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Abstract: Solid-contact ion-selective electrodes for histamine (HA) determination were fabricated
and studied. Gold wire (0.5 mm diameter) was coated with poly(3,4-ethlenedioxythiophene) doped
with poly(styrenesulfonate) (PEDOT:PSS) as a solid conductive layer. The polyvinyl chloride
matrix embedded with 5,10,15,20-tetraphenyl(porphyrinato)iron(iii) chloride as an ionophore, 2-
nitrophenyloctyl ether as a plasticizer and potassium tetrakis(p-chlorophenyl) borate as an ion
exchanger was used to cover the PEDOT:PSS layer as a selective membrane. The characteristics of the
HA electrodes were also investigated. The detection limit of 8.58 × 10−6 M, the fast response time
of less than 5 s, the good reproducibility, the long-term stability and the selectivity in the presence
of common interferences in biological fluids were satisfactory. The electrode also performed stably
in the pH range of 7–8 and the temperature range of 35–41 ◦C. Additionally, the recovery rate of
99.7% in artificial cerebrospinal fluid showed the potential for the electrode to be used in biological
applications.

Keywords: solid-contact; histamine electrode; porphyrins; artificial cerebrospinal fluid

1. Introduction

Histamine (HA) is synthesized through the oxidative decarboxylation of the amino
acid histidine. It acts as an inflammatory mediator in inflammatory and allergic reac-
tions [1]. Controlled by immune signals, mast cells in peripheral connective tissues store
and release HA to deal with antigen exposure and pathological conditions such as tissue
injury, autoimmunity and inflammation [2,3]. In human skin suffering from urticaria,
the content of HA in pigmentosa is ten times more than that in normal skin tissue [4]. As a
signaling molecule in pathophysiological and physiological processes, HA is also involved
in gastric acid secretion, tumor genesis and vasodilation [5]. In tumors extremely rich in
HA, the unprecedented value of nearly 1000 µg HA per gram of tissue is much higher
than the highest value of HA (200–280 µg/g tissue) in any normal tissue [6]. Moreover,
HA functions as a modulatory neurotransmitter in cognition and the regulation of sleep
behavior in the mammalian brain. The dysfunction of the histaminergic system in the
central nervous system has been proved to be related to insomnia, Parkinson’s disease
and addictive behaviors [7,8]. HA is not only an endogenous substance in vertebrates,
but an indicator of food freshness. In fish causing food poisoning, the more than 50 mg
of HA per 100 g of fish is orders of magnitude greater than the 0.01 mg/100 g of HA
in fresh fish [9,10]. Thus, developing sensitive and fast HA determination methods is
a growing public health concern worldwide. It is necessary for disease diagnosis and
food-safety supervision.

In recent years, various HA determination methods have been researched, includ-
ing high-performance liquid chromatography (HPLC) [11,12], thin-layer chromatography
(TLC) [13], colorimetry [14], fluorescence methods [15,16], and enzyme-linked immunosor-
bent assay (ELISA) [17]. Although some methods are of good sensitivity and specificity,
they are restricted by their high costs, their time-consuming properties, the need for
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derivation and pretreatment due to the complexity of the sample matrix, and the low
analytical concentrations of HA. In comparison with these methods, electrochemical anal-
yses have been rapidly developed in recent years due to their advantages of low cost,
fast responses, reproducibility, reasonable sensitivity and storage stability [18–20]. When
amperometric electrodes, one of the electrochemical analytical methods, are utilized for HA
determination, a high potential is necessary for a redox reaction with which to detect the
current characteristics, and the redox product is unfavorable for the nervous system [21,22].
Although modern impedimetric electrodes, another electrochemical method, minimize
unwanted cell depolarization with lower voltages [23], the complex models and analyses
are not universal [24].

By contrast, potentiometric determination with ion-selective electrodes (ISEs) has
many more advantages. For instance, no operating potential and no enzyme are required,
they allow easy storage, and they have relatively long life spans of at least one month [25,26].
In contrast to conventional HA electrodes, which are internally filled with electrolyte solu-
tion, the solid conductive layer in solid-contact ISEs transduces ionic signals into electronic
conductivity. Thus, they are easier to maintain and miniaturize [27]. Compared with other
conductive polymers such as polyaniline and polypyrrole, one of the most widely used
commercial products, poly(3,4-ethlenedioxythiophene) doped with poly(styrenesulfonate)
(PEDOT:PSS), offers the advantages of good conductivity and less sensitivity to O2/CO2,
light and temperature [28,29]. To obtain sensitivity to HA, different ionophores have been
used in the polymeric selective membrane. However, α-cyclodextrin shows poor selectivity
for inorganic ions widely distributed in the human body [30]. Dibenzo-30-crown-10 shows
no response to monocationic HA, which leads to the invalidation of HA sensors when the
pH values of solutions are higher than 6 [31]. Compared with these ionophores, metallo-
porphyrins bond more stably with aromatic amines than aliphatic amines. This leads to a
stronger interaction between porphyrins and HA in the membrane [32].

In this work, solid-contact ISEs for HA determination were studied. A PEDOT:PSS
layer was coated on a 0.5 mm-diameter gold wire to take the place of the electrolyte
solution in conventional electrodes. The HA selective membrane contained 5,10,15,20-
tetraphenyl(porphyrinato)iron(iii) chloride (Fe(TPP)Cl) as an ionophore, 2-nitrophenyloctyl
ether (NPOE) as a plasticizer and potassium tetrakis(p-chlorophenyl) borate (KTFPB) as an
ion exchanger. The characteristics of the HA sensors were investigated, and the electrodes
showed good sensitivity to HA, selectivity for common interferences, stability at different
pHs and temperatures, and excellent reproducibility. The long-term stability over one
month was also found to be acceptable. In order to test the possibility of HA determination
in biological applications, artificial cerebrospinal fluid was used as the background in the
standard addition method.

2. Experimental
2.1. Reagents

Fe(TPP)Cl, NPOE, high-molecular-weight poly(vinyl chloride) (PVC), KTFPB, the
aqueous dispersion of PEDOT:PSS (1.3 wt% dispersion in H2O), HA, D-(+)-glucose (GC),
dopamine hydrochloride (DA), urea (Ur), epinephrine hydrochloride (EP), and L-ascorbic
acid (AA) were purchased from Sigma Aldrich (Shanghai, China). Lithium hydroxide
monohydrate (LiOH), acetate dehydrate (CH3COOH), potassium chloride (KCl), sodium
chloride (NaCl), calcium chloride (CaCl2), hydrochloric acid (HCl), hexadecyltrimethylam-
monium bromide (CTAB) and tetrahydrofuran (THF) were purchased from Sinopharm
Chemical Reagent (Shanghai, China). D-histidine (HI) was obtained from Macklin Reagent
(Shanghai, China). A 0.5 mm-diameter gold wire with a 99.99% metal basis was acquired
from Alfa Aesar (Shanghai, China). The artificial cerebrospinal fluid was purchased from
Sinopharm Chemical Reagent (Shanghai, China). Purification was not needed for any of
the chemicals.

The HA stock solution (10−1 M) was prepared by dissolving 0.555 g of HA in 50 mL of
acetic buffer (CH3COOH-LiOH). Other HA solutions with concentrations of 10−2–10−7 M
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were obtained by diluting a 10−1 M HA stock solution in acetic buffers. All the solutions
were stored at 4 ◦C.

2.2. Fabrication of the HA ISE

The gold wire with 7 cm length was inserted into a capillary tube and sealed with
resin. One end of the gold wire was exposed as the conductive substrate (the active area
was approximately 0.0942 cm2) and polished with alumina. After it had been rinsed with
deionized water, ethanol and sulfuric acid were applied for ultrasonic cleaning, successively.
Then, the gold wire was dried with nitrogen and stored in a drying closet.

The aqueous dispersion of conductive polymer was prepared by mixing 0.1 M CTAB
(0.1 vol%) as the surfactant in PEDOT:PSS (99.9 vol%), and the dispersion was shaken
homogeneously with a vortex. Then, a 6 mm length of the gold wire was immersed into the
dispersion and taken out to dry out. After this step was repeated 18 times, the gold wire
was entirely covered with a conductive layer and put upside down in the drying closet for
12 h.

The HA selective membrane was prepared by mixing Fe(TPP)Cl as the ionophore,
KTFPB as the ion exchanger and PVC as the membrane matrix in a tube. Once the THF,
as the solvent, and NPOE, as the plasticizer, had been added to the tube, the mixture was
stirred immediately for better dissolution. After the membrane cocktail was homogeneous
and had been stored at 4 ◦C for 24 h, the selective membrane was coated on the gold wire
by dipping as described previously [33]. The structure and photography of the HA sensor
are shown in Figure 1A,B, respectively. In Figure 1C, it can be observed that the surface of
the membrane was uniform without defects. The homogeneously distributed white plots
referred to as ionophores enhanced the interaction with HA and improved the sensitivity.

Figure 1. (A) Structure of solid-contact histamine ISE; (B) Photography of solid-contact histamine
ISE (one centimeter ruler as a reference); (C) SEM image of histamine ion-selective membrane.
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2.3. Evaluation of the Potentiometric Response

Potentiometric measurements were carried out with CHI660 Electrochemical Work
Station (Shanghai Chenhua Inc., Shanghai, China). A Ag/AgCl single-junction electrode
containing 3 M KCl as the external filling solution worked as the reference electrode
and formed a two-electrode system with the working electrode. The pH values were
determined by using a glass-pH electrode (Mettler Toledo, Shanghai, China), and a shaking
water bath (Shanghai Lichen Inc., Shanghai, China) was used to test the influence of
temperature. All the experiments were conducted at 25 ◦C and a pH value of 7.4, at which
the monoprotonated form of HA is dominant.

The selectivity coefficients for several secondary ions were measured and calculated
by the fixed interference ion method (FIM) using the constant concentration of respective
chlorides [34]. In order to determine the recovery rate for HA in real samples, the standard
addition method was applied by adding a high concentration of HA solution into the
artificial cerebrospinal fluid. Before every measurement, the electrode was conditioned by
soaking the membrane in 1 mM HA solution for a period of 1 h before use.

3. Results
3.1. Influences of Membrane Composition and Thickness of the Membrane

Four types of membrane cocktails were prepared by mixing the PVC, plasticizer,
ionophore and ion exchanger in proportion. After being covered with the membrane,
HA electrodes with different ionophore and ion exchanger contents were tested as sum-
marized in Table 1. The performance of these electrodes was evaluated according to the
IUPAC recommendations [34]. The electrode (type 4) without an ion exchanger exhibited
an insignificant and unstable response to the HA solution because of partitioning ion
exchange with ions of opposite charge (including primary ions) from solutions into the
sensing membrane [35]. Due to a higher amount of ionophore, the electrode processing
type 2 membrane provides increased sensitivity to HA and a lower detection limit of
8.58 × 10−6 M. However, the obvious improvement of another electrode (type 3) is not
obtained in comparison with type 2. The similar performance of these two electrodes (type
2 and type 3) is mainly due to the insolubility of excessive Fe(TPP)Cl (6.5%, w/w) in the
solvent.

Table 1. Membrane composition and performance of histamine electrodes.

Type KTFPB Fe(TPP)Cl PVC 2-NPOE Sensitivity Detection
(% w/w) (% w/w) (% w/w) (% w/w) (mV/decade) Limit (M)

1 0.5 2.5 32.3 64.7 44.75 1.17 × 10−5

2 0.5 4.0 31.8 63.7 46.42 8.58 × 10−6

3 0.5 6.5 31.0 62.0 46.56 8.52 × 10−6

4 0 4.0 32.0 64.0 - -

According to the results, an ionophore content of 4.0% was selected for further inves-
tigation. To obtain the optimum thickness for an ion-selective membrane, three types of
electrodes with different dipping times were fabricated, and the characteristics are shown
in Table 2.

Table 2. Influence of dipping time on the characteristics of HA electrodes.

Type Dipping Sensitivity Detection Response Long-Term
Time (mV/decade) Limit (M) Time (s) Stability (Days)

i 3 46.11 10−5 5 15
ii 5 46.42 8.58 × 10−6 5 35
iii 7 45.14 9.65 × 10−6 >10 -
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Type ii, which was dipped in the ion-selective membrane cocktail five times, provided
relatively higher sensitivity and a lower detection limit. Additionally, the response time of
type iii was more than 10 s because an increased thickness hinders ion transport. Due to
the similar performance of types i and ii, the long-term stabilities were tested for optimum
conditions. These two electrodes were used to detect 10−7–10−1 M HA solutions once
every five days. After each use, the sensors were rinsed with deionized water and stored
in a drying closet at room temperature. As shown in Figure 2A, type i worked normally for
15 days, and then, the sensitivity and reproducibility started to degrade. However, type ii
could normally perform for at least 35 days, as shown in Figure 2B. Thus, the HA electrode
dipped in the membrane cocktail five times could provide better characteristics, such as
sensitivity, response time and long-term stability. Then, the electrode with an ionophore
content of 4.0% w/w and dipped in the membrane cocktail five times was evaluated in the
following part.
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Figure 2. (A) Sensitivity of histamine electrodes (type i) over 20 days; (B) Sensitivity of histamine
electrodes (type ii) over 35 days.
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3.2. Calibration Curve and Stability of the Histamine Electrode

To achieve the diluted HA solutions with concentrations ranging from 10−7 to 10−2 M
at pH 7.4, a certain volume of 0.1 M HA stock solution was added into 45 mL of acetic buffer
(CH3COOH-LiOH) every 50 s with continuous magnetic stirring (400 rpm). Figure 3A
shows the stepwise response after each addition, and the sensor reached a steady state in
5 s. The fast response time is attributed to the charge transfer at the interface of the selective
membrane and solution. The experiment was repeated three times, and the calibration
curve is plotted in Figure 3B.
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Fig. 2. (A) The response of HA sensor with increasing HA concentrations from 10-7M to 10-1M: (1) 10-7M; 

(2) 3×10-7M; (3) 10-6M; (4) 3×10-6M; (5) 10-5M; (6) 3×10-5M; (7) 10-4M; (8) 3×10-4M; (9) 10-3M; (10) 

3×10-3M; (11) 10-2M; (B) The calibration curve of response to HA solutions in acetate buffer. 

 

Figure 3. (A) Dynamic responses of histamine sensor with the addition of histamine stock solution
every 50 s (1: 10−7 M; 2: 3 × 10−7 M; 3: 10−6 M; 4: 3 × 10−6 M; 5: 10−5 M; 6: 3 × 10−5 M; 7: 10−4 M;
8: 3 × 10−4 M; 9: 10−3 M; 10: 3 × 10−3 M; 11: 10−2 M); (B) Calibration curve of dynamic response in
histamine solutions with the background of acetic buffer (CH3COOH-LiOH).
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The electrode showed a linear response in the range of 3 × 10−5–10−2 M, with a
sensitivity of 46.42 mV/decade. The slope is slightly lower than the result derived in the
Nernst equation, due to the minor forms of dicationic and neutral HA when it becomes
protonated at an aliphatic amino group at neutral pH [36]. According to the IUPAC
recommendations, the crosslink of the nonresponsive range and the Nernst equation in the
calibration curve indicates that the detection limit is 8.58 × 10−6 M. The cation-π bond as
well as the proper bond angle between metalloporphyrins and the imidazole ring in HA
contributes to good sensitivity [32,37].

The stability was also examined by immersing the sensor into a 3 × 10−4 M HA
solution for 15 min, during which the maximal fluctuation of potential value was ±0.65 mV.
The relatively stable response over 15 min demonstrated that correction was not necessary
in the examination.

3.3. Selectivity Coefficients

The selectivity coefficients for the HA sensor for the inorganic and organic ions existing
in human plasma, including K+, Na+, Ca2+, GC, AA, HI, EP and Ur, were detected by FIM
referring to the IUPAC recommendations. In this process, the potentiometric response to
HA solutions from 10−7 to 10−1 M was determined against constant ionic backgrounds
for KCl, NaCl, CaCl2, GC, AA, HI, EP and Ur, respectively. The logs of the selectivity
coefficients were calculated and are shown in Table 3. The selectivity coefficients less than
−1 indicate that the sensor was more sensitive to HA than other interferences. Compared
with those for the other ions, the selectivity coefficients for K+ and EP were relatively
high. However, the concentrations of these two ions in human plasma (K+: less than
3 mM; EP: less than 540 nM) [38,39] were lower than the experimental settings, so they
would hardly cause interference practically. In addition, because of the proper bond angle,
metalloporphyrins coordinate more closely with the five-membered imidazole ring in HA
by removing the steric interaction with the hydrogens in the neighboring carbons [32].

Table 3. Selectivity coefficients for K+, Na+, Ca2+, GC, AA, HI, EP and Ur.

Interference j Constant Concentration (M) Selectivity Coefficient (Log Pot
HA, j)

K+ 0.01 −1.67
Na+ 0.1 −3.10
Ca2+ 0.1 −3.85
GC 0.1 −3.47
AA 0.01 −2.57
HI 0.05 −3.17
EP 0.01 −1.27
Ur 0.1 −3.50

3.4. Effects of pH and Temperature

To investigate the impact of pH on the HA sensor, the potentiometric responses to
10−4 M, 10−3 M and 10−2 M HA solutions at different pHs were measured. Considering
the physiological condition in the human body, the pH range of 7.0–8.0 was provided as
the background. As shown in Figure 4A, the sensor performed stably in the measured HA
solutions, which indicates that the HA sensor’s performance was independent of the pH in
the range of 7.0–8.0.

The temperature effect was also tested. Referring to the human body temperature,
Figure 4B provides the basically stable response of the sensor in 10−4–10−1 M HA solutions
within the temperature range of 35–41 ◦C. The sensitivity of 50.08 ± 0.79 mV/decade
implies that a change in temperature in a certain range could hardly affect the performance
of the HA sensor.
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Fig. 3. (A) Effect of pH on the potential response to HA solutions (10−4M、10−3M and 10−2M) in the 
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Figure 4. (A) Effect of pH on the potentiometric response to histamine solutions (10−4 M, 10−3 M
and 10−2 M) with the background of acetic buffer (CH3COOH-LiOH); (B) Effect of temperature on
the potential response to histamine solutions from 10−4 to 10−1 M.

3.5. Reproducibility and Repeatability

In the experiment, five sensors made in the same batch were selected to measure
0.1 mM, 1 mM and 10 mM HA standard solutions in acetic buffer (CH3COOH-LiOH).
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The measured mean concentration (Mean), standard deviation (S.D.) and relative stan-
dard deviation (R.S.D.) are shown in Table 4. The mean concentration close to the real
concentration and the R.S.D. less than 10% reveal the satisfactory reproducibility of the
HA sensors.

Table 4. Reproducibility of five HA sensors.

Number of HA ISE
C(HA) (mM)

0.100 1.000 10.000

Mean (mM) 0.101 1.008 9.455
No. 1 S.D. (mM) 0.002 0.021 0.209

R.S.D. (%) 1.430 0.824 5.451

Mean (mM) 0.099 1.030 10.069
No. 2 S.D. (mM) 0.002 0.017 0.764

R.S.D. (%) 1.289 3.020 0.689

Mean (mM) 0.101 1.051 10.536
No. 3 S.D. (mM) 0.004 0.088 0.823

R.S.D. (%) 0.983 5.077 5.359

Mean (mM) 0.107 0.995 10.306
No. 4 S.D. (mM) 0.002 0.026 0.217

R.S.D. (%) 7.017 0.502 3.064

Mean (mM) 0.109 1.020 10.964
No. 5 S.D. (mM) 0.004 0.037 0.393

R.S.D. (%) 9.641 2.049 9.641

The repeatability of the HA sensors was also evaluated. Six sensors were selected
randomly to detect the response in 10−7–10−1 M HA solutions. As shown in Figure 5,
the sensitivity of 50.96 ± 1.41 mV/decade demonstrates that the repeatability between
different HA sensors was acceptable.
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Figure 5. Repeatability of six histamine sensors in histamine solutions (10−7–10−1 M).
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3.6. HA Determination in Artificial Cerebrospinal Fluid

To investigate the effect of interference ions, the performance of the HA sensor in arti-
ficial cerebrospinal fluid was tested by the standard addition method. A 10−4 M standard
HA solution was prepared with the background of artificial cerebrospinal fluid. A certain
amount of 10−2 M HA solution was added to obtain the increasing concentrations of
2 × 10−4 M, 3 × 10−4 M and 4 × 10−4 M. After repeating the test three times, the predicted
concentration of the HA solution was calculated to be 9.97 × 10−5 M. Compared with the
real concentration of 10−4 M, the recovery rate of 99.7% demonstrated that the common
interference ions, for example, K+ and Na+, could hardly affect the determination of
HA. Referring to the value of 1000 µM HA per gram of tissue in tumors and more than
50 mg/100 mg HA in poisonous fish, the recovery rate in 10−4 HA solution implied the
potential usage of the sensor to monitor HA in biological fluids and poisonous foods.

4. Conclusions

In this study, miniaturized solid-contact HA sensors with 0.5 mm-diameter gold wires
were made and evaluated. PEDOT:PSS coated on the wires transduced ionic signals by
electronic conductivity. In the selective membrane, Fe(TPP)Cl, acting as an ionophore;
2-NPOE, acting as a plasticizer; and KTFPB, acting as an ion exchanger, were embedded in
a PVC matrix for HA sensitivity. The HA electrode worked linearly in the range of 3 × 10−5–
10−1 M, with a detection limit of 8.58 × 10−6 M. pHs within 7.0–8.0 and temperatures within
35–41 ◦C could hardly influence the stability of the sensor. The reproducibility, repeatability,
stability and selectivity were also found to be acceptable. In addition, the performance of
the HA sensor in artificial cerebrospinal fluid was analyzed. The recovery rate close to
100% suggests possible application in clinical research and food safety control.
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