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There is a growing recognition that a good diet can help people maintain mental

and physical health, while a bad one will cause the disorder of body function, and

even lead to several diseases. A lot of attentions have been devoted to analyze every

possible health-related factor in the daily diet, including food ingredients, additives, and

cooking process. With the support of high-throughput sequencing technology, there is

accumulating evidence gradually clarifying that most of these factors are mainly through

the interactions with gut microbiome to trigger downstream effects. The gut microbiome

may be able to act as a very sensitive mirror in response to human daily diet. A complex

network of interactions among diet, gut microbiome, and health has been gradually

depicted, but it is rarely discussed from a more comprehensive perspective. To this end,

this review summarized the latest updates in diet-gut microbiome interactions, analyzed

most identified factors involved in this process, showed the possibility of maintaining

health or alleviating diseases by diet intervention, aiming to help people choose a suitable

recipe more accurately.
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INTRODUCTION

Food provides energy and nutrition that has a great impact on health, mainly by changing the
gut conditions and then influencing host immunology homeostasis. Trillions of microbes settle
in the gut and play fundamental roles in metabolism, endocrine, neuronal, immune and many
other aspects of body function. Notably, diet can greatly influence gut microbiome (1), which can
greatly impact host’s health. Given the inextricable relationship among diet, gut microbiome, and
health, numerous studies have been carried out to explore the underlyingmechanism (2). Especially
at present, obesity, inflammatory bowel disease, allergic diseases, cognitive aging, Alzheimer’s
disease, and many other non-communicable diseases have become an important health problem
in developed and developing countries (3–5), highlighting a need to understand how to attenuate
these problems, while diet intervention seems to be the most effective and pleasant way (6, 7).

Dietary habits have a profound effect in shaping the gut microbiome in real time since
birth. Microbes colonize the gut immediately after birth, and such early development of gut
microbiome is thought to be driven and regulated, at least in part, by specific compounds present
in breast milk (8, 9). Several host and external factors modulate the establishment of the immunity
during the fetal and early postnatal life, however, few are as important as the interaction with
commensal microbes, which is not only the most intimate environmental exposure but also
represents a challenge to the development of host (10–13). For example, infants with lower relative
abundance of Bifidobacterium, Akkermansia, and Faecalibacterium are at higher risk of CD4+
T cell dysfunction, which might induce to childhood atopy and asthma (10), and the dysbiosis
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of these microbes is currently clearly related to unsuitable
formula feeding (12, 13), showing the importance of early feeding
of babies. On the other hand, some Bifidobacterial species have
evolved to utilize glycan in human secretion, which represents the
adaptive ability at transformation of symbiotic microorganisms
to the host, and it is believed that both sides will benefit (14–16)
viamicrobiome-host cell interactions.

Infancy is the starting point for the development of gut
microbiome, which will gradually mature in the next 3 years
and undergo changes over a life-long time (17). From infants
to adults, the host itself and gut microbes are co-evolving
and interacting, while it is important to provide a harmonious
environment for each side (18–20). In healthy adults, the overall
composition of the gut microbiome can be stable for several
years (21), but the relative abundance of each member contained
in is highly variable (22). Long term dietary habits affect the
development and maturation of gut microbiome, but this does
notmean that temporary adjustment is not possible to achieve the
desired aims, especially foodborne microorganisms, including
bacteria, fungi and even viruses, can quickly colonize the gut.
A study of human diet intervention showed that changes or
adjustments of food types in an extremely short time can
quickly change the structure of gut microbiome, which will
become completely different in 3 or 4 days, and overwhelms
the individual differences in microbial gene expression and
personal genetic background (22, 23), showing the universality
and potential of the dietary intervention (23). Therefore, no
matter for any stage of life, choosing a reasonable diet has an
obvious salutary influence on health.

In the long history, people’s eating habits are also gradually
changing. From the original menu shared by primitive humans
and wild animals, such as orangutans and monkeys, to the
farming period when people ate certain kinds of grains with
little meat, and then to the modern food produced by complex
process and containing a variety of additives in the industrial
era, gut microbiome itself has also undergone the challenges of
these changes, and become completely different. It’s still hard
to say whether this change is good or bad. The previous study
concerning the traditional populations gives us an overview of
human-relatedmicrobes influenced by industrialization, and also
a window into the co-evolution between the microbiome and
human, showing that not only the microbiome from the Hadza
hunter-gatherers of Tanzania seasonally shift in bacterial taxa,
diversity, and carbohydrate utilization, but also shares certain
microbes with several other traditional populations that are
almost rare or absent from microbiomes of modern countries
(24, 25). Given the positive correlation between the diversity
of gut microbiome and health, there is no doubt that the
transition from the traditional farming era to the industrial age
has resulted in the loss of critical organisms and functionality for
industrialized populations, even if their effects on health have not
been elucidated. There is no doubt that food in the industrial era
has not made our gut microbiome more resilient, which may be
the reason why the incidence rate of many non-communicable
diseases is increasing with the development of society and is
more significant in developed countries (3, 26–28). As a result,
for most people with long-term unchanged recipes, their gut

microbial diversity is gradually lost, which in turn affects the
host, causing more diseases. For example, the western diet (ultra-
processed foods with excess fat, sugar, additives, and a very small
amount of micronutrients and dietary fiber) is closely related
with the current prevalence of obesity and several othermetabolic
diseases, because the environment shaped in the gut by this
dietary patterns provides fertile soil for microbes that can induce
diverse inflammatory diseases (29–31). Therefore, clarifying the
role of the microbiome in diet-related diseases is of great
importance to precision medicine, dietary recommendation, and
food production practice.

At present, it has been widely recognized that there are
a large amount of microbial species that settle in the gut,
while the composition and function of it are closely related to
the diseases of the digestive, nervous, respiratory, metabolic,
and cardiovascular system (32). A lot of work has focused on
exploring the potential relationship and related mechanisms of
microbial mediated diseases, and many new findings have been
used to guide patients to choose appropriate long-term or short-
term diet intervention to alleviate the disease or accelerate the
recovery (33, 34). Most of them demonstrated that low energy or
high fiber diet is very helpful to revitalize gut microbiome, which
happens to provide an improvement suggestion for those who
have already adapted to the western diet, especially for people
who are suffering from obesity or autism (35–39). With the help
of advanced sequencing technology and analysis technology, we
can accurately depict the profile of gutmicrobiome in people with
or without a certain condition, but it is difficult to say whether
these differences are the cause or the consequences of related
diseases. Relatively few randomized, clinically controlled dietary
interventions targeting gut microbiome have been reported in
humans, thus more accurate experiments should be carried out
as soon as possible to make up for these gaps.

Now, the accumulated evidence is gradually clarifying the
relationship between diet, microbiome and disease. This review
will analyze the effects of diet on the gut microbiome from
different aspects, including food (carbohydrates, fats, proteins,
minerals, and vitamins), additives and different cooking and
processing etc., and try to establish a complete framework from
these perspectives, show the focus of related research, and lay a
foundation for future research and development.

CARBOHYDRATES

Carbohydrates are composed of carbon, hydrogen, and oxygen,
which are the most abundant organic compounds with broad-
spectrum chemical structure and biological functions (40). They
can be expressed by the general formula Cx(H2O)y and works
as the main source of energy for the human body. Generally,
there are two types of carbohydrates in food: the effective
carbohydrates that people can totally digest and then absorb
as well as the ineffective counterparts that people can’t digest
by themselves, namely non-digestible carbohydrates, which are
far away from the way digestible carbohydrates go in the gut.
Non-digestible carbohydrates get through the first part of the
digestive tract completely to the ileum and colon, and then will be
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digested by the microbes that reside there, thus they can also be
called microbiome-accessible carbohydrates (MACs) and offers
the main energy for colonic microbes (41). These non-digestible
carbohydrates have a huge impact on the gut microbiome, while
dietary fiber is one of them that has been most clearly studied. As
early as 45 years ago, Trowell’s study showed that the cause of type
2 diabetes may be due to the lack of dietary fiber in the diet, while
rapid changes in dietary habits led to a large-scale epidemic of
diabetes in the Pima Indians, who changed their traditional diet
containing sufficient non-digestible carbohydrates to a modern
diet with scarce fibers and cereal products (42). These non-
digestible carbohydrates, including human milk oligosaccharides
(HMO), serve as not only anti-sticking agents that prevent
pathogen adhesion and promote immune maturation, but also
providing guidance for the maturation of the gut microbiome,
contributing to human health (43, 44). For this purpose, specific
non-digestible carbohydrates (NDC) are being produced, such
as galactooligosaccharides (GOS) and fructooligosaccharides
(FOS), which are currently being added to infant formulas to help
the healthy development of the gut microbiome in China (45).

Application of the state-of-art sequencing methods has
updated our knowledge of the function of dietary fiber,
demonstrating that it plays an important role in affecting
the microbiome structure and function. For example, the gut
microbiome generates short-chain fatty acids (SCFAs) essential
for gut health (46–49). There was a significant correlation
between SCFAs levels and microbial community composition.
Fermentation of dietary fiber could reduce the pH in the colon
(5.5 to 6.5), and slow down the growth of several gram-negative
pathogens, such as Salmonella and Escherichia coli (50, 51),
providing a clear clue to themechanism of dietary fiber regulating
gut microbiome. Based on this theory, many studies have clearly
described the negative effects of dietary fiber deficiency on gut
microbiome and host, and demonstrated the benefits of short-
term or long-term dietary fiber supplementation, especially for
people with obesity and metabolic diseases. For example, an
insufficient supply of dietary fiber will make certain beneficial
bacteria strains disappear (52). More seriously, in chronic or
intermittent dietary fiber deficiency, intestinal microbes will
digest mucus glycoprotein secreted by the host, and erode the
colonic mucus barrier. Lack of dietary fiber, combined with fiber
deficiency and mucus corroding microbes, gives the mucosal
pathogen, Citrobacter rodentium, more opportunities to contact
the epithelium and cause fatal colitis (53).

In contrast, extra dietary fiber supplements seem to be
beneficial. Eating 25 to 38 g dietary fiber each day was
confirmed to be closely related to a reduced risk of type 2
diabetes by 20–30% (54). Furthermore, dietary fibers from
chicory inulin and sugar beet pectin can be employed to
control the immune response to nosocomial infections
caused by non-fermenting Gram-negative bacilli, such
as Sphingomonas paucimobilis (55), confirming again the
importance of carbohydrates in the diet. The opposite is a
so-called “weight loss” diet that are high in protein and low in
carbohydrate, which will increase the number of Bacteroides
and reduce Firmicutes, and then lead to higher risk of colon
disease (56).

FATS

Fat is mainly digested in the upper part of the small intestine,
where it will be hydrolyzed into glycerin and fatty acids by
various enzymes and bile acid salts, and then works as the
main source of calories, satisfying half of the energy needs of
us (57, 58). The gut microbiome also interacts intensively with
dietary fat. On the one hand, gut microbiome impacts the energy
balance of host, playing an important role in the absorption
and metabolism of dietary fat (58, 59). What’s more interesting
is that gut microbes can even determine the distribution of fat
in the body, thus forming different body shapes (60). On the
other hand, the high-fat diet can effectively alter diurnal patterns
of gut microbiome structure and function, finally achieving
a new balance (57), but a lot of times it’s harmful. High-
fat diets are associated with a reduction in intestinal bacterial
diversity, changes in membrane integrity, inducing increased
permeability and increased lipopolysaccharide translocation,
changes in the immune system, and generation of low-intensity
systemic inflammation. Mouse experiments demonstrated that a
high-fat diet causes a significant increase in intestinal deoxycholic
acid (DCA) that promotes liver cancer (61). Although there
is no evidence that there is a corresponding phenomenon in
the human body, it cannot be ignored that some potential
negative effects must exist. Another study further confirmed
that the animal-based diet significantly increased the activity
of bacterial genes that encode microbial bile salt hydrolases
(22), which are necessary for DCA production by intestinal
microorganisms (62). Elevated DCA levels may in turn lead to
microbial disorders in the animal-based diet, as this bile acid
inhibits the growth of Bacteroides and Firmicutes members (63).
A high-fat diet also promotes the growth of B. wadsworthia
(22), while the production of B. wadsworthia, H2S, is thought
to inflame intestinal tissue and then case the inflammatory
bowel disease (64). The mechanism behind this has also been
fully analyzed. Firstly, Bifidobacterium-containing clusters are
positively correlated with long-term dairy as well as baseline
saturated fat intake, supporting the potential association with
milk-related saturated fat (64); secondly, the animal-based diet
increases the concentrations of fecal bile acid significantly;
thirdly, the relative abundance of microbial DNA or RNA
encoding sulfite reductase in the animal-based diet is significantly
increased (22). All these findings support the idea that the
effect of the diet-related factors on gut microbiome may induce
inflammatory bowel disease.

Different from what is generally believed, the harm of the
high-fat diet is not only for the old who have a low metabolic
level but also for the young. In a recent study, 217 young
adults (18 to 35 years old; body mass index below 28 kg
per m2; 48% men) were invited to a 6-month randomized
controlled-feeding trial by taking three different diets (20, 30,
and 40% fat energy), demonstrated that the high fat intake of
healthy young people seems to be related to adverse changes in
the gut microbiome, fecal metabolic profiles and plasma pro-
inflammatory factors, while these taking a lower-fat diet showed
an increased α-diversity, increased abundance of beneficial
Blautia and Faecalibacterium (65). Intestinal Blautia is related
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with decreased death risk from graft-vs. host disease, and
Faecalibacterium prausnitzii is an anti-inflammatory commensal
bacterium (66–68). Besides, the high-fat diet of young mothers
is also important for the composition of their children’s gut
microbiome, which indirectly indicates that excessive fat intake
is also unhealthy for infants (69). Therefore, excessive fat intake
should be avoided at any stage of life to minimize the risks
associated with it.

Many cases highlighted the benefits of the low-fat diet.
Hyuju et al. found that the low-fat/high-fiber diet can promote
anastomotic healing by regulating the microbiome in mice
(70). In short, compared with low-fat/high-fiber (SD)-fed
mice, Western diet (WD)-fed mice have an increased risk of
anastomotic leakage, an increase in the relative abundance
of Enterococcus in the intestinal lumen. After the operation,
the microbial community of SD-fed mice (rather than WD-
fed mice) returned to its preoperative composition. When
WD-fed mice were exposed to the SD diet for 2 days
before antibiotics and surgery, anastomotic healing was also
significantly improved (70). Such study should be repeated
in humans, and if the same results exist, it will be very
helpful to develop specific diets to help patients recover
from trauma.

However, an extremely low-fat diet is not always good,
and the most important thing is to find a balance. Evidence
from an animal experiment showed that long-term low-fat diet
inhibited cholecystokinin (CCK) satiation, changed the caecal
metabolome, and then reduced caecal weight in rats (71), which
indicates that the low-fat diet must be used with caution, even for
those who want to lost weight, before determining all potential
side effects of it.

PROTEINS

Protein and corresponding metabolites (mainly amino acids)
are vital to human body functions and are also the main
source of nitrogen for gut microbes. Digestion of protein starts
in the stomach, where the pepsinogen can non-specifically
degrade a variety of water-soluble proteins into polypeptides,
oligopeptides and a small number of amino acids (72). After
entering the intestine, these primary digestion products can
be further degraded by trypsin and chymotrypsin into small
peptides or amino acid molecules that can be absorbed (73). Gut
microbiome seems to be involved in all the above processes and
play an important role in downstream absorption, metabolism,
transformation, and evenmediate the interaction between dietary
protein and host immunity (74–76). Amino acids can be further
metabolized into a variety of microbial metabolites, which
participate in a lot of host functions related to health and
diseases. At the same time, different sources, concentration
and components of dietary protein also affect the composition,
structure, and function of the gut microbiome (77). In response
to changes in dietary protein, microbial metabolites (including
SCFAs, ammonia, amines, hydrogen, sulfide and methane, and
other gases related to colon cancer and inflammatory bowel
disease) have undergone significant changes (78–80).

Dietary guidelines from popular science often suggest high
protein intake, especially from animal sources with diverse and
enough essential amino acids, to combat muscle atrophy, obesity,
weakness, osteoporosis, surgical stress and death rate. However,
a proper ratio of protein to carbohydrate, or even a relatively
low protein diet, is more recommended because excessive
protein promotes the growth of pathogenic microorganisms,
inducing a high risk of metabolic-related diseases (81). Residual
nitrogenous compounds not absorbed by the small intestine
are transferred to the distal intestine and metabolized by
microorganisms in this part. Protein intake affects the quantity
and species of microbial metabolites, but some of them are
toxic, such as hydrogen sulfide, ammonia and indole compounds,
which have potentially negative effects on host health (82–84).
Some bioactive substances participate in various physiological
processes of the host (76). Besides, high concentrations of protein
supplementation will lead to an increase in the number of
potential pathogens, which is due to the destruction of the
homeostasis of the intestinal micro-ecosystem and the reduction
of the number of beneficial microorganisms. This observation
highlights the interaction between the gut microbiome and
host health. Dietary protein altered gut microbiome affects host
metabolism by regulating intestinal barrier function, intestinal
motility and immune system. More seriously, there is evidence
that after a high-protein diet, individuals with or without
impaired renal function may experience deterioration in renal
function (85, 86).

MICRONUTRIENTS

Micronutrients, namely minerals and vitamins, mean nutrients
that the human body needs less, but are necessary formaintaining
survival, growth, development and health. It is well-known
that the “western diet”, lacking in micronutrients, drives nearly
all modern chronic conditions by encouraging gut dysbiosis,
while micronutrients also play an important role in this
process (87). For example, obesity is related to changes in
hormones, especially bone regulating hormones, such as vitamin
D (88–90). Mild chronic inflammation can lead to an increase
of pro-inflammatory cytokines by activating multiple signaling
pathways, finally leading to obesity (91), while vitamin D has
been recognized as having anti-inflammatory effects on various
immune cells, although it has not been confirmed in randomized
controlled trials (92). Research by Guo et al. showed that vitamin
D can stimulate the expression of cathelidin antimicrobial
peptide (CAMP) gene, which is expressed through immune cells
and epithelial cells to enhance barrier function (93), suggesting
that vitaminD is antibacterial. Also, vitaminDmodifies epithelial
cells’ integrity, immune responses especially for the innate
immunity, and the diversity as well as the composition of the gut
microbiome (94), and is expected to alleviate inflammatory bowel
disease by regulating homeostasis in the gut (95). In one clinical
trial in patients with inflammatory bowel disease, receiving 1,200
IU/day of Vitamin D for 1 year reduced the relapse rate from
29 to 13% when compared with the placebo group (96). Dietary
habits may also affect the synthesis of some micronutrients by
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affecting the structure and function of the gut microbiome. In the
cecum, liver and kidneys, the vitamin K was primarily derived
from microbes and was decreased by 32 to 66% in mice treated
by large doses of antibiotics compared to untreated animals,
which in turn seriously affects bone development (97), suggesting
the importance of metabolites produced by the healthy gut
microbiome, including various vitamins, to the body.

Recent reports have also shown that gut microbes affect
mineral metabolism of the host, involving calcium, iron,
magnesium, selenium, copper, zinc, and silver (98–108).
Generally, the gut microbiome regulates the absorption of
minerals, such as iron and calcium (109–111), helping them
achieve a good balance for health. In turn, these minerals
also have a great effect on the gut microbiome. For example,
iron is responsible for intestinal bacteria to extract energy
from nutrients obtained by the host (112). Studies have shown
that the normal gut microbiome can improve the utilization
of dietary iron by translating ellagic acid (EA) into urolithin
A (UA), which does not bind Fe3+ and still maintains the
biological function in the presence of Fe3+. UA inhibits the
production of reactive oxygen species (ROS), and its increased
synthesis has a positive impact on the health by protecting
the host from oxidative stress and inflammation (113). Besides,
due to the excreted p-hydroxyphenyllactic acid, Lactobacillus
fermentum residing in the gut exhibits iron-reducing activity,
catalyzing Fe3+ to Fe2+ (101). Fe2+, unlike Fe3+, can be
absorbed by the host’s enterocytes (114). In other words,
the intestinal microbiota optimizes the dietary non-heme iron
conversion in the intestine not only by increasing the content
of Fe3+, but also supporting the reduction of Fe3+ to Fe2+,
thereby improving the utilization of iron (115). Similar to
these, other minerals interact with the gut microbiome, and
this good interaction is the key to maintaining health, but that
doesn’t mean everyone needs mineral supplements. The most
appropriate dietary recommendations are self-monitoring and
supplementation of minerals and vitamins when deficiencies
are identified.

FOOD ADDITIVES

Food additives refer to artificial or natural substances added to
food to improve the color, aroma, taste, as well as for the needs
of anti-corrosion and special processing, including anti-caking
agent, defoamer, acidity regulator, antioxidant, leavening agent,
colorant, bleaching agent, enzyme preparation, flavor enhancer,
color-protecting agent, preservative, sweetener, thickener, and
spice etc. (116). More and more evidence showed that these
food additives can disrupt the homeostasis of the gut, thus
promoting tissue injury inflammatory response. For example,
mice treated with emulsifiers carboxymethyl cellulose and
polysorbate 80 developed biological disorders with overgrowth
of mucus-degrading bacteria, leading to colitis in animals lacking
interleukin-10 involving in anti-inflammatory and cell regulatory
or toll-like receptor 5 (a cell receptor targeting bacterial flagellin)
(117). Similarly, enhanced endoplasmic reticulum stress will be
induced bymaltodextrin in intestinal goblet cells, thus promoting

mucus release and improving the host’s susceptibility to colitis
(118–121). Besides, by inducing changes in the composition and
function of intestinal microflora, non-caloric artificial sweeteners
(NAS) can lead to the development of glucose intolerance, even
though it is regarded as very safe due to their low caloric content
(122). Moreover, maternal exposure to NAS impacts progeny’s
metabolism and microbiome, including general downregulation
of liver detoxification mechanisms and significant alterations in
bacterial metabolites, posing a threat to the infant’s metabolism
(123). The potential harm of other artificial sweeteners should
also not be ignored. Both of Splenda and Neotame can cause
intestinal disorders, especially in people with Crohn’s Disease-
Like Ileitis (124, 125). Some dietary microparticles, such as
titanium dioxide which is used as a colorant and food whitening
agent, can inhibit macrophage phagocytic activity and work
as adjuvants with bacterial stimuli, leading to the complex
disorder of immune responses (126–128). The antimicrobial
agent used for antisepsis is also unsafe. It has been well
recognized that they can induce anxiety by remodeling gut
microbiome (129, 130).

Although there are strict restrictions on the use of food
additives in many countries (131, 132), the formulation
of those standards is rarely based on systematic and
rigorous scientific experiments (133). It may be wise
to minimize the intake of food additives until the
correlation between the dose and hazard of food additives
is fully understood.

COOKING AND PROCESSING

Cooking and processing are essential parts of most foods before
they are eaten. Although few studies measured the effects
of them on the gut microbiome, some existing experimental
results may provide us with a deeper understanding. Carmody
et al. pointed out that raw or cooked plant feeds reshaped
the gut microbiome of mice differently, and its impact was
attributed to the improvement of starch digestibility and the
degradation of plant-derived compounds, while changes in the
gut microbiota regulated the host energy status and similar
phenomenon can also be detected in humans (134). In another
more detailed study, the effects of three different cooking
methods on gut microbiome were compared and analyzed
with five different foods. The results showed that, compared
to milder treatments (boiling), intense cooking techniques
(roasting and grilling) increased the abundance of beneficial
bacteria, such as Ruminococcus spp. or Bifidobacterium spp.
However, for some foods (bananas or bread), intense cooking
can reduce the level of healthy bacteria (135). Also, eating
red meat or processed meat is linked to an increased risk of
colorectal cancer partly due to the interaction between gut
microbiome and carcinogens (136, 137). On the other hand,
cooking utensils can also cause the accumulation of harmful
substances in the cooking and processing, especially the use
of aluminum cookers. Thirty eight percentage of aluminum
intake accumulates in intestinal mucosa and disturbs the
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normal regulation of intestinal permeability, intestinal flora and
immunity (138, 139).

EFFECTS OF GUT MICROBIOME ON

HUMAN BODY FUNCTION AND DISEASES

Generally, almost all factors in the diet are closely related
to the homeostasis of the gut microbiome, while unhealthy
habit will definitely cause the decline of body function
and even lead to pathological changes. The data of the
recent decade’s explosion clearly described the relationship
between the gut microbiome and health from multiple
perspectives, and explain the mechanism of many specific
intestinal microorganisms in the development of diseases (32,
140). Dysbiosis of gut microbiome is closely related with
gastrointestinal diseases (141), bone (142), mental (143, 144),
aging-related inflammation (145), cancer (146), cardiovascular
diseases (147, 148), circulatory rhythms (149), metabolic diseases
(150–152), etc. Beyond to this, the co-evolution between
gut microbiome benefits human a lot (153–155), including
fighting against pathogens, stimulating the immunity (156–158),
maintaining the intestinal barrier integrity, and generating
micronutrients (160).

It is well-acknowledged that the diversity of gut microbiome
is positively correlated with health, and a good gut microbiome
not only keeps us from getting sick but also makes our bodies
work more smoothly. For example, the metabolites of the gut
microbiome can regulate a variety of physiological activities and
have a strong signal transduction function (159). Microbial-
derived SCFAs (butyrate, propionate, and acetate), appear in
specific amounts, and their proportions will vary according
to age, diet, and disease (160). The formation of SCFA is
the result of the complex interaction between diet and the
gut microbiota in the environment of the intestinal cavity.
The level of SCFAs is largely affected by the proportion of
intestinal commensal bacteria, and its dysbiosis can lead to
unbalanced SCFAs, which serve as the main communication
medium between the gut microbiota and the immune system
(161). SCFAs also promote epithelial metabolism and decreases
intracellular O2, contributing to the stabilization of HIF-1 (a
transcription factor) and epithelial barrier function (162). It
should be noted that the gut microbiome produces many
other kinds of metabolites, such as bile acids and amino
acid derivatives, which may also have important signaling
functions (163). For example, gut microbiome-related bile acid
metabolism regulates liver cancer via natural killer T cells
(164, 165), suggesting these metabolic pathways associated with
gut microbes may become an important target of precision
medicine. However, in some abnormal intestinal conditions,
the rapid increase of microbes-deprived metabolites may cause
many diseases (166, 167). Unfortunately, the existing technology
and analysis methods are still difficult to accurately locate the
strains that play a key role. Therefore, more studies are needed
to explore the core interactions between disease and the gut
microbiome. But until all the mechanisms have been elucidated,
it seems that we can enjoy the benefits of regulating the gut

microbiome early, through a potentially harmless approach–
dietary intervention.

DIETARY INTERVENTION IN DISEASES

Recent studies have demonstrated that dietary intervention can
significantly regulate the structure and function of the gut
microbiome, and contribute to the health of gut microbiome
and its host. A dietary intervention (calorie restriction) in
obesity improved the abundance of Akkermansia muciniphila
and then promoted metabolic health, helping to achieve good
weight loss (168). Dietary fiber (mainly fructans and galacto-
oligosaccharides) intervention increases the fecal abundance of
Bifidobacterium and Lactobacillus spp, suggesting the possibility
of precisely regulating certain microorganisms through specific
dietary formulas (169). Besides, dietary intervention using
functional foods decreased metabolic endotoxaemia and reduced
biochemical abnormalities by improving gut microbiome in
people suffering from type 2 diabetes, demonstrating that a high-
fiber, polyphenol-enriched, and vegetable-protein-based diet may
work as a potential therapy for the improvement of glycaemic
control, dyslipidaemia, and inflammation (170, 171). Also, anti-
inflammatory diets may reduce neuroinflammation through
several indirect immune pathways from the gut microbiome
and systemic circulation, introducing a new way to control
Alzheimer’s disease (AD) and neurodegeneration (172). All these
data tell us that reasonable diet intervention may be an effective
means to alleviate diseases or maintain health. The research of
microbiome can not only help us to determine the microbes
and dietary patterns that are directly beneficial to the body
but also can be used as an indicator to predict the progress of
disease and help us carry out the effective intervention in time.
In the process of tackling the obesity pandemic, a lot of efforts
have been devoted to formulating effective weight loss strategies.
However, many dieters have failed to maintain weight loss for
a long time and instead experienced excessive weight recovery
cycles. The mechanism leading to the relapse of obesity after
dieting remains largely elusive. Thaiss et al. developed a machine
learning algorithm that can make personalized microbiome-
based predictions on the degree of weight recovery after dieting,
and found that the microbiome helps reduce flavonoid levels and
energy consumption. And proved that flavonoid-based “post-
biological” interventions have improved the secondary excessive
weight gain (173). In other words, real-time and accurate tracking
of microbiome dynamic changes is also necessary for timely and
effective dietary intervention.

More than that, more and more studies show that a more
appropriate diet can effectively improve physical function and
even significantly reduce all-cause mortality. Recent evidence
in mouse models shows that physical and emotional stress
during exercise is highly correlated with changes in the microbial
composition of the gastrointestinal tract. For example, induced
exercise stress reduced Turicibacter spp. in the cecum but
increased Ruminococcus gnavus, which has a clear role in
intestinal mucus degradation and immune function (1, 174),
providing an effective reference for athletes to solve fatigue, mood
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disturbances, underperformance and gastrointestinal distress.
More importantly, a reasonable diet plan can help athletes
shape gut microbiome which is more conducive to lactic
acid degradation, which can effectively improve their exercise
performance and achieve better results (175, 176). Similarly,
dietary intervention is also suitable for ordinary people to
improve their health and significantly reduce the incidence rate
of many diseases (177, 178), so gut microbes can really tell you
what to eat.

CONCLUSION

Factors in the diet, including different dietary components
(carbohydrates, fats, proteins, minerals, vitamins, etc.), food
additives, cooking and processing, can change the structure
and function of the gut microbiome, and these changes are
closely related to maintaining the health of the body. Long term
unhealthy eating habits, such as western diet, are an important
factor in a variety of non-communicable diseases. Many years

of research has depicted the basic principles of the interaction
between diet and gut microbiome, while the dietary intervention
program based on this has been proved to be effective. However,
it cannot be ignored that many factors outside the diet that will
also affect the composition of the gut microbiome, including
age, genetics, smoking, sports activities and the like, so it is
very challenging to accurately determine the specific role of
diet in diseases. Also, it is difficult to draw definite conclusions
on the therapeutic benefits of diet intervention for chronic
diseases. As our review shows, most studies have been conducted
on animals, and only a few human intervention studies exist.
More randomized controlled studies are needed to ensure that
enough subjects participate in the trial to fully understand the
relationship between diet, gut microbiome and health.
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