifungal activity of B. thuringiensis isolates was tested against five phytopathogenic fungi
(Figure 3B). Almost all isolates tested (135 out of 137) exhibited activity against at least one fungus
and 81 (59%) isolates were active against at least three fungi (Table 4). Considering each test
fungus independently, 106 B. thuringiensis isolates (77.4%) inhibited the growth of Aspergilus niger,
98 isolates (71.5%) were active against Colletotricum sp., 81 (59.1%) against Monilia sp., 65 (47.4%)
against Thielaviopsis sp., and 54 (39.4%) against Fusarium sp. Table 4 summarizes the combined/single
antifungal activity of those isolates.

2.4. Molecular Screening

2.4.1. cry and vip Gene Families (cry1, cry2, cry9, and vip3)

Identification of gene-families coding for lepidopteran-active toxins was carried out with universal
primers used for amplifying the cry1, cry2, cry9, and vip3 genes (Table 5). Isolates giving an amplicon
of the expected size were considered positive to the corresponding gene-type (Figure 4). Table 6 shows
that out of the 137 B. thuringiensis isolates, 112 (82%) were positive for at least one cry gene. Genes from
the cry1, cry2, and cry9 families occurred in 54%, 59.9%, and 50.4% of the isolates, respectively. The vip3
gene was found in 95 (69.3%) of the isolates, 13 of which did not contain any other lepidopteran-active
toxin gene.
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Figure 4. Agarose (1%) gel electrophoresis of PCR products amplified with the set of primers
Un1(f)/Un1(r) (a), Un2(f)/Un2(r) (b), Un9(f)/Un9(r) (c), and vip3-sc(f)/vip3scII(r) (d), which reveal
the presence of genes from the cry1, cry2, cry9, and vip3 families, respectively. Bacillus thuringiensis
isolates were considered positive for the studied gene when their genomic DNA amplified with the
corresponding primers and gave a band of the expected size.

2.4.2. Exochitinase (chi36) and Endochitinase (chit) Genes

The occurrence of exochitinase and endochitinase genes was assessed by PCR amplification using
gene-specific primers (Table 5 and Figure 5). Overall, 88 (64.2%) of the 137 B. thuringiensis isolates
harbored at least one type of the chitinase gene, with 66 (48.2%) being positive for the exochitinase
gene and 82 (59.9%) being positive for the endochitinase gene (Table 6). Sixty isolates (43.8%) harbored
both types of genes and 28 (20.4%) exhibited only one of them.
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Table 4. Profile of the antifungal activity of B. thuringiensis isolates.

Spectrum of Activity Fusarium sp. Monilia sp. Colletotricum sp. Thielaviopsis sp. Aspergilus flavus n a

Against five fungi (n = 24) + + + + + 24

Against four fungi (n = 32)

+ + + + − 4
+ + + − + 5
+ + − + + 9
+ − + + + 4
− + + + + 10

Against three fungi (n = 25)

+ + − − + 2
− − + + + 2
+ + − + − 3
− + + + − 2
− + − + + 2
+ − − + + 1
− + + − + 12
+ − + − + 1

Against two fungi (n = 27)

+ + − − − 1
− + − − + 5
− + + − − 1
− − + + − 3
− − − + + 1
− − + − + 16

Against one fungus (n = 27)
− + − − − 1
− − + − − 14
− − − − + 12

Total Bt isolates positive for each fungus type 54 81 98 65 106
a Number of B. thuringiensis isolates with antifungal activity within the reported profile.



Toxins 2017, 9, 139 8 of 19

Table 5. Primers used in the PCR analysis of cry1, cry2, cry9, vip3, chi36, and chit genes.

Target Gene Family Product Size (pb) Primers Set Sequence (5′→ 3′) Tm
a (◦C) Reference

cry1 274–277
Un1(f) CATGATTCATGCGGCAGATAAAC 67.2

[55]Un1(r) TTGTGACACTTCTGCTTCCCATT 66.7

cry2 689–701
Un2(f) GTTATTCTTAATGCAGATGAATGGG 63.3

[55]Un2(r) CGGATAAAATAATCTGGGAAATAGT 61.1

cry9 354
Un9(f) CGGTGTTACTATTAGCGAGGGCGG 71.5

[55]Un9(r) GTTTGAGCCGCTTCACAGCAATCC 73.3

endochitinase 1997
Chit(f) ATTCACACTGCTATTACTATC 50

[56]Chit(r) TGACGGCATTTAAAAGTTCGGC 68.7

exochitinase 36 1083
Chi36(f) GATGTTAAACAGGTTCAA 50.2

[12]Chi36(r) TTATTTTTGCAAGGAAAG 52.9

vip3 1395
vip3-sc(f) TGCCACTGGTATCAARGA 54.2 [57]

vip3-scII(r) CCATTAATYGGAKTCAAAAATGTTTCACTGAT 71.1 The current work
a Melting temperature.

Table 6. Description of the gene content of B. thuringiensis isolates for cry1, cry2, cry9, vip3, exochitinase (chi36), and endochitinase (chit) genes.

Presence/Absence of cry
Gene Families

No. of Bt for Each
cry Gene Profile

No. of Bt with a
vip3 Gene

No. of Bt with
Both chi36 and chit

No. of Bt with
chi36 Only

No. of Bt with
chit Only

No. of Bt without
chi36 and chit

I. One cry gene family

cry1 10 6 1 0 3 6
cry2 12 10 1 1 2 8
cry9 12 6 11 0 0 1

II. Two cry gene families

cry1 + cry2 21 18 6 0 5 10
cry1 ± cry9 8 5 4 0 3 1
cry2 + cry9 14 8 11 1 2 0

III. Three cry gene families

cry1 + cry2 + cry9 35 29 15 4 4 12
IV. No cry gene 25 13 11 0 3 11

Total Bt isolates (%) 137 95 (69.3%) 60 (43.8%) 6 (4.4%) 22 (16.1%) 49 (35.8%)
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Figure 5. Agarose (1%) gel electrophoresis of PCR products amplified with the set of primers
chi36(f)/chi36(r) (a) and chit(f)/chit(r) (b), which reveal the presence of exochitinase 36 and
endochitinase genes, respectively. Bacillus thuringiensis isolates were considered positive for the
studied gene when the genomic DNA amplified with the corresponding primers and gave a band of
the expected size.

Table 7 shows the relationship between the chitinase genes content and the spectrum of antifungal
activity. Among the 81 B. thuringiensis isolates showing a wide spectrum against at least three fungi,
50 isolates harbored both exochitinase and endochitinase genes, and out of the 54 isolates with a
narrower spectrum of antifungal activity, 27 were negative for both chitinase genes.

Table 7. Relationship between the chitinase genes profile and the spectrum of antifungal activity.

Spectrum of the Antifungal Activity

Profile of Chitinase Genes

Both chi36 and chit a Only chi36 Only chit None

N n x n x n x n x

Activity against at least three fungi 81 50 0.62 5 0.06 4 0.05 22 0.27
Activity against one or two fungi 54 10 0.19 1 0.02 16 0.30 27 0.5

N, n: number of B. thuringiensis isolates; x: ratio n/N. a chit: endochitinase.

3. Discussion

The current work is the first initiative to perform a country-wide study of B. thuringiensis in Algeria.
A collection of 157 B. thuringiensis isolates was built from samples collected from various niches (soil,
sediment, dead insects, and grain storage) in three different climatic regions (Mediterranean, Semi-arid,
and Desert). In all locations, no Bt-based biopesticide had been previously applied. Overall, 94.4% of
the samples collected yielded at least one colony of B. thuringiensis. This high recovery reflected the
large abundance of this species in Algeria. It is comparable to that found in earlier studies surveying
various ecosystems, where B. thuringiensis recovery was over 79% [58–60]. Our results confirm the
ubiquity of B. thuringiensis, since it was detected in samples from all the ecological and geographical
habitats analyzed, including very arid ecosystems.

The global Bt index observed was relatively high (0.41) compared to earlier screening programs
(less than 0.18) [10,58,61,62]. The Bt index differed among the different climatic regions (from 0.32 to
0.44) with the Mediterranean area being the richest source (0.44) (Table 1). It was relatively high to
moderate in all niches (from 0.27 to 0.48). In agreement with earlier studies, samples from rhizospheric
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soil [58,60] and grain storage [61] were better sources for B. thuringiensis isolation (Bt index was 0.48
and 0.39, respectively). We found the non-rhizospheric soil to be the one with the lowest Bt index (0.27),
also in agreement with previous studies [63–66]. This difference may be related to different factors, mainly
the vegetation abundance, which constitutes a nutrient supply and an extra source of B. thuringiensis
isolates, and also the physicochemical features of the biotope, as well as the presence of other symbiotic
bacteria. In this context, several studies described the widespread presence of B. thuringiensis in the
phylloplane [67–70]. Therefore, when performing screening of B. thuringiensis from soil samples, it would
be important to distinguish between rhizospheric and non-rhizospheric soil samples.

The frequency values of the crystal shapes given in Table 2 refers to how often a given shape is
found in the 137 B. thuringiensis isolates, independent of whether it was combined with other shapes
or not. Despite the fact that bipyramidal crystals are generally reported to be the most abundant
ones [9,10,71,72], in our collection the crystals with a spherical shape were the most abundant (64.2% of
the isolates) (Table 2). The latter were found at a similar high frequency (about 40%) in studies carried
out in Colombia [69] and Spain [59], but at very low frequency in other studies from Iran (5%) [10] and
India (3.6%) [72]. Bipyramidal and irregular/geometrical crystal shapes were also frequent within the
Algerian collection (33.6% and 40.1%, respectively). This percentage is comparable to that found in
a study from India (28% and 21.5%, respectively) [72]. Triangular and cuboidal crystal shapes were
present in 13% and 11.7% of our isolates, respectively. The differences in the distribution of the crystal
shapes could be a consequence of the adaptation of this bacterium to the biotope.

A high percentage of our B. thuringiensis isolates (58.4%) produced more than one crystal shape
(Table 2). This percentage is relatively high when compared to those found by Seifinejad et al. (40%) [10]
and Mahadeva Swamy et al. (36%) [72]. Among the diverse combinations observed, spherical crystals
were found combined with bipyramidal crystals (10.9%), geometrical crystals (8%), triangular crystals
(4.4%), and cuboidal crystals (2.9%). These results demonstrated the high diversity and variability of
the native B. thuringiensis isolates from Algeria and reflected their genetic diversity.

Some crystal shapes have been related to the expression of specific Cry proteins [24,55,68,71].
For example, the expression of cry4, cry10, or cry11 genes give rise to spherical shape crystals, and
their respective proteins are known to be active against Diptera [73–76]. Crystals with a bipyramidal
shape result from the accumulation of Cry1 or Cry9 proteins, which are active mainly against
Lepidoptera [24,77,78]. Cry2 proteins, some of which are active against both Lepidoptera and
Diptera, form cuboidal crystals [24,77–79]. Therefore, the combination of several crystal shapes within
an individual B. thuringiensis isolate, which is an indication of the presence of Cry proteins from different
families, holds the potential for a spectrum of activity against a broad range of insect pests [30,31].

Overall, 29.9% of the B. thuringiensis isolates in our collection were active against at least
one pathogenic bacterium. Three isolates inhibited all four pathogenic bacteria, including the
resistant variant of S. aureus. This reflected a wide range of antibacterial molecules synthetized
by these B. thuringiensis isolates, which could be further used in the control of some pathogenic
and/or phytopathogenic diseases. It would be interesting to survey those isolates against some
phytopathogenic bacteria causing serious losses in fruits and vegetables in Algeria, such as
Erwinia amylovora and Erwinia carotovora [80,81]. In 2012, Djenane [82] investigated 97 isolates of
Bacillus spp. and showed that the most potent Bacillus species in terms of antibacterial activity do not
belong to the B. thuringiensis species, but mainly to B. amyloliquefasiens and B. subtilis. The same finding
was reported by Mora et al. [83], who found that the B. thuringiensis species belonged to the group of
plant-associated bacteria with the lowest antimicrobial activity.

It is important to note that in the reported antibacterial activity of B. thuringiensis isolates from our
study, the activity was observed after 24 h using a fresh culture on the surface of a rich medium (MHA
plates). These conditions are appropriate for bacterial growth but not for B. thuringiensis sporulation.
Thus, some molecules synthetized during the stationary phase, and exhibiting an antibacterial activity,
such as Cry11A and Cry4B [84], the 28 kDa and 37 kDa fragments from Cry1A, and the 49 kDa
fragment from Cry3Aa [85], could not have contributed to the reported activity.
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Bacillus thuringiensis isolates collected in Algeria form a good source of antifungal-specific
candidates (98%) compared to the antibacterial ones (29.9%). It might be a consequence of the
adaptation of this bacterium to the appropriate biotope (soil, phylloplane, grain storage, dust), where
fungus proliferation is common. More than 60% of the isolates showed activity against Monolia sp.,
Colletotricum sp., and A. flavus, 47% against Thielaviopsis sp., and 39% against Fusarium sp. Moreover,
59% of the isolates exhibited broad spectrum activity against at least three phytopathogenic fungi
and, among them, 24 isolates (17.5%) were active against all the five fungi tested. These high
antifungal potentials could be related to a panoply of antimicrobial molecules such as zwittermycin [86],
lipopeptides [17,83,87], and chitinase [12,13,43,44]. Earlier surveys showed the contribution of
lipopeptides to the antifungal activitiy in some Bacillus species [16,83,87,88]. The latter was confirmed
in B. thuringiensis strains from Algeria by Abderrahmani et al. [17,89]. The 24 isolates with the highest
spectrum of activity could be good candidates to control fungal pests of serious economic impact
in agriculture, both in North Africa and the rest of the world [90,91]. Specifically, in Algeria, the
most injurious fungus species affecting palms are Fusarium oxysporum, the causal agent of ‘bayoud’,
or Fusarium wilt [92,93], and Thielaviopsis paradoxa, the agent of the black scorch disease [94,95].
Different species of the genus Fusarium also affect cereals [2,96], forest trees (Aleppo Pine) [97,98],
vegetables [99], and legumes [100]. Similar to the antibacterial activity, earlier studies showed that
B. thuringiensis isolates were less potent, in terms of antifungal activity, compared to other Bacillus
species such as B. amyloliquefaciens and B. subtilis [82,83].

Other than lipopeptides, chitinase enzymes exhibit a strong antifungal activity [12,13,43–45].
In the current work, a good correlation between the presence of both chitinase genes in B. thuringiensis
isolates and their broad antifungal activity was observed. Essentially, more than half of the isolates
(ratio 0.6) showing a broad spectrum of antifungal activity (against at least three fungi) had both
chitinase genes (Table 7). These isolates would form the best candidates for fungal pest control.
A synergistic activity between chitinase enzymes and other biomolecules could enhance and broaden
the antifungal activity. However, it is interesting to note that 20 isolates had a broad spectrum of
antifungal activity but did not exhibit any of the tested chitinase genes. Thus, possibly other chitinases
and/or other antifungal molecules could be involved in that high antifungal activity.

Lepidoptera-specific insecticidal protein genes were present in a high frequency within the
Algerian collection of B. thuringiensis: 82% of the 137 isolates harbored at least one cry gene, which is
similar to what was found in earlier surveys investigating cry1, cry2, and cry9 genes [10,66,101]. Every
cry gene family was found in more than half of the isolates (54% cry1, 60% cry2, and 50% cry9). Among
the isolates containing a cry1 gene, 76% carried a cry2 gene and 58% carried a cry9 gene. Among
those containing a cry2 gene, 68% and 60% carried a cry1 and a cry9 gene, respectively; and among
those containing a cry9 gene, 62% and 71% carried a cry1 and a cry2 gene, respectively. Previous
studies [9,55,62] suggested that the cry1 and cry2 genes are genetically associated since they occur
together in a high frequency. Several complete genome sequencing programs described that many cry
genes (most of them belonging to the cry1 and cry2 families) are located on the same plasmid [102–106].
This could also explain the pair-wise co-occurrence of the cry1, cry2, and cry9 genes within the Algerian
B. thuringiensis collection.

The vip3 gene family was also present in a high percentage of the isolates (69.3%). This high
frequency of vip3 genes was previously found by Seifinejad et al. [10] (82% out of the 70
B. thuringiensis isolates from Iran), Yu et al. [107] (67.4% of the 2134 B. thuringiensis isolates from
China), and Hernández-Rodríguez et al. [57] (48.9% of the 507 B. thuringiensis isolates from Spain).

In our study, the genetic diversity observed among isolates based on the morphological variability
of crystal shapes (58.4% of the isolates harbored more than one crystal shape) correlated with the
diversity in cry genes. Despite the fact that we studied only three cry gene families coding for crystals
with a cuboidal shape (cry2) and bipyramidal/geometrical shape (cry1 and cry9), 58% of B. thuringiensis
isolates from Algeria contained more than one cry gene family, of which 35 (25%) contained all three
studied cry genes.
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Relating the results of the cry gene content with the chitinase gene content may help to select
isolates with a wider spectrum of activity, since the chitinase activity was described to help synergize
the effect of Cry toxins [46,47,50]. Table 6 shows that many of the isolates have a high potential
for insecticidal activity because they contain a wide set of entomotoxic protein genes. Interestingly,
15 isolates contained all the three studied cry gene families as well as exochitinase and endochitinase
genes and, among these, 11 also carried a vip3 gene (data not shown). These isolates could be
preselected as putative candidates with a high and broad spectrum of insecticidal activity due to
a possible synergistic action of several insecticidal molecules. Further entomotoxic assays against
a wide range of lepidopteran species would help to select the best candidate for biological control.

4. Conclusions

In summary, the current work showed that Algerian samples are a good source of B. thuringiensis
isolates with potential applications in agricultural pest control. A high abundance of this species
was noted within the different ecological and geographical sources. Also, a high number of isolates
showed a strong activity against phytopathogenic fungi, which could be related to the role of this
bacterium in its natural habitat. In addition, molecular screening evidenced the high genetic diversity
of B. thuringiensis isolates in terms of cry, vip3, and chitinase gene content. This study lays the basis to
select those B. thuringiensis isolates, with a wide set of entomotoxic genes, to be subjected to a screening
program to evaluate their insecticidal activity in bioassays with lepidopteran pests.

5. Materials and Methods

5.1. Sample Collection

A total of 54 samples were collected from different habitats (soil, sediment, stored grains and dead
insects) from 20 different locations within the Algerian territory (Table 1 and Figure 1). The source of
these samples had no history of treatment with any bio-pesticide. Soil samples were collected with a
sterile scraper at a depth of 10–15 cm after removing the top layer of soil. Dust or grains were collected
by scooping directly from the floor or with machinery from storage. All samples including dead insects
were directly transferred into sterile plastic bags and stored at 4 ◦C until processed.

5.2. Reference Strains

The pathogenic bacteria used for the antibacterial test belonged to the American Type Collection
Culture. The species and strains used were Pseudomonas aeruginosa ATCC25853 (P. aeruginosa),
Escherichia coli ATCC25922 (E. coli), Staphylococcus aureus sensitive to methicillin ATCC25923 (S. aureus
SM), and Staphylococcus aureus resistant to methicillin ATCC34300 (S. aureus RM).

The phytopathogenic fungi, used for the antifungal test, were kindly provided by the Algerian
National Institute for Plant Protection (Fusarium sp., Colletotrichum sp., Monilia sp., Thielaviopsis sp.,
and Aspergilus niger).

5.3. Bacillus Thuringiensis Culturing and Isolation

Isolation of B. thuringiensis was carried out according to the method of Travers et al. [108] with
slight modifications. One gram from each sample was suspended in 9 mL sterile physiological
solution (0.9% NaCl). This stock solution was heated at 70 ◦C for 10 min and then used to prepare
10−1, 10−2, and 10−3 dilutions. An aliquot (100 µL) of each solution was spread onto three Nutrient
Agar (NA) plates. The plates were incubated at 30 ◦C for at least 3 days. The preselected Bacillus
like-colonies (whitish, not bright, flat, dry, rough surface, and irregular border) were examined by
phase-contrast microscopy. Only colonies containing bacillary cells producing spores and crystals
(phase-bright inclusions) were selected as B. thuringiensis. Within the same sample, when colonies
showed a similar macroscopic and/or microscopic aspect, only one colony was selected. Thereby,
we reduced the number of sibling strains and avoided duplicates. The selected B. thuringiensis
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colonies were plated again for single-colony purification and stored at −20 ◦C in 20% and 50%
glycerol medium. The Bt index was defined as the number of crystalliferous colonies as a fraction of
Bacillus-like colonies in a sample; it serves as an estimation of the success in B. thuringiensis isolation
and depends on the isolation procedure as well as the sampled material [59]. Since SDS-PAGE or
Western blot was not performed, it cannot be ruled out that some of the observed parasporal inclusions
are non-proteinaceous.

5.4. Screening for Antibacterial Activity with the Agar Plug Diffusion Method

The presence of antibacterial activity was tested using a technique similar to that used in the
disk-diffusion method [109,110], which is based on the NCCLS diffusion method [111]. The target
bacteria (S. aureus, P. aeruginosa, and E. coli) were inoculated on the surface of NA plates and incubated
at 37 ◦C for 24–48 h. Then, three to five isolated colonies were suspended in saline (physiological
water 0.9%). The turbidity of the test suspension was adjusted to 0.5 McFarland turbidity standard
(corresponding to 1.5 × 108 CFU mL−1), and used as an inoculum within the following 15 min.
On the surface of Mueller Hinton Agar (MHA) plates (4 mm of depth), the suspension was spread by
swabbing. The B. thuringiensis agar-plugs were cut aseptically from pre-inoculated NA plates (4 mm
depth) after 24 h of incubation at 30 ◦C, using a sterile cork borer. Four agar-plugs, containing a
single colony each and corresponding to four different B. thuringiensis isolates, were transferred onto
the surface of MHA plates. The antibacterial activity was observed by the appearance of a growth
inhibition zone around the B. thuringiensis agar-plug (Figure 3A) and, for comparison purposes, it was
expressed as the diameter of the inhibition zone measured after 24 h of incubation at 37 ◦C.

5.5. Screening for the Antifungal Activity

The antifungal activity was tested using the dual culture method [110,112] with slight
modifications. Each fungal strain was spot-inoculated on Potato Dextrose Agar (PDA) plates and
incubated for 7 days at 28 ◦C. A series of six mm diameter plugs were cut out from these fungal cultures
(test fungi) using a sterile cork borer. Similarly, 6 mm B. thuringiensis plugs containing a single colony
(tested bacterium) were obtained from pre-inoculated NA plates as described in the antibacterial
activity method. The dual culture method consists on culturing both fungal and bacterial plugs
together under the appropriate conditions of the fungal strains.

On the surface of PDA plates, fungal and bacterial plugs were aseptically transferred using
a sterile toothpick. The fungal plug of one test fungus was placed at the center of the plate and three
bacterial test plugs, corresponding to three different B. thuringiensis isolates, were deposited radially 2.5
cm away, leaving a fourth position in the plate empty as a negative control. After incubation at 28 ◦C
for 3 to 7 days, the radius of fungal growth facing the bacterial plug or control position was measured.
The antifungal effect of the B. thuringiensis isolates (Figure 3B) was estimated by the “inhibition radius”
(IR), which is inversely proportional to the antifungal potency. The IR is defined as Rs/Rc, where,
Rs and Rc correspond to the fungal growth facing the tested bacterium (B. thuringiensis isolates) and
the control position, respectively (Figure 3B1).

5.6. DNA Extraction and PCR Analysis

Total DNA from B. thuringiensis isolates was extracted following the method described by
Ferrandis et al. [113]. The polymerase chain reaction (PCR) was used for the screening of endo-chitinase,
exo-chitinase, and lepidopteran-active protein coding genes cry1, cry2, cry9, and vip3. Each
amplification process was performed in a 25 µL reaction mixture containing 1.0 U of Taq DNA
polymerase (BIOTOOLS B&M Labs, S.A., Madrid, Spain), 1× Taq polymerase buffer, 0.4 µM of
each primer, 2.5 mM MgCl2, 0.2 mM of dNTPs, and 1.0 µL of DNA template (about 100 ng/µL).
All PCR reactions were performed in an Eppendorf Mastercycler thermal cycler (Eppendorf AG,
Barkhausenweg, Germany). The amplification protocol consisted of an initial denaturation step of
4 min at 94 ◦C, 35 cycles of denaturation (94 ◦C for 40 s), annealing (50 ◦C for 1 min for cry2, vip3, and
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exochitinase, 50 ◦C for 45 s for cry9 and endochitinase, and 48 ◦C for 50 s for cry1), and extension (72 ◦C
for 1–2 min), and a final extension step at 72 ◦C for 7 min. PCR products were analyzed in a 1% agarose
gel containing 0.5 µg/mL ethidium bromide. Primers used for the molecular screening were selected
from previous studies, except the vip3 reverse primer, which was designed from a conserved region
(from 1442 to 1472) based on the alignment of previously published sequences of vip3 genes [114].
Primers’ sequence, melting temperature, and expected amplicon size are shown in Table 5.
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