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Summary

Nutrients including carbohydrates, proteins, lipids, vitamins, and

minerals regulate various physiological processes and are essen-

tial for the survival of organisms. Reduced overall caloric intake

delays aging in various organisms. However, the role of each

nutritional component in the regulation of lifespan is not well

established. In this review, we describe recent studies focused on

the regulatory role of each type of nutrient in aging. Moreover,

we will discuss how the amount or composition of each

nutritional component may influence longevity or health in

humans.
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nutrient; protein; vitamin.

Introduction

All organisms must obtain nutrients from their environments to live.

These nutrients include organic chemicals, such as carbohydrates,

proteins, lipids, and vitamins, and inorganic substances, such as minerals

and water. The nutrients are essential for the maintenance of biological

functions, including metabolism, growth, and repair. Interestingly,

calorie restriction (CR), which is defined as a reduced intake of

nutritional calories without malnutrition, has been shown to enhance

the maintenance of biological systems and to increase lifespan (Kenyon,

2010). The molecular signaling pathways that mediate the effects of CR

on longevity have been actively studied. In addition, many studies have

specified which nutritional components contribute to aging, including

early mammalian studies (Maeda et al., 1985; Masoro, 1985, 2002; Yu

et al., 1985; Iwasaki et al., 1988a,b; Weindruch & Walford, 1988;

Masoro et al., 1989), and this is currently an active area of investigation.

Here, we will review recent findings regarding the effects of major

dietary nutrients, namely carbohydrates, proteins and amino acids, lipids,

and vitamins and minerals, on the lifespan of a diverse group of

organisms, ranging from yeast to mammals. In addition to several

excellent reviews on this topic (Piper et al., 2005, 2011; Tatar et al.,

2014), our current review covers comprehensive ranges of nutritional

components and their effects on aging in various organisms. Further,

there is now increased understanding of the importance of diet for aging

and age-related diseases in humans. Therefore, we will discuss the

potential influences of these dietary components on human aging and

age-related diseases.

Effects of carbohydrates on aging

Carbohydrates are organic compounds comprised of carbon, hydrogen,

and oxygen. Carbohydrates act as signaling molecules, energy sources,

and structural components. The importance of carbohydrates for human

health is exemplified by the tight association between chronic metabolic

diseases and carbohydrate-rich diets. Such diets have high glycemic

indices, which result in rapid increases in blood glucose levels (Jenkins

et al., 1981). In addition, recent studies indicate that several dietary

carbohydrates directly influence lifespan in various organisms through

diverse signaling pathways (Fig. 1).

Glucose alters lifespan through energy-sensing signaling

pathways

Glucose, the primary energy source of most living organisms, is one of

the best-studied carbohydrates that affect aging. Increased glucose

intake accelerates aging in several model organisms, including yeast and

Caenorhabditis elegans. Glucose-enriched diets shorten the lifespan of

C. elegans by downregulating the activity of pro-longevity proteins,

including AMP-activated protein kinase (AMPK), a FOXO transcription

factor, and glyoxalase (Schulz et al., 2007; Lee et al., 2009; Schlotterer

et al., 2009). Glucose consumption decreases the activity of AMPK, an

energy sensor that regulates organismal lifespan. In contrast, treatment

with a glucose analog, 2-deoxy-glucose, leads to glucose restriction,

activation of AMPK, and longevity (Schulz et al., 2007). Glucose

consumption decreases the activity of FOXO, a key downstream

longevity transcription factor in the insulin/insulin-like growth factor-1

(IGF-1) signaling pathway (Lee et al., 2009). Reduced FOXO activity

downregulates the aquaporin-1/glycerol channel and alters glycerol

levels to shorten lifespan (Lee et al., 2009). Glucose-enriched diets also

increase the level of methylglyoxal, a toxic advanced glycation end-

product that is generated by nonenzymatic reactions during glucose

metabolism, and this in turn reduces lifespan (Schlotterer et al., 2009).

Moreover, recent studies show that the effect of glucose on the lifespan

of C. elegans is modulated by a glucose transporter (Feng et al., 2013;

Kitaoka et al., 2013) and pro-apoptotic genes (Choi, 2011). Thus, high

dietary glucose appears to decrease the lifespan of C. elegans by

influencing the activity of a variety of proteins that regulate lifespan and

metabolism. The mechanisms through which glucose affects these

factors coordinately or individually remain unclear.

Amounts of glucose negatively correlate with the lifespan of budding

and fission yeasts (Roux et al., 2009; Weinberger et al., 2010). Glucose

restriction, which is similar to dietary restriction (DR), increases the

lifespan of the budding yeast Saccharomyces cerevisiae. However, excess

glucose decreases lifespan through growth-promoting signaling pro-

teins, such as Sch9, Tor1, and Ras (Weinberger et al., 2010). The

glucose-sensing G-protein-coupled receptor Git3p (Welton & Hoffman,

2000) mediates the lifespan-shortening effect of glucose in the fission

yeast Schizosaccharomyces pombe (Roux et al., 2009). Based on
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additional genetic data, glucose was proposed to activate Git3p,

reducing lifespan through the activation of Ga and downstream Ras-

cAMP/PKA signaling (Roux et al., 2009). Thus, the Ras pathway, one of

the first signaling pathways to be implicated in the regulation of yeast

lifespan (Chen et al., 1990), appears to play a central role in the effect of

glucose on lifespan.

Glucose may also accelerate aging in mammals, although direct

evidence is scarce. High concentrations of glucose in media accelerate

the senescence of cultured human cells (Mortuza et al., 2013; Zhang

et al., 2013). This pro-aging effect of glucose is associated with reduced

expression of sirtuins, including SIRT3/sirtuin 3 (Mortuza et al., 2013;

Zhang et al., 2013), a nicotinamide adenine dinucleotide (NAD)-

dependent protein deacetylase (Haigis & Guarente, 2006). In addition,

shRNA-mediated knockdown of SIRT3 accelerates senescence, whereas

overexpression of SIRT3 suppresses glucose-induced cellular senescence

(Zhang et al., 2013). Because glycolysis consumes NAD to produce

NADH, the high-energy state caused by excess glucose may accelerate

cellular senescence by downregulating the activity of sirtuins, such as

SIRT3 (Kassi & Papavassiliou, 2008). It will be interesting to examine

genetic mouse models of SIRT3 to determine whether this finding is

consistent with organismal aging.

Carbohydrates that extend lifespan

In contrast to glucose, several other carbohydrates or carbohydrate

metabolites, including trehalose, pyruvate, malate, fumarate, and

N-acetylglucosamine (GlcNAc), have been shown to promote longevity

in C. elegans (Honda et al., 2010; Mouchiroud et al., 2011; Edwards

et al., 2013; Denzel et al., 2014). In particular, it is intriguing that a

disaccharide trehalose is linked to longevity in yeast and C. elegans

(Honda et al., 2010; Trevisol et al., 2011), because its monomer glucose

decreases lifespan as described above. Trehalose feeding also increases

stress resistance in C. elegans, which is consistent with the ability of

trehalose to protect invertebrates from various stresses (Honda et al.,

2010). Moreover, mutations that cause accumulation of trehalose

promote fermentative capacity and extend the lifespan of yeast (Trevisol

et al., 2011). Thus, trehalose appears to increase lifespan by acting as a

general antistress sugar in invertebrates. In addition, GlcNAc, which is

generated from glucose, increases the lifespan of C. elegans by

improving the homeostasis of endoplasmic reticulum (ER) proteins

(Denzel et al., 2014). Thus, trehalose and GlcNAc, which are metabolites

of life-shortening glucose, appear to exert beneficial effects on lifespan

in C. elegans.

Variable effects of carbohydrates on different model

organisms

The effects of carbohydrates on aging are variable depending on species.

In flies, the ratio of protein and carbohydrate (P:C) appears more

important for lifespan regulation than individual nutrients (Mair et al.,

2005; Min & Tatar, 2006; Lee et al., 2008; Skorupa et al., 2008; Fanson

et al., 2009; Bruce et al., 2013). Likewise, low P:C diets are beneficial for

health and aging in rodents (Solon-Biet et al., 2014). These studies point

to crucial roles of proteins in lifespan regulation in flies and mammals

(see the next section). Why are there differences among different

species? First of all, we have to consider the possibility that different

species have distinct physiological responses or diet-responsive signaling

pathways to ingested nutrients depending on ecology. For example,

responses to sugars may be more crucial for worms, but proteins are

more important for flies in their natural habitats. Second, glucose is the

most commonly used dietary carbohydrate for culturing C. elegans and

yeast, whereas sucrose is used for Drosophila and rodents. In addition,

studies using diets with defined nutrient composition are scarce in

invertebrate models, because in most experimental paradigms, worms

and flies, respectively, feed on Escherichia coli and yeast, which contain

complex nutrients. Thus, future studies equipped with better under-

standing of the ecology of organisms and with defined diet systems will

be crucial for addressing these questions.

Potential roles for dietary carbohydrates in human aging

Although the roles of dietary carbohydrates in human aging are unclear,

clinical studies show that a low-carbohydrate diet is beneficial for human

health (Rosedale et al., 2009). Administration of low-carbohydrate diets

with high amounts of fats and adequate quantities of proteins

significantly reduces body weight after 3 months (Rosedale et al.,

2009). In addition, the human subjects show decreased levels of serum

leptin, insulin, fasting glucose, and triglycerides, which are implicated in

aging and metabolic defects. Low-carbohydrate diets also reduce body

weight and several risk factors for heart disease (Foster et al., 2003).

Conversely, high glycemic load diets enriched with carbohydrates

positively correlate with age-related diseases including diabetes and
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Fig. 1 Glucose accelerates aging through various signaling pathways. (A) A high-glucose diet shortens lifespan in various organisms. In yeast, glucose decreases lifespan

through the glucose receptor and Ras, components of a growth-promoting signaling pathway. In Caenorhabditis elegans, glucose downregulates pro-longevity proteins,

such as AMP-activated protein kinase (AMPK), FOXO, and glyoxalase, resulting in short lifespan. Sirtuin 3 (SIRT3), an NAD-dependent protein deacetylase, mediates the

effects of glucose on senescence in cultured mammalian cells. (B) Low-carbohydrate diets may improve human health by reducing several factors, including serum leptin,

blood glucose, and triglycerides, which are associated with aging or metabolic defects. In addition, reduced carbohydrate intake decreases body weight and reduces the risk

factors associated with heart disease.
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heart diseases (Aston, 2006; Barclay et al., 2008). Thus, a low-

carbohydrate diet may delay aging in humans by preventing metabolic

diseases and improving general health.

Effects of dietary proteins and amino acids on aging

Proteins and amino acids are major biological macromolecules that serve

as structural constituents, catalysts for enzymatic reactions, and energy

sources. Many studies show that dietary proteins generally act as

lifespan-limiting factors (Fig. 2). Deprivation of certain essential amino

acids extends the lifespan of several model organisms, including

Drosophila and mice (Fig. 2).

The contribution of dietary proteins to animal aging

Studies in various model animals indicate a general negative correlation

between the amounts of dietary proteins and lifespan. It is difficult to

separate dietary proteins and carbohydrates from an essential diet.

Therefore, many studies compared the effects of these two types of

nutrients on aging by changing the dietary P:C ratio. Studies using

Queensland fruit flies (Fanson et al., 2009), Mexican fruit flies (Carey

et al., 2008), Drosophila melanogaster (Min & Tatar, 2006; Lee et al.,

2008; Bruce et al., 2013), and field crickets (Maklakov et al., 2008)

show that a low-protein/high-carbohydrate diet is associated with long

lifespan; however, the overall caloric intake had minimal effects on

lifespan (Mair et al., 2005). Similarly, low-protein/high-carbohydrate

diets are linked to health and longevity in mice (Solon-Biet et al.,

2014). In Drosophila, insulin-like peptides (dilps) have been shown to

mediate the effects of the P:C ratio on lifespan by regulating target of

brain insulin (tobi), which encodes an a-glucosidase (Buch et al., 2008).

Reduced protein intake also appears to extend lifespan by inhibiting

the insulin/IGF-1 or target of rapamycin (TOR) signaling pathways,

which may reduce the levels of proteins with oxidative damage (Kapahi

et al., 2004; Meissner et al., 2004; Sanz et al., 2004; Buch et al.,

2008).

Despite a lack of direct evidence linking protein intake to human

longevity, the source of dietary protein may affect human health. A

large-scale, long-term study performed on European subjects indicates

that high animal-protein intake positively correlates with the risk of

developing urothelial cell carcinoma, whereas high plant-protein intake

negatively correlates with the risk (Allen et al., 2013). This study also

suggests that IGF-1 is a risk factor for the development of urothelial cell

carcinoma in the setting of high animal-protein intake. A study of senior

population reveals that subjects aged 50–65 that consumed high

amount of protein had a 75% increase in overall mortality and fourfold

increase in cancer-related death risk (Levine et al., 2014). This harmful

effect seems attenuated by plant-derived protein diet. Another study

that examined excess weight and obesity in Belgium indicates that the

consumption of animal protein increases weight gain, whereas intake of

plant protein is negatively associated with excess weight and obesity (Lin

et al., 2011). Further, a nutritional investigation study demonstrates that

a soy-based, low-calorie diet significantly reduces total serum cholesterol

and body fat percentage in obese people compared with those achieved

with a traditional, low-calorie diet (Liao et al., 2007). Although the

mechanisms remain elusive, these studies reveal potential health

benefits from diets that are enriched for plant proteins. Interestingly,

plant proteins contain considerably lower methionines than animal

proteins (McCarty et al., 2009), and this low methionine content may

underlie the beneficial effects of dietary plant proteins (see next

paragraph).

Roles of specific amino acids in longevity

In addition to the effects of overall proteins,many studies have determined

the effects of specific dietary amino acids on lifespan. Under low amino

acid status, methionine restriction increases lifespan in Drosophila by

downregulating TOR signaling (Lee et al., 2014). Restriction ofmethionine

extends lifespan in a variety of rat strains with different pathological

backgrounds, suggesting that methionine deficiency alters the rate of

aging rather than fixing a specific pathological defect (Zimmerman et al.,

2003). Methionine restriction significantly extends the mean and maxi-

mum lifespan of mice, even when the experiments are conducted in 12-

month-old animals (Miller et al., 2005; Sun et al., 2009). Methionine-

restricted mice display physiological changes, such as reduced levels of

insulin, IGF-1, and glucose, similar to those observed in calorie-restricted

mice. However, gene expression profiles of methionine-restricted and

calorie-restrictedmice do not significantly overlap. Thus, these two dietary

regimens may affect longevity through partly independent pathways.

Methionine restriction lengthens the lifespan of male Wistar rats and

decreases the production of mitochondrial reactive oxygen species (ROS)

and DNA damage (Sanz et al., 2006; Caro et al., 2009; Sanchez-Roman

et al., 2012). Lifespan extension in C. elegans due to treatment with

metformin, a well-known antidiabetes drug, and mutations in metr-1/

TOR

C. elegans

Fruit fly

Mouse

Insulin/IGF-1

Mouse

Autophagy

Yeast

Animal
proteins

Plant
proteins

Urothelial cell 
carcinoma

Obesity

(A)

(B)

Fig. 2 Restriction of amino acids or proteins increases stress resistance and

influences longevity in various model organisms. (A) In yeast, methionine restriction

decreases translational capacity and increases autophagy, indirectly interfering

with aging. In addition, methionine restriction increases the lifespan of mice,

possibly by downregulating the levels of reactive oxygen species (ROS). Dietary

restrictions of protein intake increase the lifespan of various insects, including

Drosophila. In Caenorhabditis elegans, reduced protein intake extends lifespan by

inhibiting the insulin/insulin-like growth factor-1 (IGF-1) and target of rapamycin

(TOR) signaling pathways. In mice, restrictions on the intake of protein or specific

amino acids decrease oxidative stress by reducing insulin/IGF-1 signaling. (B) The

levels of animal proteins positively correlate with the risk of urothelial cell

carcinoma and obesity, whereas the levels of plant proteins exhibit a negative

correlation.
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methionine synthase is associated with decreased levels of internal

methionine (Cabreiro et al., 2013). However, several studies suggest that

methionine has a positive impact on longevity. Methionine-supplemented

casein- or soy-protein diets significantly lengthen the lifespan of sponta-

neously hypertensive rats that are prone to developing strokes (Gilani

et al., 2006). In addition, methionine supplementation does not shorten

long lifespan inDrosophilawith DRs but does restore fecundity (Grandison

et al., 2009). In contrast, supplementation with all kinds of amino acids or

essential amino acids suppresses DR-induced longevity. Methionine

restriction also causes a slight decrease in the average lifespan but does

not affect reproductive fitness inDrosophila (Zajitschek et al., 2013). Thus,

other amino acids, in addition to methionine, appear to have roles in

lifespan regulation. Consistent with this concept, tryptophan restriction

increases the lifespan of mice (De Marte & Enesco, 1986) and Evans rats

(Segall & Timiras, 1976). Further, tryptophan restriction promotes resis-

tance to surgical stress in mouse models of ischemia–reperfusion injury

(Peng et al., 2012).

Dietary amino acid composition affects lifespan by regulating various

nutrient-sensing signaling pathways. In yeast, eIF2a kinase and GCN2,

which directly bind to uncharged cognate transfer RNAs (Wek et al.,

1995; Dong et al., 2000), and TOR pathway components mediate

longevity by acting as cellular amino acid sensors (Gallinetti et al., 2013).

TOR signaling is inhibited and GCN2 is activated by reduced levels of

internal amino acids; this inhibits overall protein translation and increases

the translation of specific proteins involved in longevity (Gallinetti et al.,

2013). In addition, restriction of dietary tryptophan protects mice from

renal and hepatic ischemic injury and reduces inflammation in a Gcn2-

dependent manner in association with reduced serum IGF-1 (Peng et al.,

2012). Longevity of yeast due to methionine restriction appears to be

mediated by TOR signaling (Laxman et al., 2013) and autophagy (Sutter

et al., 2013), a process that recycles cellular components during nutrient

deprivation. The anti-aging effects of CR are largely conserved from

nematodes to primates. Therefore, it is worth investigating whether the

mechanisms through which amino acid restriction promotes healthy and

long lifespan are also evolutionarily conserved.

Dietary lipids exert various effects on aging

Dietary lipid components, including fatty acids, phospholipids, choles-

terol, and glycerides, constitute the main structures in biological

membranes. In addition, dietary lipids influence organismal physiology,

including aging. A high-fat diet (HFD) is generally associated with

increased mortality and increased incidence of many metabolic diseases,

including type II diabetes and cardiovascular problems (Schrager et al.,

2007; Honda et al., 2007) (Fig. 3). However, some specific lipids are

beneficial for health and possibly longevity.

Metabolic regulators including SIRT1 counteract the effects of

HFD on metabolic dysfunction and lifespan

Genetic factors that regulate HFD-induced pathology include SIRT1

(sirtuin 1, an NAD-dependent protein deacetylase), AMPK, peroxisome

proliferator-activated receptors (PPARs), sterol regulatory element-bind-

ing protein 1 (SREBP-1), carbohydrate-responsive element-binding pro-

tein (ChREBP), superoxide dismutase 3 (SOD3), cysteine-aspartate

protease-1 (caspase-1), and others (Lomb et al., 2010; Zadra et al.,

2010; Jeon & Osborne, 2012; Dixon et al., 2013; Filhoulaud et al., 2013;

Cui et al., 2014; Grygiel-Gorniak, 2014). Among them, SIRT1 is one of

the best-studied factors mediating the effects of HFD on metabolism and

lifespan in mammals. SIRT1 acts as a key cellular sensor for nutrient

availability and regulates the activities of substrate proteins (Haigis &

Guarente, 2006). Upregulation of SIRT1 improves glucose tolerance and

insulin sensitivity in response to a HFD (Banks et al., 2008; Pfluger et al.,

2008). Conversely, white-adipose-tissue-specific SIRT1-knockout mice

display metabolic dysfunctions, such as insulin resistance, increased body

weight, and excess levels of fat in high-fat-feeding conditions (Chalk-

iadaki & Guarente, 2012). Treatment with SIRT1-activating small

molecules, including resveratrol and SRT1720, prevents adverse effects

of HFD on metabolism and lifespan (Baur et al., 2006; Lagouge et al.,

2006; Feige et al., 2008; Minor et al., 2011; Price et al., 2012). Despite

the controversy regarding resveratrol as a direct SIRT1 agonist (Pacholec

et al., 2010), the beneficial effects of resveratrol and SRT1720 largely

disappear in SIRT1-knockout mice (Minor et al., 2011; Price et al., 2012).

Further, resveratrol or SRT1720 treatment improves mitochondrial

biogenesis and function via peroxisome proliferator-activated receptor

gamma coactivator-1 alpha (PGC-1a) and estrogen-related receptor

alpha (ERRa) (Baur et al., 2006; Lagouge et al., 2006; Feige et al., 2008;

Price et al., 2012). Thus, enhanced SIRT1 activity may improve organ-

ismal survival in the context of HFD by upregulating genes that enhance

mitochondrial function and reducing excess energy storage.

Dietary lipid composition and organismal lifespan

The composition of dietary lipid has dramatic effects on the level of blood

cholesterol, which is crucial for the health of mammals. Diets enriched in

unsaturated fatty acids lead to reducedblood levels of harmful low-density

lipoproteins and increased levels of protective high-density lipoproteins

(Mensink et al., 2003). Consistently, diets enriched in natural unsaturated

fatty acids lower bloodpressure, improve insulin sensitivity, and reduce the

risks of cardiovascular and metabolic diseases (Summers et al., 2002;

Appel et al., 2005). In contrast, dietary trans-fats (unsaturated fatty acids

with trans-isomers) trigger inflammatory responses, which increase the

risks of developing cardiovascular and metabolic diseases (Mozaffarian

et al., 2004;Mozaffarian, 2006a,b; Riserus et al., 2009). Dietary saturated

fatty acids are thought to be harmful to animal health, but this remains

controversial (Siri-Tarino et al., 2010). Somewhat surprisingly, dietary

cholesterol has been shown to marginally impact blood cholesterol levels

(Fernandez, 2006). Overall, the composition of dietary lipid appears to be

critical for blood cholesterol levels and may subsequently affect metabolic

diseases and organismal lifespan.

Several studies indicate that polyunsaturated fatty acids (PUFAs)

prevent aging-associated diseases and promote longevity. For example,

High fat diet PUFA
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SIRT1

Mouse

Autophagy

LDL/HDL
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Blood cholesterol
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Fig. 3 The amount and composition of dietary lipids influence organismal

longevity. (A) In mice, a high-fat diet (HFD) inactivates SIRT1 and shortens lifespan.

The composition of dietary fatty acids is critical for animal health. For example, x-6
poly-unsaturated fatty acids (PUFAs) activate autophagy to promote longevity in

Caenorhabditis elegans and probably in mammals. (B) PUFA-enriched diets

decrease the ratio of low-density lipoprotein (LDL) to high-density lipoprotein

(HDL); this results in reduced levels of blood cholesterol and improves health by

ameliorating aging-associated diseases.
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arachidonic acids, which are omega (x)-6 PUFAs, induce apoptosis of

cancer cells (Cao et al., 2000). In addition, dietary arachidonic acids and

eicosapentaenoic acids, which are x-3 PUFAs, alleviate age-dependent

neurodegeneration by increasing the expression of genes that are crucial

for neurogenesis, neurotransmission, and neural connectivity (Das,

2008). In C. elegans, x-6 PUFA feeding increases lifespan and resistance

against nutrient deprivation by inducing autophagy (O’Rourke et al.,

2013). In addition, x-6 PUFAs activate autophagy in cultured mamma-

lian cells, raising the possibility that similar life-extending mechanisms

exist in mammals (O’Rourke et al., 2013).

Dietary lipids may affect mammalian health and longevity by altering

the compositions of body fat and cellular membranes (Pamplona et al.,

1998; Mitchell et al., 2007; Hulbert et al., 2008; Hulbert, 2010).

Membrane PUFA levels are relatively low in the long-lived naked mole

rat (Heterocephalus glaber) and the short-beaked echidna (Tachyglossus

aculeatus) (Mitchell et al., 2007; Hulbert, 2010). This raises the possibility

that membrane PUFA levels are linked to longevity. Consistent with that

possibility, offspring from humans with long lifespan have low levels of

PUFAs in the membranes of erythrocytes (Puca et al., 2008). Saturated

fatty acids and monounsaturated fatty acids are generally more resistant

to oxidative damage than that of PUFAs with multiple double bonds

(Halliwell & Gutteridge, 1999; Hulbert et al., 2008). Thus, opposite from

their potential role as dietary lipids, low levels of PUFAs in the

membranes may be beneficial for longevity and health.

Effects of vitamins and minerals on aging

Although vitamins andminerals are not generally considered energy sources,

these essential nutrients act as cofactors for diverse biological processes,

such as mitochondrial energy metabolism and hormonal signaling (Ames

et al., 2005). Humans cannot synthesize minerals or most vitamins;

therefore, thesemust be supplied through dietary consumption. Deficiencies

of essential vitamins and minerals can impair biological functions and

promote the development of various diseases. Many studies indicate that

vitamins and minerals also influence organismal lifespan (Fig. 4).

Many vitamins and minerals influence aging by acting as

antioxidants

Studies have shown that dietary vitamins increase lifespan in various

organisms primarily by functioning as antioxidants. For example, vitamin E/

tocopherol intake significantly increases the lifespan of rotifers,

nematodes, and fruit flies (Miquel et al., 1982; Sawada & Enesco, 1984;

Harrington & Harley, 1988; Navarro et al., 2005). Vitamin E also increases

the replicative lifespan of cultured adrenocortical cells and protects these

cells from DNA-strand breaks in peroxide-treated conditions (Hornsby &

Harris, 1987). Vitamin P/hesperidin increases the lifespan of yeast by

reducing ROS (Sun et al., 2012). Supplementation of vitamin C/ascorbic

acid, a well-known antioxidant, increases the lifespan of the bean beetle

Callosobruchus maculatus (Garg & Mahajan, 1993). Although vitamin

C feeding does not change the lifespan of D. melanogaster, vitamin C

content declines with age in flies, suggesting that decreased vitamin

C may be an indicator of aging (Massie et al., 1991). Furthermore, diets

that include vitamin C rescue the short lifespan of wrn-1 (Werner helicase

1) mutant C. elegans by reducing the high levels of ROS and increasing

the low levels of ATP in these mutant animals (Dallaire et al., 2012). Many

members of the vitamin B family also lengthen the lifespan of flies, Zucker

fatty rats, and C. elegans (Massie et al., 1993; Preuss et al., 2011;

Schmeisser et al., 2013). For example, supplementation with vitamin B3

(nicotinic acid and nicotinamide) lengthens the lifespan of C. elegans

through SIR-2.1, a worm homolog of SIRT1 (Schmeisser et al., 2013).

These studies confirm the public belief that vitamins are generally

beneficial for health, mostly because they moderate levels of ROS.

Although vitamins are generally considered to have beneficial effects

on health, there is increasing evidence that vitamins also reduce lifespan.

The antioxidant functions of vitamin C/ascorbic acid decrease the long

lifespan conferred by mildly increased ROS in C. elegans (Schulz et al.,

2007; Gomez-Cabrera et al., 2008; Yang & Hekimi, 2010). Feeding

vitamin C and/or E shortens lifespan in the phlebotomine sand flies

Lutzomyia longipalpis (Diaz-Albiter et al., 2011) and in wild-derived voles

(Selman et al., 2013). In addition, vitamin C feeding reduces the

enhanced mitochondrial functions caused by exercise in rats (Gomez-

Cabrera et al., 2008). This is associated with reduced expression of PGC-

1, nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription

factor A (mTFA), which are key transcription factors required for

mitochondrial biogenesis. Consistently, vitamin C and E supplementation

decreases oxidative stress but inhibits the beneficial effects of physical

exercise on enhanced insulin sensitivity in humans (Ristow et al., 2009).

Vitamin E intake causes hypertension in patients with type 2 diabetes

(Ward et al., 2007). Moreover, a mega-dose of vitamins and minerals

mildly increases human mortality (Lesperance et al., 2002). A meta-

analysis of 385 publications indicates that overall levels of antioxidant

supplementation positively correlate with mortality (Bjelakovic et al.,

2007). In the case of multiple sclerosis, supplementation with vitamin A

for 6 months increases the level of C-reactive protein (CRP), which is

indicative of the level of inflammation (Jafarirad et al., 2013). Because

Vitamin C Vitamin E

ROS

Aging

Fruit fly

Se4+ Fe2+ Cu2+

Mn Zn

Cell
C. elegans

C. elegans

Fruit fly

Vitamin A Vitamin E Vitamin C

Health

Inflammation Hypertension Insulin
sensitivity

(A) (B)

Fig. 4 Effects of dietary vitamins and minerals on aging. (A) Vitamin C and vitamin E affect aging by acting as anti-reactive oxygen species (ROS) agents, which in turn

decreases or increases lifespan in a context-dependent manner. In the case of minerals, supplementation with selenium (Se4+) delays cellular senescence, whereas dietary

Se4+, Fe2+, Cu2+, Mn, and Zn confer short lifespan in Caenorhabditis elegans and/or fruit flies. (B) Implications for vitamins and minerals in human aging. Vitamin A increases

the level of inflammation in patients with multiple sclerosis. Vitamin E increases blood pressure in patients with type II diabetes. Supplementation with vitamin E and C

reduces insulin sensitivity by decreasing oxidative stress.
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moderate levels of ROS are beneficial for health and longevity (Heidler

et al., 2010; Lee et al., 2010; Yang & Hekimi, 2010), antioxidant

vitamins may interfere with the beneficial roles of ROS. In addition to

these antioxidant vitamins, vitamin B9/folate displays a negative corre-

lation with longevity in certain conditions, as reduced dietary vitamin B9

extends lifespan in C. elegans (Virk et al., 2012; Cabreiro et al., 2013).

Supplementation with nicotinamide, which is one form of vitamin B3,

shortens the lifespan of budding yeast by decreasing the deacetylase

activity of Sir2 (Bitterman et al., 2002). Overall, these studies indicate

that the conventional view that vitamins promote health benefits and

delay aging should be modified or applied with caution.

How can we explain these differential effects of vitamin supplemen-

tation on lifespan? One plausible interpretation is hormesis, which is

defined as beneficial effects of low doses of substances that are toxic at

higher doses. Thus, hormetic effects of vitamins predict that high doses of

vitamins have negative effects on the health and aging, while low doses

are beneficial for health (Hayes, 2007). In the same context, although the

amount of vitamins that are required for the proper functions of our body

is relatively small, deficiency of vitamins causes diseases. The triage theory

may help explain the effects of vitamin deficiency on health (Ames, 2006;

McCann & Ames, 2009). According to this theory, when a micronutrient

is insufficient, nature prioritizes biological functions essential for short-

term survival by the expense of nonessential functions. This leads to long-

term consequences that may cause age-related diseases. In any case,

these possibilities are consistent with the fact that adequate amounts of

vitamins are crucial for the management of health.

In comparison with vitamins, the effects of dietary minerals on aging

are not as well known. Examples of the beneficial effects of minerals are

rare. One example is a study showing that dietary intake of selenium (Se),

an antioxidant mineral, significantly reduces DNA breakage and extends

the replicative lifespan of cultured adrenocortical cells (Hornsby & Harris,

1987). However, supplementation with high doses of minerals generally

decreases organismal lifespan. Supplementation with various doses of

selenium (Se), iron (Fe), manganese (Mn), copper (Cu), or zinc (Zn) leads

to reduced lifespan in D. melanogaster and C. elegans (Hornsby & Harris,

1987; Wang et al., 2007; Hu et al., 2008; Bahadorani et al., 2010;

Helmcke et al., 2010; Bonilla et al., 2012; Selman et al., 2013).

Overexpression of metal-responsive transcription factor, MTF-1, rescues

the reduced lifespan of flies induced after supplementation with high,

millimolar doses of metals (Bahadorani et al., 2010). Thus, excessive

amounts of dietary minerals are generally harmful to organisms.

Conclusions

It is well documented that CR increases lifespan in various organisms.

However, CR can be difficult to execute for humans because of various

reasons. Although drugs that mimic CR have been extensively sought to

obtain the benefits of CR without reducing caloric intake, the effects of

these drugs on human aging and health are not fully verified (Mouchi-

roud et al., 2010). Altering the amounts of each individual nutritional

component in food is probably less difficult than restricting overall caloric

intake, because one may not have to suffer from hunger with proper diet

plans. In this review, we discussed findings that each dietary nutritional

component, such as carbohydrates, proteins and amino acids, lipids, and

vitamins and minerals, influences lifespan in a diverse range of model

organisms. These studies raise the possibility that restriction or intake of

certain types of nutrients may extend lifespan in humans as well.

There are many remaining challenges ahead in the field. First,

although alteration of one nutrient can affect lifespan, this may lead to a

change in the intake or processing of other nutrients in the mixture. In

this regard, some of the studies on the reduction of a single nutritional

component may have been misinterpreted. In addition, recent studies

indicate that dietary balance among nutrients has bigger effects on

aging than individual components (Lee et al., 2008; Skorupa et al.,

2008; Solon-Biet et al., 2014). Indeed, many studies show that protein/

nonprotein nutrient ratio rather than amount of proteins or calories plays

key roles in the regulation of lifespan (Mair et al., 2005; Lee et al., 2008;

Skorupa et al., 2008; Fanson et al., 2009; Bruce et al., 2013). The

Nutritional Geometric Framework (NGF) is a state-space approach that

represents the effects of the number and the nature of nutrient

dimensions on biological responses including lifespan (Fanson et al.,

2009; reviewed in Piper et al., 2011; and Tatar et al., 2014). NGF

provides new insights into the impact of multiple nutrients on DR relative

to each other. So far, this method has mostly been applied for the

impact of protein intake relative to carbohydrates. Using this method, in

the future, mechanisms by which different compositions of various

nutrients, including lipids, amino acids, and vitamins, affect aging can be

dissected better. Second, genetic factors that mediate the effects of

nutritional components on aging have been mostly focused on insulin/

IGF-1 signaling, TOR signaling and sirtuins, but it does not necessarily

mean that these factors are the most important factors. Therefore,

identification of genetic factors using unbiased methods and systems

biology approaches may lead to better mechanistic insights. Third,

although studies on human subjects offer invaluable information about

the effects of dietary nutritional components on health and aging, more

studies on primates and humans are required. For example, the effects of

DR on primate longevity are controversial, perhaps due to differences in

dietary nutrient composition (Colman et al., 2009, 2014; Mattison et al.,

2012). In the future, it will be exciting to combine all these approaches

to translate discoveries in model organisms into therapeutic applications.
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