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SUMMARY

NLRP6 is a member of the NLR (nucleotide-oligomerization domain-like receptor) family of 

proteins that recognize pathogen-derived factors and damage-associated molecular patterns in the 

cytosol. The function of NLRP6 has been attributed to the maintenance of epithelial integrity and 

host defense against microbial infections. Under some physiological conditions, NLRP6 forms a 

complex with ASC and caspase-1 or caspase-11 to form an inflammasome complex cleaving pro-

interleukin-1β(IL-1β) and IL-18 into their biologically active forms. Here, we summarize recent 

advances in the understanding of the mechanisms of activation of the NLRP6 inflammasome and 

discuss its relevance to human disease.

INTRODUCTION

Inflammation is a host response against microbial infections and tissue damage to limit harm 

to the body. Inflammation is initiated following the sensing of microbial components and 

signs of acute damage or disturbances of the steady state (Henao-Mejia et al., 2014; 

Medzhitov, 2008). Several mechanisms have evolved to distinguish between homeostasis 

and threats to the host, which include pattern recognition receptors (PRRs). These receptors 

recognize distinct pathogen-associated molecular patterns (PAMPs) that are predominantly 

found in microbes and hence allow the sensing of pathogens in tissues (Medzhitov and 

Janeway, 1997). PAMPs are located either in the cytosol, on the plasma membrane, or in 

endosomal compartments. Prototypic families of PRRs include the Toll-like receptors 

(TLRs), C-type lectin receptors (CTLs), RIG-I-like receptors (RLRs), and nucleotide-

oligomerization domain (NOD)-like receptors (NLRs) (Kanneganti, 2010; Medzhitov, 2008; 
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Takeuchi and Akira, 2010). In the presence of a specific microbial ligand, these PRRs trigger 

a downstream signaling cascade that leads to the activation of transcription factors and to the 

production of pro-inflammatory cytokines. These cytokines orchestrate the switch from 

tissue homeostasis to a state of inflammation that is aimed at removing the trigger of PRR 

signaling and restoring normal tissue function (Davis et al., 2011; Kanneganti, 2010; 

Medzhitov, 2008). In addition to PAMPs, PRRs can recognize host-derived signals, called 

damage-associated molecular patterns (DAMPs), which are released as a result of 

perturbations of tissue homeostasis caused by microbial or non-microbial insults (Matzinger, 

1994).

NLRs are a group of cytosolic sensors of both PAMPs and DAMPs that are activated by both 

endogenous and exogenous triggers (Bryant and Fitzgerald, 2009; Strowig et al., 2012). 

They share a similar domain structure consisting of a central nucleotide-binding and 

oligomerization (NACHT) domain, commonly flanked by C-terminal leucine-rich repeats 

(LRRs) and N-terminal caspase recruitment domains (CARDs) or pyrin domains (PYDs). 

LRRs are believed to function in ligand sensing and autoregulation, whereas CARDs and 

PYDs mediate homotypic protein-protein interactions for downstream signaling (Henao-

Mejia et al., 2014). Based on the N-terminal domains, NLRs are divided into four distinct 

subfamilies: the NLRA (CIITA), NLRB (NIAP), NLRC (NOD1, NOD2, NLRC3, NLRC4, 

NLRC5), and NLRP (NLRP1–14) (Ting et al., 2008). Upon recognition of PAMPs or 

DAMPs, some of the NLRs form a multimeric protein complex called the inflammasome 

(Kanneganti, 2010; Schroder and Tschopp, 2010). The core function of the inflammasome is 

the recruitment and activation of pro-inflammatory caspases (caspase-1 or -11), resulting in 

the cleavage of interleukin-1β(IL-1β) and IL-18 precursors into their bioactive forms. IL-1β 
and IL-18 are potent pro-inflammatory cytokines that exert a wide range of functions in 

inflammation and in maintenance of tissue integrity (Henao-Mejia et al., 2014; Medzhitov, 

2008; Schroder and Tschopp, 2010). Emerging evidence suggests cell-type- or tissue-

specific NLRP6 functions (Table 1) with a critical role for NLRP6 in host defense against 

microbial infection and intestinal inflammation. In this review, we summarize recent 

advances in the mechanism of activation of NLRP6, its role in the regulation of gut 

inflammation, and the controversies in the modulation of microbiota.

NLRP6 inflammasome

NLRP6 was originally called PYPAF5 and was expressed predominantly in mucosal tissues 

that are constantly exposed to microbial components. NLRP6 is expressed by epithelial 

cells, fibroblasts, granulocytes, dendritic cells, CD4 and CD8 T cells, and macrophages 

(Elinav et al., 2011). The mechanisms by which NLRP6 expression are regulated remain 

largely unclear. NLRP6 promoter analysis has shown the presence of peroxisome-

proliferator-activated receptor-γ (PPAR-γ) and retinoid X receptor-α (RXR-α) binding 

motifs (Kempster et al., 2011). Accordingly, NLRP6 expression was enhanced in human and 

mouse colon epithelial cells treated with rosiglitazone, a PPAR-γ agonist. NLRP6 mRNA 

expression was also shown to be induced by the encephalomyocarditis virus (EMCV), 

polyinosinic:polycytidylic acid (poly(I:C)), and interferon-α (IFN-α) in mouse fibroblasts 

(Wang et al., 2015). Furthermore, the type I IFN pathway was shown to be essential for the 

induction of NLRP6 expression in bone-marrow-derived macrophages (BMDMs) (Hara et 
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al., 2018). These data suggest the involvement of microbial and metabolic signals in the 

regulation of NLRP6 expression.

The initial studies of co-expression of NLRP6 and ASC resulted in caspase-1 activation, 

which led to the concept that NLRP6 forms an inflammasome like other members of the 

NLR family (Levy et al., 2015). The in vivo evidence for NLRP6 inflammasome formation 

was provided by the demonstration that Nlrp6−/− mice have reduced serum IL-18 levels 

under steady-state conditions and after dextran sulfate sodium (DSS)-induced colitis 

compared with that of wild-type (WT) controls (Elinav et al., 2011). Furthermore, Levy et 

al. (2015) demonstrated that NLRP6 co-localizes with ASC in intestinal cells to form an 

inflammasome.

Recently, we and others have reported that the NLRP6 inflam- masome is activated during 

bacterial infections (Elinav et al., 2011; Hara et al., 2018; Mukherjee et al., 2020). We 

showed that infection of Nlrp6−/− mice with Citrobacter rodentium resulted in reduced 

caspase-1 activation and IL-18 processing (Mukherjee et al., 2020). Consistently, it was 

demonstrated that Nlrp6−/− BMDMs showed reduced caspase-1 activity and IL-1β secretion 

compared with WT BMDMs infected with Staphylococcus aureus (Ghimire et al., 2018). 

NLRP6 co-localizes with ASC in BMDMs infected with S. aureus (Ghimire et al., 2018). 

Similarly, Listeria monocytogenes activates the NLRP6 inflammasome (Hara et al., 2018). 

Interestingly, lipoteichoic acid (LTA) from L. monocytogenes upregulates the expression of 

NLRP6 and caspase-11 via type I IFN signaling. LTA also binds to NLRP6 and activates the 

inflammasome via ASC-caspase-11 and -caspase-1 (Figure 1). This growing evidence from 

independent laboratories suggests that NLRP6 assembles into an inflammasome. However, 

further investigations are required to determine how S. aureus and C. rodentium activate 

NLRP6. It is possible that either the cell membrane components or toxins from these 

bacteria activate type I IFN signaling, similar to Listeria. In fact, type I IFN signaling 

induced by S. aureus was shown to be dependent on the virulence factor protein A, 

specifically the Xr domain, which is a short sequence repeat region encoded by variable 

numbers of 24-bp repeated DNA sequences (Martin et al., 2009). Additionally, the C. 
rodentium type III secretion effector NleB modulates the type I IFN response (Gao et al., 

2016).

Activation of NLRP6 inflammasome

In the absence of inflammatory stimuli, inflammasome activation is prevented by the closed 

conformation of the LRR and NACHT domains of NLRs (Hu et al., 2013). Cryoelectron 

microscopy (cryo-EM) and structure-based investigations have revealed that the assembly of 

the NLRP6 inflammasome involves two nucleation-induced polymerization steps (Shen et 

al., 2019). In the first step, nucleation of ASC filaments by oligomerized NLRP6 through a 

PYD-PYD interaction leads to polymerization of ASC. In the second step, the polymerized 

ASC nucleates caspase-1 filaments via a CARD-CARD interaction, leading to caspase-1 

activation. Activated caspase-1, in turn, facilitates the maturation of pro-IL-1β and pro-IL-18 

(Lamkanfi and Dixit, 2014; Ruan et al., 2018).

The cryo-EM and crystal structure of NLRP6 has recently been solved (Shen et al., 2019). 

The authors purified full-length NLRP6 (NLRP6FL), NLRP6 containing only the PYD 
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(NLRP6PYD), and NLRP6 containing both the PYD and NBD (NLRP6PYD+NBD) and tested 

their ability to induce ASCPYD polymerization. All NLRP6 constructs were able to promote 

ASCPYD polymerization, but to a different extent. NLRP6PYD+NBD was the strongest 

nucleator of ASCPYD polymerization (Hill coefficient of 0.33), followed by NLRP6PYD 

(Hill coefficient of 0.71). NLRP6FL was found to be the weakest nucleator among all, with 

the highest dependence on concentration. It also showed the highest Hill coefficient of 4.2 in 

promoting ASC polymerization. The low Hill coefficients for NLRP6PYD and 

NLRP6PYD+NBD and their high ability to polymerize ASC compared with NLRP6FL might 

be related to the presumed autoinhibited conformation of the FL protein. The NLRP6PYD 

filaments possess a hollow cylindrical architecture that assembles through a right-handed 

helix, forming multiple layers. The NLRP6-PYD makes a filamentous structure that 

provides the stage for recruitment of the ASC-PYD and oligomerization through NLRP6-

PYD:ASC-PYD interaction. The polymerized ASC nucleates caspase-1 filaments via a 

CARD-CARD interaction, leading to caspase-1 activation. Activated casase-1, in turn, 

facilitates the maturation of pro-IL-1β and pro-IL-18.

Leng et al. (2020), however, provided an alternate mechanism for activation of the NLRP6 

inflammasome. They demonstrated that NLRP6 is activated by lipopolysaccharide (LPS) 

and ATP, a process similar to NLRP3 activation. LPS directly binds to the LRR of the 

NLRP6 monomer and initiates its dimerization. In this homodimer model, the major 

interface for dimerization was formed by the interaction of two LRR domains of NLRP6 in 

an antiparallel manner. However, LPS-induced NLRP6 oligomerization could not go beyond 

a dimer, but LPS along with ATP triggered the formation of higher oligomeric NLRP6 in a 

linear arrangement. This provides a novel linear platform for the recruitment of ASC and 

inflammasome activation (Leng et al., 2020). The major difference between the two models 

is the ring-like inflammasome arrangement in which NLRP6PYD is surrounded by the NBD 

and LRR domain (Shen et al., 2019) versus the linear arrangement of NLRP6 

oligomerization following LPS and ATP stimulation (Leng et al., 2020). How these two 

different models operate in vivo during an inflammatory response remains elusive and needs 

further investigation. It is possible that Gram-positive and Gram-negative bacteria elicit 

these mechanisms in differing manners (Figure 2).

Another means of inflammasome activation is via ubiquitination, which is a form of post-

translational modification in which protein substrates are conjugated to ubiquitin by E3 

ubiquitin ligases (Venuprasad et al., 2006). Ubiquitin contains seven Lys (K) residues 

through which it can form ubiquitin chains, but the ubiquitin linkage generally occurs 

through K48 or K63. K48-linked ubiquitination leads to protein degradation, whereas K63-

linked ubiquitination leads to non-proteasomal modifications such as protein complex 

formations (Venuprasad, 2010). Protein ubiquitination is also highly dynamic and subjected 

to deubiquitination by deubiquitinating enzymes (DUBs) (Venuprasad et al., 2015). The 

initial evidence for ubiquitination in inflammasome activation came from inhibition of 

deubiquitination with the isopeptidase inhibitor G5, where the activation of NLPR3 

inflammasome was inhibited. The DUB BRCC3 was shown to deubiquitinate the LRR 

region of NLRP3 prior to NLRP3 assembly and activation. We have recently reported that 

NLRP6 undergoes K63-linked ubiquitination, which promotes its association with ASC 

(Mukherjee et al., 2020). The mechanism by which K63-linked ubiquitination promotes 
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NLRP6 inflammasome activation remains unclear. However, it is possible that ligands 

binding to NLRP6 could promote K63-linked ubiquitination resulting in a conformational 

change. This may allow NLRP6 to overcome the autoinhibition, leading to recruitment of 

ASC and inflammasome activation. Alternatively, it is possible that K63-linked 

ubiquitination promotes oligomerization of NLRP6.

NLRP6 in the regulation of microbial infections

Inflammasomes play a critical role in the innate immune response against microbial 

infections (Anand et al., 2011; Hara et al., 2018; Mukherjee et al., 2020; Vladimer et al., 

2013). Anand et al. (2012) demonstrated that deletion of NLRP6 resulted in enhanced 

bacterial clearance and improved survival in Nlrp6−/− mice infected with Listeria, 

Salmonella, and Escherichia coli. This protection was attributed to enhanced nuclear factor 

κB (NF-κB) and mitogen-activated protein kinase (MAPK) activity. Interestingly, there was 

no differences in the level of IL-1β or caspase-1 activation in Nlrp6−/− mice, suggesting an 

inflammasome-independent mechanism. Similarly, NLRP6 acted as a negative regulator of 

pulmonary host defense during Gram-positive bacteria (S. aureus) infection of the lungs 

(Ghimire et al., 2018). By contrast, in a murine model of C.-rodentium-induced colitis, 

NLRP6 deficiency resulted in impaired host defense. Intestines from Nlrp6−/− mice were 

extensively colonized with C. rodentium and displayed extensive mucosal ulceration, edema, 

and hyperplasia compared with WT mice (Ghimire et al., 2018; Wlodarska et al., 2014). 

Consistent with Anand et al. (2012), Hara et al. (2018) recently demonstrated that Nlrp6 

deficiency resulted in increased clearance of Listeria. LTA from Listeria binds to NLRP6 

and activates the NLRP6 inflammasome via ASC to regulate host defense. Interestingly, 

NLRP6 activated both caspase-11 and caspase-1 upon binding of LTA or Listeria for 

processing of IL-1β and IL-18. Upon infection with Listeria, Nlrp6−/− mice showed reduced 

bacterial burdens compared with WT mice. This protection was abolished when these mice 

received recombinant IL-18, but not IL-1β, suggesting that the NLRP6 inflammasome 

exacerbates Listeria infection via IL-18 (Hara et al., 2018).

In addition to the role of NLRP6 in bacterial infections, it also plays a crucial role in viral 

infections, as shown by Wang et al. (2015). Both WT and Nlrp6−/− mice exhibited no 

difference in survival when infected with EMCV. However, Nlrp6−/− mice had higher viral 

loads in the intestine, suggesting that NLRP6 may play an important role in viral clearance 

from the intestine. Interestingly, Nlrp6−/− mice displayed increased susceptibility to EMCV 

when administered orally; similar results were obtained for oral infection with murine 

norovirus (Wang et al., 2015). Mechanistically, NLRP6 associates with the Dhx15 helicase 

to form a viral sensing complex that recognizes cytosolic long double-stranded DNA 

(dsRNA) and activated mitochondrial antiviral signaling proteins (MAVS) to initiate the 

antiviral response (Wang et al., 2015).

Thus, NLRP6 plays a protective role in the host against bacterial and viral infections in the 

intestine, where it is highly expressed. However, in systemic and pulmonary infections, 

NLRP6 expression appears to have negative effects (Ghimire et al., 2020). It is possible that 

in bacterial infections, where myeloid cells are most important, NLRP6 seems to trigger 

destructive inflammation; however, during enteritis, involving non-hematopoietic cells such 
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as intestinal epithelial cells, the NLRP6-mediated response is protective. Nonetheless, more 

studies are necessary to further define the differential role of NLRP6 in viral, fungal, and 

bacterial infections.

NLRP6 in colonic inflammation

NLRP6 is predominantly expressed in the small and large intestine, especially in 

enterocytes, colonic goblet cells, and myofibroblasts (Normand et al., 2011), suggesting a 

key role for NLRP6 in the maintenance of gut homeostasis. Deletion of Nlrp6 aggravates 

DSS-induced colitis or colitis-associated tumor growth due to deregulated regeneration and 

proliferation of intestinal epithelial cells (Normand et al., 2011). Since an altered microbiota 

play a critical role in colonic inflammation, Elinav et al. (2011) performed 16S ribosomal 

RNA analysis of fecal samples and found a microbiota shift toward a higher abundance of 

the bacterial family Prevotellaceae and phyla TM7 in Nlrp6−/− mice compared with WT 

mice. Interestingly, co-housing of Nlrp6−/− mice transferred microbiota to WT mice, 

resulting in enhanced susceptibility of WT mice to colitis (Elinav et al., 2011). However, 

Mamantopoulos et al. (2017) did not observe any difference in microbiota composition 

between WT and Nlrp6−/− mice. Porphyromonadaceae and Bacteroidaceae, but not 

Prevotellaceae, were differentially represented in these mice. These differences were due to 

mother and cage covariates rather than Nlrp6 deficiency. In support of this finding, Lemire et 

al. (2017) also found that Nlrp6 did not impact gut microbiota composition by using 

littermate Nlrp6−/− and Nlrp6+/+ mice, suggesting that Nlrp6 does not regulate microbiota 

composition. On the contrary, Seregin et al. (2017c) observed significant differences in 

microbiota composition between Nlrp6−/−/IL-10−/− and Nlrp6+/+/IL-10−/− littermate control 

mice, supporting the notion that Nlrp6 influences the composition of gut microbiota. One 

possible explanation for these discrepancies are non-genetic factors such as familial 

transmission and stochastic events. In support of this possibility, Gálvez et al. (2017) 

reported that microbiota composition varies greatly within the segregated colonies of the 

same genotype, even within the same facility. Furthermore, the presence of specific 

pathobiont within a facility could be attributed to genotype-linked microbiota composition. 

Therefore, it is possible that the presence of a specific pathobiont in one facility, but not in 

the other, might contribute to these discrepant results.

NLRP6 is also linked to epithelial integrity through the regulation of goblet cell function and 

secretion of antimicrobial peptides (Wlodarska et al., 2014). It was shown that NLRP6 is 

essential for homeostatic mucin secretion by goblet cells. Nlrp6−/− mice exhibited reduced 

autophagy and hyperplasia of goblet cells and a failure to exocytose mucin granules. This 

resulted in a thin mucus layer over the epithelium, leading to increased susceptibility to 

enteric infections (Wlodarska et al., 2014). Our group recently demonstrated that CYLD, a 

DUB, negatively regulates the NLRP6 inflammasome and prevents excessive IL-18 levels in 

the colonic mucosa (Mukherjee et al., 2020). IL-18 has both a protective and detrimental 

role in colonic inflammation. Increased expression and bioactivity of IL-18 correlate with 

disease severity in inflammatory bowel disease (IBD) patients (Monteleone et al., 1999; 

Pizarro et al., 1999). Also, genome-wide association studies have revealed an association of 

variants within the IL-18R1-IL-18RAP locus with IBD (Barrett et al., 2008; Hedl et al., 

2014; Imielinski et al., 2009). In line with these data, conditional deletion of IL-18 in 
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intestinal epithelial cells or myeloid cells results in decreased severity of intestinal 

inflammation (Nowarski et al., 2015). However, complete loss of IL-18, IL-18R, or 

components of the inflammasome predisposes mice to increased epithelial damage and 

potentiates colonic tumor growth (Salcedo et al., 2010; Takagi et al., 2003; Zaki et al., 

2010). This suggests that a basal level of IL-18 in the colonic mucosa is required to maintain 

barrier integrity, whereas elevated levels of IL-18 promote inflammation and intestinal 

damage. Our results show that Cyld deficiency resulted in severe colitis, which was 

associated with an increased level of NLRP6 inflammasome activity and IL-18 in the 

colonic mucosa. Furthermore, neutralization of IL-18 attenuates colonic inflammation in 

Cyld−/− mice (Mukherjee et al., 2020). These data suggest that NLRP6 function is tightly 

regulated in the colonic mucosa to prevent pathogenic inflammation (Figure 3). Further 

detailed investigation is essential to fully understand the dichotomy of protective/pathogenic 

inflammation mediated by NLRP6.

NLRP6 in human diseases

Consistent with the mouse model data, the transcriptomic analysis showed abundant 

expression of NLRP6 in the human intestine, suggesting that NLRP6 has an important role 

in maintaining gut homeostasis in humans (Gremel et al., 2015). However, our recent data 

showed no significant change in the expression of NLRP6 in human ulcerative colitis (UC) 

patients compared with healthy controls (Mukherjee et al., 2020). This is consistent with 

another report showing insignificant NLRP6 alterations in mRNA expression in IBD 

patients (Alipour et al., 2016). We and others have demonstrated that the expression of 

CYLD, which deubiquitinates NLRP6, is downregulated in UC patients (Costello et al., 

2005; Mukherjee et al., 2020). Furthermore, the levels of CYLD expression are negatively 

correlated with IL-18 expression in the colonic mucosa of UC patients (Mukherjee et al., 

2020). This suggests that the regulatory mechanisms inhibiting excessive activation of 

NLRP6-mediated inflammation are defective in patients.

Colonic inflammation increases the risk of developing colon cancer among IBD patients 

(Grivennikov et al., 2010). Although the expression of NLRP6 is essential to prevent 

colorectal cancer in murine models, gene expression analysis of colorectal cancer patients 

shows no change in the expression of NLRP6 (Liu et al., 2015). It is possible that the 

mechanisms that regulate NLRP6 in colon cancer could be defective and require further 

investigation. Since defects in CYLD expression or mutations have been reported in colon 

cancer (AACR Project GENIE Consortium, 2017; Hellerbrand et al., 2007), the involvement 

of the CYLD-NLRP6 pathway needs to be investigated. Such studies could lead to novel 

therapeutic strategies to potentially target NLRP6 in colon cancer. NLRP6 could have a 

regulatory function in human lung infections, as suggested by Ghimire et al. (2018), who 

showed an increased expression of NLRP6 in neutrophils, macrophages, and epithelial cells 

in the lungs obtained from pneumonia patients. Upregulation of NLRP6 and IL-18 was also 

reported in adipose tissues obtained from NASH patients with portal fibrosis compared with 

that from control patients, suggesting a role of NLRP6 in liver disease (Henao-Mejia et al., 

2012; Kanda et al., 2020). In another study of patients undergoing endodontic microsurgery, 

analysis of tissues associated with apical periodontitis revealed higher expression of NLRP6 

(Lu et al., 2019). Similarly, increased NLRP6 was reported in the inflamed human dental 
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pulp tissue of pulpitis patients (Tian et al., 2020). An anti-inflammatory role of NLRP6 has 

been reported in rheumatoid arthritis patients in which NLRP6 was found to be 

downregulated in synovial tissues and fibroblast-like synoviocytes (FLSs) in rheumatoid 

arthritis patients compared with osteoarthritis patients (Lin and Luo, 2017). Intriguingly, in a 

genome-wide association study, a single-nucleotide polymorphism in NLRP6 has been 

linked to mean platelet volume, suggesting a potential involvement of this NLR in platelet 

function (Gieger et al., 2011). Thus, a clear understanding of the role of NLRP6 in human 

disease is currently lacking, which is essential to target NLPRP6 effectively.

Concluding remarks

NLRP6 exhibits diverse functions in the regulation of responses against pathogenic 

infections and gut homeostasis. Conflicting observations in different studies suggest that 

NLRP6 harnesses context-reliant inflammasome-dependent and -independent functions. 

Similarly, NLRP6 seems to have both protective and detrimental effects against microbial 

pathogens in the intestine and other mucosal surfaces. Studies involving deletion of NLRP6 

in specific cell compartments, such as myeloid cells, epithelial cells, or lymphocytes, could 

provide more conclusive findings.

Since NLRP6 recruits both caspase-1 and caspase-11 to form an inflammasome, future 

biophysical and biochemical studies are essential to understand how these caspases are 

recruited during NLRP6 inflammasome assembly. Similarly, how NLRP6 function and 

stability are regulated remain to be investigated. It is likely that post-translational 

modifications such as phosphorylation, ubiquitination, and sumoylation could modulate its 

function. Also, complexity might exist in the upstream regulators of NLRP6. Furthermore, 

the discrepancies regarding the role of NLRP6 in the regulation of gut microbiota need 

careful evaluation. Finally, the majority of the functions of NLRP6 are currently studied in 

mouse models, and exploring the full spectrum of cellular functions of NLRP6 in humans 

could lead to novel therapeutic strategies for human diseases.
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Figure 1. Activation of the NLRP6 inflammasome following microbial infection
LTA, a component of Listeria, induces type I IFN and upregulates NLRP6. Similarly, viral 

RNA and poly(I:C) induce Nlrp6 expression. NLRP6 recruits ASC and pro-caspase-1/

caspase-11 to form the NLRP6 inflammasome. Nlrp6 can also be activated by LPS + ATP as 

well as C. rodentium infection. NLRP6 inflammasome activates caspase-1, which cleaves 

pro-IL-18 and pro-IL-1β into their active forms that are then secreted by exocytosis.
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Figure 2. A model for NLRP6 Inflammasome assembly during microbial infections
Under resting conditions, NLRP6 remains in an auto-inhibited form. Infections by virus or 

Gram-positive bacteria activate NLRP6, resulting in its oligomerization through NBDs and 

PYDs in which PYD filamentous core surrounded by NBD and LRR domain. PYD 

filaments provide the platform for ASC recruitment and oligomerization through PYD-PYD 

interactions. The CARD in ASC then oligomerizes and recruits caspase-1, driving caspase-1 

dimerization and activation. By contrast, during Gram-negative bacterial infections, LPS 

directly binds to LRR domain of NLRP6 and induces a conformational change, resulting in 

its linear dimerization. In the presence of ATP, the NLRP6 homodimer further self-

assembles into even larger oligomers, providing a linear molecular platform for the 

recruitment of ASC and caspase-1, which then assemble into the inflammasome.

Venuprasad and Theiss Page 14

Cell Rep. Author manuscript; available in PMC 2021 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Regulation of optimal NLRP6 inflammasome activation and abundance of IL-18 in the 
colonic mucosa
Microbial components and metabolites induce the formation of the NLRP6 inflammasome. 

CYLD prevents sustained inflammasome activation via its deubiquitination. In UC patients, 

reduced CYLD expression leads to excessive NLRP6 inflammasome activation, resulting in 

elevated levels of IL-18. Excessive IL-18 amplifies inflammation by promoting IFN-γ, 

TNF-α, IL-17, and IL-6.
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