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Gamma oscillations are thought to be critical for a number of behavioral functions, they
occur in many regions of the brain and through a variety of mechanisms. Fast repetitive
bursting (FRB) neurons in layer 2 of the cortex are able to drive gamma oscillations over
long periods of time. Even though the oscillation is driven by FRB neurons, strong feedback
within the rest of the cortex must modulate properties of the oscillation such as frequency
and power. We used a highly detailed model of the cortex to determine how a cohort of
33 parameters controlling synaptic drive might modulate gamma oscillation properties. We
were interested in determining not just the effects of parameters individually, but we also
wanted to reveal interactions between parameters beyond additive effects. To prevent a
combinatorial explosion in parameter combinations that might need to be simulated, we
used a fractional factorial design (FFD) that estimated the effects of individual parameters
and two parameter interactions. This experiment required only 4096 model runs. We
found that the largest effects on both gamma power and frequency came from a complex
interaction between efficacy of synaptic connections from layer 2 inhibitory neurons to
layer 2 excitatory neurons and the parameter for the reciprocal connection. As well as the
effect of the individual parameters determining synaptic efficacy, there was an interaction
between these parameters beyond the additive effects of the parameters alone. The
magnitude of this effect was similar to that of the individual parameters, predicting that it
is physiologically important in setting gamma oscillation properties.

Keywords: parametric computation, cortical network, traub model, persistent gamma, fractional factorial design,

microcircuits, chattering neurons

INTRODUCTION
Neuronal activity throughout the hippocampus and cortex is
characterized by power in the gamma band (30–80 Hz). Gamma
oscillations occur during sleep and wakefulness and have been
hypothesized to be involved in attentive sensory processing, work-
ing memory and binding of sensory features (Gray, 1994; Singer
and Gray, 1995). A recent report has suggested that gamma
oscillations may enhance information transmission (Sohal et al.,
2009). These oscillations are found in the olfactory bulb (Adrian,
1942), hippocampus (Bragin et al., 1995) and in most regions
of the cortex (Bouyer et al., 1981; Eckhorn et al., 1988). They
also occur in a number of in vitro preparations (Fisahn et al.,
1998; Cunningham et al., 2003). The ubiquity and robustness
of gamma oscillations suggest that there may be several mecha-
nisms that generate them (Wang, 2010; Whittington et al., 2011).
In one mechanism, persistent gamma, oscillations are driven by
fast repetitive bursting (FRB) neurons, also known as chattering

cells. These oscillations are observed in slices perfused with carba-
chol or kainate (Buhl et al., 1998; Cunningham et al., 2004). FRB
cells are pyramidal neurons which respond to current injections
with bursts of high frequency action potentials but with a burst
frequency in the gamma range. They are mainly located in super-
ficial layers in the somatosensory cortex (Gray and McCormick,
1996) but may be located in all layers in the visual cortex at least
in cat (Cardin et al., 2005). Although FRB neurons play a key
role in driving persistent gamma, many neurons in the cortex are
recruited into the oscillation. Furthermore, there is likely to be a
complex interaction between single FRB neuron properties, the
microcircuit of coupled FRB neurons and the larger network.

Exploring mathematical models is an essential part of under-
standing complex neural systems. These models vary enormously
in the amount of detail represented in them. Lumped models,
for example, represent activity in a population of neurons with
a small number of state variables (Wilson and Cowan, 1972;
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Lytton, 2008) and the differential equations for the state variables
have a correspondingly small number of parameters. The goal
of these models is to develop a global view of system behavior
over the entire parameter space and this, in turn, provides a com-
plete qualitative understanding of the system. On the other hand,
highly detailed models are able to link subtle biophysical changes
to system behaviors. Genetic epilepsy is an example of where this
is useful (Thomas and Petrou, 2008). Single mutation epilepsies
may shift a biophysical parameter, for example voltage depen-
dence of channel activation, by a few millivolts which in turn
may have functional consequences (Thomas et al., 2007, 2009).
Computer simulation can link these changes to larger network
behaviors but the models must incorporate fine grain biophysical
detail.

Highly detailed models are parametrically complex and are
difficult to analyse for a number of reasons. Firstly, many param-
eters are uncertain because they are not measured for the partic-
ular species, age, brain region, or neuron type being described.
Secondly, there are also important differences in preparations or
behavioral state of the animal. The resting membrane potential,
for example, is different in vivo during normal behavior compared
to measurements in vitro such as in brain slices (Destexhe et al.,
2001). If the behavior of interest is thought to be sensitive to an
uncertain parameter then the modeler needs to vary the param-
eter in order to determine whether it is relevant or not. For large
models there will be many uncertain parameters and the com-
binatorial explosion in the number of parameter combinations
prevents an exhaustive examination of the entire parameter space.
Typically this is dealt with in an ad hoc manner with only a small
number of parameters varied. This not only misses potentially
important parameters but may also miss unexpected interaction
between parameters. Another problem with ad hoc methods is
that parameter exploration is done around a base or standard
configuration of the model, usually chosen because it is either
stationary or reproduces a behavior of interest. Thus, ad hoc
exploration provides only a limited view of the parameter space
in the local region around the base parameter set.

It will never be possible to fully analyse a parametrically com-
plex, non-linear model. However, with reasonable assumptions
and by reacting to model output it is possible to generate a global
view of large parameter spaces. The first assumption is that a real-
istic model is ‘well behaved’ in that response values are smooth
between physiological parameter values if there is no bifurcation.
If a bifurcation is present parameter values can be narrowed to a
region with smooth behavior. This same assumption is made in
experimental studies, for example when two drug concentrations
or two values of a stimulus are applied to a biological preparation.
The second assumption is that interactions between large num-
bers of parameters are small. Specifically, this means responses
beyond the cumulative effect of individual parameter changes
are small for large numbers of parameters. Again, this is also an
assumption of biological experiments were only a small number
of parameters can be varied. With these two assumptions it is pos-
sible to develop formal methods for handling large numbers of
parameters.

In this paper, we apply a method known as fractional fac-
torial design (FFD) (Box et al., 2005) to a detailed model of

the thalamocortical network. The method generates a subset of
a full factorial design (i.e., all parameter combinations), usu-
ally a significantly smaller subset. The outputs of the model are
then fitted to a response surface which estimates the effects of
parameters and parameter combinations. In the designs used
here, the primary effects of parameters are determined and
Two-Way parameter interactions, beyond the additive effects of
individual parameters. The model that we used is a previously
published highly detailed model of the thalamocortical network
(Traub et al., 2005b), one of the most detailed neural network
models published (Kopell, 2005). This network displays a vari-
ety of behaviors including gamma oscillations. In this study,
we concentrate on gamma-like activity and examine the role
of 33 parameters determining synaptic strength. The number
of runs required to examine two parameter values using a full
factorial design is 233 or approximately 8.6 × 109 which is not
tractable. Using the FFD software in the Nimrod grid toolkit
(Peachey et al., 2008a) we generated a design consisting of 4096
runs which is manageable on a high performance computing
facility.

MATERIALS AND METHODS
PARAMETRIC COMPUTATION
Experimental design has been a formal science for nearly a 100
years (Fisher, 1926). The techniques have gradually spread from
agricultural science to other sciences and to industrial process
control, but until recently, little use has been made in experi-
ments involving computer models. Our work uses one of the
fundamental design methods, FFD. Since this seems to be the first
application of FFD in computational neuroscience, we offer an
introduction to the area. A full description may be found in Box
et al. (2005); applications to computer modeling are described in
Peachey et al. (2008a) and Sher et al. (2010).

We consider a model with n parameters a, b, c, etc. and
response, φ. Any such integrable function may be expanded as

φ = k + {ψ1(a) + ψ2(b) + . . .} + {ψ12(a, b) + ψ13(a, c)

+ ψ23(b, c) + . . .} + {ψ123(a, b, c) + . . .} + . . . (1)

Where a, b, c, etc., are parameters, k is the mean response aver-
aged over all parameter inputs, ψ1(a) is the deviation from k due
to a, averaged over all values of the other parameters, ψ12(a, b) is
the deviation from k due to interaction between a and b, averaged
over c, d,. . ., and so on. The functions ψi are known as “main
effects”, ψij are “Two-Way interaction effects”, ψijk are “three-way
interactions” and so on. Although Equation (1) is not a Taylor
expansion (each ψ may be a complicated, even discontinuous,
function) it shares the property that, for all practical examples, the
high order interactions are relatively small and may be ignored.

Numerical explorations of the model must, of course, be lim-
ited to discrete parameter sets. The simplest useful such search
uses just two values for each input parameter, a low and a high
value. We assume that these parameters are translated and scaled
so that the high values all equal 1 and the low values –1, thus giv-
ing every parameter an equal weight in what follows. Now the
effect ψ1(a), for example, can take only two values. These must
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be of the form −ka, +ka since their mean is zero, so ψ1(a) may
be written as kaa. Similar considerations apply to all effects, and
equation (1) reduces to

φ = k + {kaa + kbb + kcc + ...} + {kabab + kacac

+ kbcbc + ...} + {kabcabc + ...} + .... (2)

With a slight abuse of terminology, these various k are also
called effects. There are 2n of them, so evaluation of φ for all com-
binations of the parameter values, a “parameter sweep” or a “full
factorial experiment,” will suffice to evaluate them.

If the actual response function is discontinuous, perhaps due
to bifurcations in the underlying phenomena, then (2) cannot
give an accurate approximation over the whole space. But even
in such difficult cases, practice shows that the absolute values of
the effects can still indicate the relative importance of the various
parameters and interactions in producing the final response. The
sign of each effect gives the direction of the contribution.

Results will not be definitive with such a coarse grained sam-
pling. For example if ψ1(a) is actually a2 then evaluation at
a = ±1 will show ka = 0, missing a possibly important effect.
Errors such as these are errors of omission rather than false pos-
itives. Further work with different values for the parameters or
with a finer grained model may reveal the missing effect. As
in all scientific investigations, results are indicative rather than
definitive.

On the subject of finer grained models, the next most common
model would use four values for each parameter. It requires two
subsidiary variables of ±1 for each parameter, effectively repre-
senting the two bits in the specification. This would then reveal
quadratic and cubic terms in the model but vastly increases the
computational load and makes interpretation much harder.

The determination of all the effects via a parameter sweep is
not practical when n is large; our case of 33 parameters would
require 233, over eight billion, runs of the model. However, even
when a large number of parameters are involved, typically just a
handful of the low order effects are significant and suffice to pro-
duce an accurate approximation to φ. Because of this, it is possible
to greatly reduce the required number of runs using FFDs where
a carefully chosen subset of the full factorial design will suffice to
determine the lower order effects. The crux of the design is to find
a “defining contrast,” where products of the parameters are con-
strained to the value 1. Consider the constraint acde = 1. Given
that each parameter may only take values ±1, once values for a,
c and d are chosen, the value for e is predetermined, so the total
number of runs possible is halved. There is a price to pay, how-
ever; now ac will always take the same value as de so it becomes
impossible to distinguish the two effects, an estimate is only pos-
sible for the combination kac + kde. We say that kac is “biased” by
kde, and vice versa. Similarly, kad is biased by kce, ka is biased by
kcde, k by kacde, and so on. Clearly this is an unacceptable con-
straint to use. A longer string in the constraint would bias low
order effects only against negligible ones. However, when several
constraints are used, they may combine to give undesirable biases.
We require a “resolution V” design, that is, one that biases second
order effects against third order ones at the worst, and first order
effects against fourth order. Note that once a suitable design has

been found it may be used for all the outputs of interest from the
model; there is no need to recompute the parameter set for each
output.

The design of FFDs is a difficult task. Usually, experimenters
consult literature or a web site for a suitable design. Such
resources do not supply the very large designs needed for some
computational experiments. Recently, (Peachey et al., 2012),
building on work by Liao and Iyer (1999), have developed an
algorithm that for the first time can produce designs of reso-
lution V with up to 130 parameters. The algorithm has been
incorporated in the Nimrod/E software (Peachey et al., 2008a)
and is freely available for download and use (MessageLab http://
www.messagelab.monash.edu.au/). Different defining contrasts,
for the same design requirement, will change the precise combi-
nation of higher order effects biasing lower order effects but not
the order of the biases. Under the assumption that higher order
effects are insignificant different designs will not be significantly
different from each other. Our software created 21 constraints for
a 33 parameter experiment and produced 233−21 = 4096 runs.

The fractional experimental design including the defining con-
trast and other source files required to reproduce our experiments
are available at ModelDB or by contacting the authors.

Only a handful of effects typically have a statistically signifi-
cant influence on model response and most effects are the result of
cumulative, small influences on the output and thus normally dis-
tributed. To visualize significant effects, effects are plotted against
their quantiles together with a line indicating an ideal normal
distribution. Effects for normal plots in Figures 5A and 6A and
significance values in Figures 5B and 6B were estimated using the
Yates algorithm (Box et al., 2005). Effects for Figures 5B and 6B
were calculated by fitting Equation (2), truncated after second
order effects, to the output. This is a linear model in the effects
and fitting was done by standard linear regression. The contri-
bution to the variance in Figures 5C and 6C was calculated by
summing the square of the effects, where effects are twice the size
of the regression coefficients.

We also estimated the quadratic effects for the three most
influential parameters. As discussed later, we had also run a full
factorial experiment in which the three most influential param-
eters were varied over four values each, ranging from half the
midpoint value to twice the midpoint value, with the other
parameters being set to midpoint values. This design allows
estimation of the model

φ = k + {kaa + kbb + kcc} + {kabab + kacac + kbcbc}
+ {kaaa2 + kbbb2 + kccc

2} (3)

where the three most influential parameters have been labeled
a, b, and c.

THE CORTICAL MODEL
A full description of the model is provided in Traub et al. (2005b).
Method validation (Figure 2) was performed with the full model
and the large parameter space experiment was performed with-
out thalamic neurons. The model contains the following neu-
ron types: layer 2/3 rhythmic spiking pyramidal cell (suppyrRS);
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layer 2/3 fast rhythmic bursting (FRB) pyramidal cell (suppyr-
FRB); superficial basket cell (supbask); superficial axoaxonic cell
(supaxax); layer 2/3 low threshold spiking interneuron (supLTS);
layer 4 spiny stellate cell (spinstell); layer 5 tufted intermediate
bursting pyramidal cell (tuftIB); layer 5 tufted rhythmic spik-
ing pyramidal cell (tuftRS); layer 6 non-tufted rhythmic spiking
pyramidal cell (nontuftRS); deep basket cell (deepbask); deep
axoaxonic cell (deepaxax); deep low threshold spiking interneu-
ron (deepLTS); and the following synapses: AMPA, NMDA, and
GABAA; Conductances: (1) A fast sodium conductance for action
potential generation, concentrated in the soma with dendritic
density decreasing distally, (2) a fast delayed rectifier potas-
sium conductance, responsible for action potential repolarization
and following the sodium channel density distribution (3) a
persistent Na conductance on the soma and less densely on
the dendrites, (4) a high voltage activated calcium conductance
(L type) uniformly distributed, (5) a low voltage activated cal-
cium conductance (T type) similarly distributed, (6) a calcium
and voltage activated potassium current (BK channels) with a
density following the calcium conductance, (7) a calcium, but
not voltage, activated potassium conductance (AHP) also follow-
ing the calcium conductance distribution, (8) a non-inactivating
potassium current (M current) uniformly distributed, (9) a
rapidly inactivating potassium current (A current) present on
the soma and proximal apical dendrite and to a lesser extent
on other dendrites, (10) a slowly inactivating potassium current
(K2 current), uniformly distributed on the membrane and (11)

a hyperpolarization activated inward current (h current) with
density increasing distally. Conductance densities were the same
as Traub et al. (2005b) (note this differs from the codes avail-
able in ModelDB). A diagram of the neuron and synapse types
is presented in Figure 1.

FRB neurons received constant random current injections to
mimic the effect modulators that drive activity in these neurons.
These neurons fired bursts of action potentials with a burst fre-
quency in the gamma range (Cunningham et al., 2004; Traub
et al., 2005a).

The specific parameters that were varied as part of this study
were post synaptic conductance densities (Table 1). Inhibitory
synapses are controlled by the density of GABAA receptors and
excitatory synapses are controlled by both the density of AMPA
and NMDA receptors which were scaled together. In this study, we
varied synaptic efficacy between populations of neurons defined
as excitatory or inhibitory populations in layers 2/3, 4, 5, and 6.
Parameter names reflect these populations of synapses, for exam-
ple e5i2 represents the group of synapses from all excitatory layer
5 neurons to all inhibitory layer 2 neurons. Thus, the parame-
ter values analysed here map to several conductance values in the
model. Low values of each parameter were half that in the original
paper and high values were twice the original value. Parameters
in terms of individual synapses are provided in our version of the
model available in ModelDB.

An approximation to the extracellular field potentials (EFPs)
was calculated as follows (Traub et al., 2005b); each neuron type

FIGURE 1 | Simplified diagram of the cortical network. (A) Layer structure
and connectivity between excitatory and inhibitory neurons. The color of the
lines indicates the strength of synaptic connection: red for strong excitatory,

green for intermediate excitatory, yellow for weak excitatory, dark blue for
strong inhibitory, and light blue for weak inhibitory. (B) Neuron classes
represented in the model.
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Table 1 | Model parameters varied in this study.

Parameter Source Target Parameter Source Target

e2e2 suppyrFRB suppyrFRB e2e5 suppyrFRB tuftIB
suppyrFRB suppyrRS suppyrFRB tuftRS
suppyrRS suppyrFRB suppyrRS tuftIB
suppyrRS suppyrRS suppyrRS tuftRS

e2e6 suppyrFRB nontuftRS e2i2 suppyrFRB supLTS
suppyrRS nontuftRS suppyrFRB supaxax

e2i6 suppyrFRB deepLTS suppyrFRB supbask
suppyrFRB deepaxax suppyrRS supLTS
suppyrFRB deepbask suppyrRS supaxax
suppyrRS deepLTS suppyrRS supbask
suppyrRS deepaxax e4e2 spinstell suppyrFRB
suppyrRS deepbask spinstell suppyrRS

e4e4 spinstell spinstell e4e5 spinstell tuftIB
e4e6 spinstell nontuftRS spinstell tuftRS
e4i6 spinstell deepLTS e4i2 spinstell supLTS

spinstell deepaxax spinstell supaxax
spinstell deepbask spinstell supbask

e5e2 tuftIB suppyrFRB e5e4 tuftIB spinstell
tuftIB suppyrRS tuftRS spinstell
tuftRS suppyrFRB e5e5 tuftIB tuftIB
tuftRS suppyrRS tuftIB tuftRS

e5e6 tuftIB nontuftRS tuftRS tuftIB
tuftRS nontuftRS tuftRS tuftRS

e5i6 tuftIB supLTS e6e2 nontuftRS suppyrFRB
tuftIB supaxax nontuftRS suppyrRS
tuftIB supbask e6e4 nontuftRS spinstell
tuftRS supLTS e6e6 nontuftRS nontuftRS
tuftRS supaxax e6i2 nontuftRS supLTS
tuftRS supbask nontuftRS supaxax

e6i6 nontuftRS deepLTS nontuftRS supbask
nontuftRS deepaxax i2e2 supLTS suppyrFRB
nontuftRS deepbask supLTS suppyrRS

i2e4 supLTS spinstell supaxax suppyrFRB
supaxax spinstell supaxax suppyrRS
supbask spinstell supbask suppyrFRB

i2e5 supLTS tuftIB supbask suppyrRS
supLTS tuftRS i2i6 supLTS deepLTS
supaxax tuftIB supLTS deepaxax
supaxax tuftRS supLTS deepbask

i2e6 supLTS nontuftRS i6e4 deepLTS spinstell
supaxax nontuftRS deepbask spinstell

i2i2 supLTS supLTS i6e5 deepLTS tuftIB
supLTS supaxax deepLTS tuftRS
supLTS supbask deepaxax tuftIB
supbask supLTS deepaxax tuftRS
supbask supaxax deepbask tuftIB
supbask supbask deepbask tuftRS

i6i6 deepLTS deepLTS i6e6 deepLTS nontuftRS
deepLTS deepaxax deepaxax nontuftRS
deepLTS deepbask deepbask nontuftRS
deepbask deepLTS
deepbask deepaxax
deepbask deepbask

Each parameter determines conductance density at the corresponding synapses. A parameter value of −1 corresponds to half the value in the original model and a

value of +1 corresponds to twice the original value.
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has an assigned depth based on anatomical data for rat auditory
cortex. EFP at the recording site is proportional to the sum of
currents generated by the soma and basal and apical dendrites
of pyramidal neurons. Assuming constant extracellular resistiv-
ity this will be proportional to the product of the transmembrane
voltage and the compartment surface area and inversely pro-
portional to the distance to the recording electrode. Because
no specific values of the extracellular resistivity or membrane
conductance were used, EFP units are arbitrary. We calculated
the EFP for an electrode located on the surface of the cortex
representing an electrocorticogram.

Power spectra were estimated from the last 1000 ms of the
run, to avoid influence from the initial conditions, using a peri-
odogram and band passed as indicated in the text.

COMPUTATIONAL DETAILS
Simulations were performed with the NEURON simulation soft-
ware (Carnevale and Hines, 2006) using a port of the original
FORTRAN code (available from ModelDB). A parallel version
of the code was generously provided by Michael Hines. This was
parametrically identical to the serial version and our testing con-
firmed that that the parallel and serial version produced the same
results. The parallel version of the code performed satisfactorily
up to 40 processors, the maximum number we tested. Runs were
2000–3000 ms and each took 20–30 CPU h on an Intel 2.7 GHz
Xeon processor. Experimental design and run management
was performed by the Nimrod tool chain (messagelab.monash.

edu.au/Nimrod). Effect estimation and statistical analysis was

performed by custom Matlab (Mathworks, USA) and R scripts
(www.r-project.org).

RESULTS
METHOD VALIDATION
We tested the ability of a FFD to estimate the response of a
full factorial design. We studied eight parameters that scaled all
synaptic output from inhibitory or excitatory neurons for each
of layers 6, 5, 4, and 2/3 independently of target population. A
full experiment requires the model to be run for each param-
eter combination for each of two values per parameter, that is
28 = 256 runs. We also designed a 28−2 = 64 fractional factorial
run that estimated first and second order effects possibly biased
by third or higher order effects. This experiment was designed
using Nimrod/E software (Peachey et al., 2008a) which produced
the defining contrast bcdgh and acdef. The complete design of
the experiment is available as part of the ModelDB submission.
Figure 2 compares output from the full factorial design to out-
put recreated after estimating effects from the FFD. The outputs
that we tested were total power and frequency of peak power in
the 20–80 Hz band. The fractional experiment was able to repro-
duce the peak frequency within 9%, and the log total power to
within 2%. This is more than adequate given other uncertainties
in biological models.

MODEL OUTPUT
We applied the FFD to investigate how the synaptic connections
between the different layers of a cortical column influence gamma

FIGURE 2 | A comparison between the full factorial design of 256 runs

and the response predicted from a fractional design of 64 runs. The run
number is an arbitrary assignment to runs from the full factorial experiments.
Outputs from the fractional experiment are plotted as black circles with
the run number corresponding to the parameter values from the full
experiment. The black line is the output from the full experiment. The red

line is the output of Equation 2 after effects were estimated from the
fractional experiment. The error is the normalized mean of the difference
between the recreated output and the output from the full experiment. (A)

Log of the mean power in the 20–80 Hz power band. (B) Frequency of peak
power. The relative error between the full sweep and the fractional
sweep are indicated.
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oscillations. All 4096 runs for the model displayed robust oscil-
lations in the 15–80 Hz range. Example raster plots and single
neuron membrane potential traces are shown in Figure 3. The
oscillation frequency was defined as the frequency of peak power
in 15–80 Hz band. A histogram of the frequency distribution is
shown in Figure 4. As a control, to demonstrate that FRB neurons
are driving the oscillation, we were able to quench the oscillation
when negative current was injected into FRB neurons.

All neuron types in layer 2/3 were consistently recruited into
the oscillation. Layer 4 was consistently silent, neurons failed to
fire action potentials and were subject to heavy inhibitory synap-
tic bombardment (Figure 3). Layer 5 neurons were also silent
but did receive excitatory synaptic bombardment from superfi-
cial layers. Layer 6 inhibitory neurons were recruited into the
oscillation, however, the degree of recruitment varied between

runs (Figures 3A vs. 3C). These neurons fired action potentials
slightly behind superficial cortical activity, but otherwise synchro-
nized with the oscillation. Layer 6 pyramidal neurons were subject
to inhibitory synaptic bombardment from layer 6 inhibitory
neurons.

ANALYSIS OF RUN OUTPUT
We analysed the peak frequency and power at peak frequency
from power spectra derived from the local field potential after the
model reached a stable oscillation.

Frequency of peak power
The frequency distribution (Figure 4) fell into several distinct
bands, some of which were below the definition of gamma fre-
quency. However, in all cases there was power in the gamma band.

FIGURE 3 | Example model output. Left hand panels (A,C) are raster plots
where each dot represents an action potential with neuron types color coded
and cortical layers as indicated. Neuron types are, from top to bottom, Layer
2/3: superficial RS, superficial FRB, superficial basket, superficial axoaxonic,

superficial LTS. Layer 4: spiny stellate. Layer 5: tufted IB, tufted RS. Layer 6:
nontufted RS, deep basket, deep axoaxonic, deep LTS. The solid line is local
field potential with magnitude indicated on the right hand axis. Right hand (B,D)

panels are membrane potential traces from individual neurons as indicated.
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FIGURE 4 | Histograms of frequency of peak power. (A) Frequencies from the 4096 run experiment. (B) Frequencies from an experiment in which the three
most influential parameters were varied over four levels each.

To determine whether the apparent discretisation of the peak fre-
quency was due to the small number of parameter levels used
we performed a full factorial, 64 run, experiment using 4 val-
ues of parameters e2e2, e2i2, and i2e2. In this case, the frequency
histogram was largely continuous in the 20–40 Hz band (for
15–80 Hz band passed spectra). This indicates that there was no
bifurcation in the model over the parameter range tested and the
assumption that model varies monotonically over this range is
reasonable.

We estimated the effects for peak power outputs in the
30–80 Hz band from the 4096 run parameter sweep. A quantile
plot of the effect sizes is shown in Figure 5A. Most effects are dis-
tributed on a normal distribution, indicated by the straight red
line, suggesting that cumulatively they only contribute to noise.
The top 25 effects are plotted in Figure 5B together with lines
indicating 95 and 97.5% confidence levels. The largest effect is
the main effect for e2i2 which scales synaptic efficacy from both
populations of layer 2/3 excitatory neurons to all three popu-
lations of layer 2/3 inhibitory neurons. The next largest effect
is e2e2 which scales the efficacy of synaptic transmission from
layer 2/3 excitatory neurons onto themselves. The fifth largest
effect is i2e2 which scales synaptic efficacy from all layer 2/3
populations of inhibitory neurons to both populations for layer
2/3 excitatory neurons. The 3rd, 4th, and 6th largest effects are
each of the Two-Way interactions, beyond additive, of the three
parameters.

As another measure of the influence of parameters on model
output, we plotted the contribution to the variance of parameters,
either as main effects or in higher order interactions (Figure 5C).
The top three effects were the same as those identified through
direct estimation of the effects. Synaptic drive in deep layers also
contributed to the variance but at much lower levels.

POWER IN THE GAMMA BAND
We generated model responses from the total power in the
30–80 Hz bands and performed a similar analysis to that in the
previous section. Quantile plots of effects are shown in Figure 6A.
Most effects fall on a normal distribution and thus are noise. The
25 effects with the largest magnitudes are plotted in Figure 6B
together with 95 and 97.5% confidence lines. For these outputs,
the largest effects are synaptic drive into layers 5 and 6. The largest
effect is the main effect for parameter e2e5, scaling synaptic drive
from both populations of layer 2/3 excitatory neurons onto both
populations of layer 5 pyramidal neurons (Figure 1). The remain-
ing effects are either primary effects for synaptic efficacy between
both excitatory and inhibitory neurons within layers 5 and 6 or
interactions between these parameters beyond additive. We also
determined the contribution of parameters to the variance, either
as main effects or as part of higher order interactions (Figure 6C).
This analysis also recapitulates the ranking of parameters derived
from the direct estimate of effects.

ESTIMATING QUADRATIC EFFECTS
The three parameters with the most influence on gamma fre-
quency are e2e2, e2i2, and i2e2. Using the output of the 64 run
experiment, where each parameter was varied over four values, we
fitted the model described by Equation 3 to these data using least
squares (Table 2). The regression coefficients show that there is
a marked significant interaction between e2i2 and i2e2 for both
gamma power and frequency of peak power. We also tested a
model of the form

φ = k + {k(1)
ab (a + b) + k(1)

bc (b + c) + k(1)
ac (a + c)}

+ {k(2)
ab (a + b)2 + k(2)

bc (b + c)2 + k(2)
ac (a + c)2} (4)
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FIGURE 5 | Parameters determining gamma frequency. (A) Distribution of
effect sizes plotted against quantile value for a normal distribution. (B) The
top 20 effects by magnitude. The first 2 characters of the parameter labels
indicate source neuron population, e/I being inhibitory/excitatory and layer
and the second two characters indicate target neuron population.

The dashed vertical line indicates 95% confidence and the dashed line
indicates 97.5% confidence. (C) This bar plot show contribution to the
variance in model output. Black indicates the contribution of the parameter
alone and red indicates contribution of the parameter as part of a higher
order interaction.

FIGURE 6 | Parameters determining gamma power. (A) Distribution of
effect sizes plotted against quantile value for a normal distribution. (B) The
top 20 effects by magnitude. The first 2 characters of the parameter labels
indicate source neuron population, i/e being inhibitory/excitatory followed by
layer number and the second two characters indicate type and location of

target neuron population. The dashed vertical line indicates a 95%
confidence and the dashed line indicates 97.5% confidence. (C) This bar plot
show contribution to the variance in model output. Black indicates the
contribution of the parameter alone and red indicates contribution of the
parameter as part of a higher order interaction.

However, this model was significantly worse for both gamma
power [F(4, 54) = 3.20, p < 0.020] and for frequency of peak
power [F(4, 54) = 6.17, p < 0.001].

DISCUSSION
We have studied gamma oscillations in a detailed model of cor-
tical circuitry. The oscillations we studied are driven by so called
chattering neurons, pyramidal neurons that fire short bursts of
action potentials at approximately gamma frequency when stimu-
lated with current injections or sensory input (Cunningham et al.,
2004; Cardin et al., 2005). In the Traub, model these neurons
are in layer 2 of the cortex although they may be found in other
cortical layers for some regions or species (Cardin et al., 2005).

They are nevertheless embedded in a network with a high level
of positive and negative feedback through inhibitory and excita-
tory synaptic connections. The question addressed in this study,
is how does synaptic efficacy in this network affect properties of
gamma oscillations. We grouped several synaptic parameters into
a single parameter controlling synaptic efficacy from excitatory
or inhibitory neurons grouped by cortical layer. This created 33
parameters.

METHODOLOGICAL ISSUES
It is not possible to perform an exhaustive examination of this
parameter space. Ad hoc methods, such as varying a single or
small number of parameters simultaneously, are unsatisfying
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Table 2 | Effects for a quadratic model.

Power Peak frequency

k 101292∗∗∗ 38.51∗∗∗

ka 22402∗∗∗ 1.33∗

kb 56794∗∗∗ −6.03∗∗∗

kc 66238∗∗∗ −2.18∗∗

kaa 20535 −0.37

kbb 10320 1.88

kcc −5458 −0.10

kab −14355 1.57

kac −19208∗ −0.20

kbc 78082∗∗∗ −6.10∗∗∗

Effects estimated for Equation (3) from a 64 run experiment and significance

values for linear, quadratic, and interaction terms estimated from cubic terms.

Here a, b, and c refer to e2e2, e2i2, and i2e2, respectively.
∗, 0.05; ∗∗ , 0.01; ∗∗∗, 0.001.

because they lack rigor and they provide no quantification of
parameter interactions. FFD allows the experimenter to deter-
mine which potential parameter interactions are detected and the
degree to which they may be biased by other interactions. As
part of this process the full response of the model can be esti-
mated (Equation 2) and we used this to test the method on a
small parameter space (Figure 2). These are important advan-
tages of FFD and other formal methods over ad hoc approaches.
We believe adoption of formal methods in computational neu-
roscience will be critical for the study and interpretation of
parametrically complex models. To examine our parameter space,
we generated a FFD that estimated unbiased first order effects
and second order effects biased by higher order effects. This
experiment required 4096 runs.

The model described by Equation (2) is linear in each param-
eter. This model allowed determination of the most significant
parameters but does not exclude the possibility of nonlinear
effects. Once important parameters are identified, focused experi-
ments can be designed to seek higher order interactions. Using the
model described by Equation (3) we tested for quadratic effects
in the three most influential parameters identified from the linear
model. We found no significant quadratic effects. Interestingly,
the new experiment also identified the interaction between i2e2
and e2i2 as being statistically significant. The demonstrates how
a large experiment, examining many parameters, can be part of
a methodology whereby significant effects can be followed up by
more directed and smaller experiments.

PHYSIOLOGICAL IMPLICATIONS
An initial observation is that excitatory neurons in cortical lay-
ers 4, 5, and 6 did not spike during the oscillation although
they did receive prominent synaptic input (Figures 3B,D). This
is potentially significant as it will determine how these neurons
process extrinsic inputs. For example, layer 4 neurons receive sen-
sory input directly from the thalamus (Chmielowska et al., 1989)
and the response of these neurons to sensory events is highly
labile (Petersen et al., 2001). Therefore, a gamma oscillation that
produces changes in membrane potential (but not spikes) in layer

4 could be very important in determining the response of the cor-
tical column to sensory input. Pyramidal neurons in layer 5 also
receive direct sensory input (Reyes and Sakmann, 1999) as well
input from within the column and extra-columnar inputs (Lubke
and Feldmeyer, 2007). Layer 6 pyramidal neurons are only weakly
innervated by thalamic afferents but have inputs from layer 6 neu-
rons in other columns (Mercer et al., 2005). Response in these
neuron populations will be influenced by the membrane potential
oscillations. This, in turn, will determine how these neurons pro-
cess sensory input arriving from the thalamus and inter-columnar
input.

We calculated EFPs in the superficial layers for the cortex mim-
icking the field potential measured by an electrode placed on the
surface of the cortex. From the time domain field recordings, we
calculated power spectra to determine total power in the gamma
band and frequency of peak power in the gamma band. From
these outputs we estimated the effects, parameters in Equation 2.
The effects are calculated for rescaled, and hence dimension-
less, parameter values. Therefore, the relative magnitude of the
effects determines how much that parameter, or parameter inter-
action, influences the output over the full physiological range
of the parameter. It is analogous to a sensitivity measure but
applies globally rather than at around a single point. In the case
of peak frequency, the six largest effects all control synaptic drive
within layer 2. For example, the largest effect is the main effect
for synaptic efficacy from excitatory layer 2 pyramidal neurons
to inhibitory layer 2 neurons (e2i2). In this case, the effect has
a negative sign indicating that an increase in the value of this
parameter decreases the frequency. The synaptic efficacy of the
reciprocal connection, that is inhibitory layer 2 neurons to layer
2 excitatory neurons (i2e2) also has a large effect on output fre-
quency, with larger values decreasing the frequency of peak power.
Interestingly, these parameters had a strong multiplicative inter-
action. The second largest effect is from the product of these
two parameters, i2e2 × e2i2. For example, individually param-
eters e2i2 and i2e2 had effects of −3 and −2, respectively, but
the combination of e2i2 × i2e2 had an additional effect of –1.2
beyond the additive interaction alone. It is unlikely that this inter-
action would have been detected by an informal parameter space
search.

There was also a contribution to field potential power from the
parameter determining excitatory drive from layer 2 into layer 6
(e2e6). The deep layers did not fire action potentials, however,
synaptically driven membrane potential changes contribute to
EFP and this in turn contributes to gamma power.

CONCLUSIONS
Biological systems are parametrically complex, and it remains an
open question as to which components of the system are criti-
cal for function and which components are constrained by other
factors. For this reason, it is important to work with parametri-
cally complex systems just as it is important to work with more
abstract models. The strength of abstract models is that they
can provide a global understanding of system behavior while the
traditional weakness of parametrically complex models is that
they only provide local insight into model behavior near the
parameter values tested or at best in a small subspace of the
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entire parameter space. We have used FFD to explore a 33 dimen-
sion parameter subspace. Under reasonable assumptions we can
conclude that we have a global, qualitative understanding of
this subspace. The first assumption is that Equation 2 provides
a reasonable qualitative understanding of the model. If there
are no bifurcations, the analysis presented here will identify the
most influential parameters. When only two parameter values
are tested it is not possible to pick nonlinearities in the initial
experiment but subsequent experiments can be designed to pur-
sue potentially interesting nonlinearities if a more quantitative
understanding is required. If the model bifurcates this will be
apparent in the output, for example as bimodal histograms or
global deviations from normality in the quantile plot. By plot-
ting histograms while holding individual parameters constant, it
will be possible to identify the bifurcation parameter. It is worth
noting that determining ranges of parameters, both for formal
and ad hoc methods, must still be guided by physiological con-
siderations and preliminary model exploration. Bifurcations are
of immense interest as they indicate a switch from one behav-
ior to another and the suspected bifurcations can be explored

with further model runs. The second assumption is that high
order interactions (combinations of 3 or more parameters) are
not significant. The number of values estimated is equal to the
number of runs less one. Most of these are estimates of higher
order effects, yet we found that only first order and some second
order effects were significant. This supports the assumption that
higher effects do not contribute qualitatively to model behavior.
We believe this and similar methods for gaining a global under-
standing of large parameter spaces will play an important role in
brain modeling.
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