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Background: The tumor immune microenvironment (TIME) phenotypes have been
reported to mainly impact the efficacy of immunotherapy. Given the increasing use of
immunotherapy in cancers, knowing an individual’s TIME phenotypes could be helpful in
screening patients who are more likely to respond to immunotherapy. Our study intended
to establish, validate, and apply a machine learning model to predict TIME profiles in
non-small cell lung cancer (NSCLC) by using 18F-FDG PET/CT radiomics and
clinical characteristics.

Methods: The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas
(TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH)
cohort received18F-FDG PET/CT scans before treatment and CD8 expression of the
tumor samples were tested. The Artificial Intelligence Kit software was used to extract
radiomic features of PET/CT images and develop a radiomics signature. The models were
established by radiomics, clinical features, and radiomics-clinical combination,
respectively, the performance of which was calculated by receiver operating curves
(ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score)
and clinical features, a nomogram was established. Finally, we applied the combined
model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive
(TCIA) cohort (n = 39).

Results: TCGA data showed CD8 expression could represent the TIME profiles in
NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907
vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical
combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P =
0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA
org April 2022 | Volume 13 | Article 8593231
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cohort, the predicted CD8-high group had significantly higher immune scores and more
activated immune pathways than the predicted CD8-low group (P = 0.0421).

Conclusion: Our study indicates that 18F-FDG PET/CT radiomics-clinical combined
model could be a clinically practical method to non-invasively detect the tumor immune
status in NSCLCs.
Keywords: positron emission tomography/computed tomography, radiomics, tumor immune microenvironment,
lung cancer, machine learning
INTRODUCTION

Immunotherapy has dramatically altered the traditional therapy
strategies for cancers including melanoma, lymphoma, and non-
small cell lung cancer (NSCLC) (1–3). Despite their
breakthrough progress, only a subset of NSCLC patients has
received clinical benefits (4, 5). Accumulating studies have
revealed that tumor immune microenvironment (TIME)
phenotypes mainly impact the efficacy of immunotherapy,
especially CD8+ T cells infiltration into the tumors which is
positively correlated with immunotherapy efficacy and survival
(6–9). Knowing more about the TIME phenotypes in pre-treated
NSCLC could help in identifying the patients who are more likely
to respond to immunotherapy.

Currently, the gold standard for TIME phenotypes is based on
the pathological result of biopsies or operations. However, there
are several limitations to these methods to determine the
immune status. First, these techniques are invasive, have risks,
and are not suitable for some patients with severe conditions.
Second, due to the tumor heterogeneity, the sampling error is
relatively high by using these routine methods which rely on a
single tumor sample (10–12). Third, tumor immune status
would evolve dynamically during cancer therapy, which makes
it difficult to determine the current TIME status from an archival
sample (13, 14). Thus, it is necessary to develop non-invasive
complementary approaches to reflect the entire and dynamic
information of TIME.

Recent emergence of radiomics which contain a huge number
of quantitative medical imaging features provides promising
opportunities (15, 16). Compared with conventional imaging
methods, radiomics can provide a more detailed characterization
of tumor heterogeneity beyond the human eye, which reflects
either macroscopic or cellular and molecular properties of tumor
tissues (17–20). 18F-fluoro-deoxy-glucose positron emission
tomography/computed tomography (18F-FDG PET/CT) is
widely used in clinics to diagnose, stage, and monitor
therapeutic efficacy in lung cancer. Recent studies have
revealed that 18F-FDG PET/CT could show the metabolic
status of the TIME (21–24). The metabolic pattern of 18F-FDG
uptake in tumors could be highly associated with tumor-
infiltrating immune cells (25). However, to our knowledge,
there is no predictive model developed by using PET/CT
radiomic features and clinical characteristics to predict TIME
profiles in NSCLC.

In this study, we aimed to establish, validate, and apply a
machine learning model to evaluate TIME profiles using
org 2
18F-FDG PET/CT radiomics data combined with clinical
characteristics in cohorts of NSCLC patients from Daping
Hospital (DPH) and The Cancer Imaging Archive (TCIA)
dataset. We also evaluated whether CD8 expression signature
could represent the TIME profiles by using the RNA sequencing
(RNA-seq) data of lung squamous-cell carcinoma (LUSC) and
lung adenocarcinoma (LUAD) from The Cancer Genome Atlas
(TCGA) dataset.
MATERIALS AND METHODS

Study Design and Data Collection
In this retrospective multicohort study, radiomics analysis was
performed in NSCLC patients from two independent cohorts,
DPH dataset and TCIA dataset. TCGA dataset was used to
evaluate whether CD8 expression could represent the TIME
profiles in NSCLC. Figure 1 depicts the overall study design.

The DPH cohort consisted of 221 patients who were
pathologically confirmed NSCLCs. These patients underwent
pre-therapy 18F-FDG PET/CT scan in our department from
January 2019 to December 2020. Patients were classified into
CD8-high and CD8-low groups, according to the pathological
results (Supplementary Material). Inclusion criteria were as
follows: (1) no anti-cancer therapy received before 18F-FDG
PET/CT scan, (2) surgery or biopsy was performed within 2
weeks after 18F-FDG PET/CT scan, (3) patients were confirmed
NSCLCs pathologically, (4) no history of other malignancy, and
(5) a maximum diameter of the lesion > 1 cm to avoid partial
volume effects. The exclusion criteria were as follows: (1) pure
ground-glass nodule (pGGN) without FDG metabolism and (2)
poor imaging quality. This retrospective study was conducted
with the approval of the Ethical Committee of Daping Hospital,
Army Medical University (No.2020055). This study’s use of
human subjects complies with the Declaration of Helsinki.
Choosing Target Gene
Expression Signature
The RNA-seq data of 1145 NSCLC samples, information
(gdc_manifest_20210810_002850) regarding the clinical data of
these NSCLC patients were collected from the TCGA dataset
(https://tcga-data.nci.nih.gov/tcga/). Perl software (http://www.
perl.org/) was employed to organize the data. Although CD8A is
known to represent CD8+ cytolytic T cells (CTLs) in the tumor
microenvironment (TME), we first analyzed whether CD8A
April 2022 | Volume 13 | Article 859323
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could represent the TIME profiles. The cut‐off values were set as
log2 (fold change) > 2 for screening differentially expressed genes
(DEGs) and adjusted P < 0.05 using the “DESeq2” and “limma”
R packages (version 4.1.1). Samples from TCGA dataset were
divided into two groups as follows: CD8-high group, CD8A
expression higher than the median; CD8-low group, CD8A
expression lower than the median. The protein–protein
interaction (PPI) network from Metascape was obtained and
reconstructed by Cytoscape 3.7.0 software. Functional
enrichment was performed, including Gene Ontology (GO)
terms that contained molecular function categories, cellular
components, biological processes, and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis. The highly
associated modules and key genes in DEGs and differentially
expressed immune genes (DEIGs) were identified by RNA‐seq
analysis and weighted gene coexpression network analysis.
Potential molecular mechanisms in these two groups were
investigated by analyzing gene set enrichment analysis (GSEA)
to acquire down- and up-regulated pathways. FDR <0.05 was
defined as statistically significant.

PET/CT Scan
All 221 patients in the DPH cohort were examined by Biograph
64 HD PET/CT (Siemens). Patients fasted for more than 6 hrs
before scanning and had a blood glucose level < 8 mmol/L. Then,
18F-FDG was injected intravenously (3.7 MBq/kg, pH 5–7,
radioactive purity > 95%). After 45-60 min, patients underwent
PET/CT examination from the vertex to the proximal legs. CT
scan parameters were 130 mA tube current, 120 kV voltage, and
Frontiers in Immunology | www.frontiersin.org 3
5 mm slice thickness. Subsequently, whole-body PET scan was
performed (4-6 bed positions at 90 s/bed position, FOV = 700
mm × 700 mm, matrix = 168 × 168, slice thickness = 5 mm) with
correction for dead time, scatter, and decay. PET images were
reconstructed by TrueX and fused with CT images.

Segmentation, Feature Extraction,
and Selection
The lesion was delineated by ITK-SNAP 3.8.0 software (www.
itksnap.org). Two experienced radiologists, blinded to the
clinical data of the patients, performed volume of interest
(VOI) segmentation. For CT segmentation, VOI of lung
cancers were drawn on lung window. For PET segmentation, a
threshold of 40% SUVmax was used to delineate the VOI semi-
automatically. Subsequently, the images were preprocessed by
the Artificial Intelligence Kit (version 3.2.0, GE Healthcare).
Images were preprocessed by resampling the isotropic voxel
into 1 × 1 × 1 mm with linear interpolation. There were 874
radiomics features totally extracted from each VOI (VOI_CT,
VOI_PET), including first order, shape, gray level co-occurrence
matrix (GLCM), gray level size-zone matrix (GLSZM), gray level
run-length matrix (GLRLM), neighborhood gray tone difference
matrix (NGTDM), and neighboring gray level dependence
matrix (GLDM). Advanced filters were applied with Laplacian
of Gaussian (LoG, sigma 1.0 mm) and wavelet decompositions
with all possible combinations of high (H) or low (L) pass filter in
each of the three dimensions (HHH, HHL, HLH, LHH, LLL,
LLH, LHL, and HLL). The 221 patients were stratified into
training and validation groups randomly at 7:3. Feature
FIGURE 1 | The workflow of overall study. Firstly, we evaluated whether CD8 expression signature could represent the TIME profiles by using the RNA-seq data in
TCGA cohort (n = 1145). Then, machine learning model was trained and validated using DPH cohort (n = 221) with 18F-FDG PET/CT radiomics-clinical features to
predict CD8 expression status. The model was then applied to predict TIME phenotypes in TCIA cohort (n = 39). The right row is the radiomics workflow.
April 2022 | Volume 13 | Article 859323
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standardization was performed before feature selection.
Radiomics features were selected by using two algorithms.
First, we removed the redundant and less-relevant features
using the minimum-redundancy and maximum-relevance
(mRMR). Then, the optimized feature subsets were selected by
the least absolute shrinkage and selection operator (LASSO)
method. The efficiency of model fitting and complexity was
measured by Akaike Information Criterion (AIC).

Clinical Feature Collection and Selection
The quantitative clinical features were age, gender, smoking
history, pathology, stages, SUVmax, maximum length of
tumor, leaflet, bur, air bronchogram, vacuole sign, ground glass
composition, calcification, and pleural adhesion. All PET/CT
imaging features were independently analyzed by two
experienced radiologists who were blinded to the clinical data.
The nominal variable was analyzed by chi square test or Fisher’s
exact test. The continuous variable with abnormal distribution
was analyzed by Mann-Whitney test, while, continuous variable
with normal distribution was analyzed by t-test. Then, univariate
logistic analysis was employed to investigate the discriminative
clinical features between CD8-high (immune-inflamed, ‘hot’
TIME) and CD8-low (immune-desert, ‘cold’ TIME) groups.

Model Construction
Three different radiomics models (PET/CT, PET, and CT
radiomics models) were developed to evaluate TIME profiles in
NSCLC. Then, Rad-score and clinical features were combined to
establish a multivariate logistic regression model (combined
model) and to develop a predictive nomogram for establishing
a risk-scoring model. The nomogram’s calibration was assessed
using calibration curves, which was confirmed by Hosmer–
Lemeshow test. The diagnostic efficiency of the models in
predicting TIME profiles of NSCLC was evaluated by receiver
operating characteristic (ROC) curve.

Machine Learning-Based TIME Prediction
in TCIA Cohort
The combined model was applied to TCIA cohort, in which 39
NSCLC patients were performed 18F-FDG PET/CT scanning
pretherapy. We selected the target lesions and performed
segmentation and feature extraction as described before. We
applied the radiomics-clinical combined model to divide into
two groups. The difference in the immune scores was compared
by t-test. DEGs in these two groups were identified by the ‘limma
Bioconductor’ software package in R (version 4.1.0, available at
http://www.R-project.org). The ‘ggplot2’, ‘enrichplot’, and
‘clusterProfiler’ software packages in R were used to perform
GO. FDR <0.05 was considered statistically significant.

Statistics
Statistics were performed using the SPSS software (version 25.0,
IBM Corp., Armonk, NY) and R language software (version
3.5.1, available at http://www.R-project.org). Normal
distribution and equal variance were assessed by Kolmogorov–
Smirnov and Levene tests. To evaluate inter-observer reliability
for VOI drawing and radiomics analysis, intraclass correlation
Frontiers in Immunology | www.frontiersin.org 4
coefficient (ICC) test was performed. The “mRMRe”, “Glmnet”,
and “pROC” packages were applied to execute mRMR algorithm,
LASSO logistic regression, and ROC curves, respectively. AUCs
of these models were compared by Delong test. P < 0.05 was
considered statistically significant.
RESULTS

CD8A Correlated With Other Immune
Expression Profiles in TCGA Cohort
The results showed that CD8Awas one of the immune score-related
DEGs (Supplementary Figure S1). A PPI network was constructed,
which consisted of 200 nodes. Figure 2A depicts the subnetwork
containing the most nodes and edges, and top 30 genes were
identified in PPI network (Figure 2B). After PPI network was
loaded into the cell landscape, CD8A was located in the top 10
nodes, and the PPI network of CD8A was composed of genes/
proteins involved in immunomodulation, which indicates that
CD8A plays an important role in tumor immune regulation.
Further, GSEA was performed to investigate the differences
between CD8-high group and CD8-low group in enrichment
pathways and immunologic signatures. As Figure 2C shows, in
CD8-high group, pathways were primarily associated with innate
immune and immune response systems (Table S1). Immunologic
signatures in CD8-high group were mainly related to regulatory
genes of immune cells (Table S2). Furthermore, 22 immune cells
were analyzed to explore the differences in immune infiltration
using Cibersort between these two groups. Significant differences
between CD8-high and CD8-low groups were shown in CD8 T
cells, follicular helper T cells, gamma delta T cells, activated CD4
memory T cells, macrophages, resting and activated Mast cells,
activated dendritic cells, and neutrophils (Figure 2D). These
findings indicate that CD8 expression signature could represent
the TIME profiles. Therefore, CD8 was chosen to be the marker to
distinguish ‘hot’ and ‘cold’ TIME in this study.

Prediction of Immune Profiles by PET/CT
Radiomics and Clinical Characteristics in
DPH Cohort
Clinical Characteristics
Table S3 demonstrates the patients’ characteristics in DPH
cohort. Significant differences were found in gender, smoking
history, and pathology between CD8-high and CD8-low groups
in both training and validation sets (Table S3). The imaging
features, including tumor maximum length and SUVmax, were
shown to be significantly longer/higher in CD8-high group
relative to CD8-low group (both P < 0.001).

Feature Selection in the Three
Radiomics Models
A total of 1748 radiomic features were extracted. The ICC values
ranging from 0.82 to 0.98 suggested high reliability of VOI drawing
and great consistency between two readers. For PET/CT model, 70
features were retained after mRMR analysis, and nine optimal
features were identified for constructing the model by LASSO
April 2022 | Volume 13 | Article 859323
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logistic regression (Figures 3A, B; Table S4). Whereas, for PET or
CT model, seven or four features were retained for constructing the
model (Figures S2, S3; Tables S5, S6). Figure 3C shows the rad-
score distribution of each patient in both training and validation
groups, which indicated NSCLCs with CD8-high expression had
higher rad-score than those with CD8-low expression.

Performance of the Radiomics Models and
Radiomics-Clinical Combined Model
The ROC curves and predictive performance of the three radiomics
models are shown in Figure S4 and Table S7. Delong test
demonstrated that PET/CT model outperformed CT model to
predict CD8 expression significantly (Z = 2.1518, P = 0.0314).
After clinical model screening, gender, smoking, pathology, stage,
SUVmax, maximum length, bur, calcification, and ground glass
were associated with CD8 expression by univariate logistic analysis
(Table S8). Subsequently, we further analyzed the nine clinical
features using multivariate logistic and found four clinical variables
(gender, pathology, SUVmax, ground glass) with significant
influence on the model, among which two clinical features
Frontiers in Immunology | www.frontiersin.org 5
(gender, SUVmax) were independent predictors of CD8
expression (Table S9). Then, we analyzed the differences in
gender between the CD8-high and CD8-low groups in NSCLCs
from TCGA, which showed significant differences in gender
between these two groups (Table S10). Further, we established
PET/CT radiomics-clinical combined model to evaluate the TIME
profiles by integrating the significantly associated clinical features
and Rad-score. The results revealed that the combined model could
perfectly predict TIME status in NSCLC (training: AUC = 0.932,
testing: AUC = 0.920), which showed better performance than both
clinical model (AUC = 0.868, Z = 2.9107, P = 0.0036) and radiomics
model (AUC = 0.907, Z = 2.1363, P = 0.0326) (Figure 4; Table S7).

Construction and Validation of the Individualized
Nomogram
Given that the radiomics-clinical combined model performed
better at predicting TIME status in NSCLC, we drew the
nomogram integrating PET/CT Rad-score, ground glass, gender,
pathology, and SUVmax for establishing a risk-scoring model
(Figure 5A). The calibration curve showed predicted value was in
A

B

C

D

FIGURE 2 | CD8A correlated with other immune expression profiles in TCGA cohort. (A) PPI network of DEGs with integrated scores > 0.20, in which top 30 central genes
were obtained (B). The difference in KEGG, immunologic signature (C), and immune cells’ proportion (D) between the CD8-high and CD8-low groups.
April 2022 | Volume 13 | Article 859323
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accordance with the observed value in both training and validation
sets (Figure 5B). No significant difference was observed on the
Hosmer–Lemeshow test in either the training (P = 0.6774) or
validation sets (P = 0.4759), which indicated a good fit.
Frontiers in Immunology | www.frontiersin.org 6
Application of the Radiomics-Clinical
Combined Model in TCIA Cohort
We applied the radiomics-clinical combined model in TCIA
cohort to predict the TIME phenotypes. Based on the combined
A B

C

FIGURE 3 | PET/CT radiomics feature selection and model construction. In PET/CT model, (A) LASSO method was calculated. (B) The final retained features after
selection and their corresponding coefficients. (C) Rad-score of each patient in the training and validation sets.
FIGURE 4 | ROC curves for differentiating CD8 expression status of these three models (radiomics, clinical, and combined models).
April 2022 | Volume 13 | Article 859323
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model, patients in TCIA cohort were classified into predicted
CD8-high and predicted CD8-low groups. The predicted CD8-
high group showed significantly higher immune scores and more
activated immune pathways than the predicted CD8-low group
(P = 0.0421, 95% CI: -1558 to -30.21; Figures 6A, C). Then, we
attempted to assess whether the predicted TIME correlated with
overall survival. Overall survival in both predicted groups
showed no significant difference (P = 0.2194, HR: 0.3944, 95%
CI: 0.1237 to 1.258, Figure 6B). GO analysis (Figure 6C)
demonstrated that the top five enriched BP terms were viral
gene expression, viral transcription, lymphocyte proliferation,
mononuclear cell proliferation, and antigen processing
and presentation.
DISCUSSION

Given the increasing use of immunotherapy in cancers, knowing
the individual’s TIME phenotypes could help identify the
patients who will respond to immunotherapy. Herein, we
successfully developed a model based on machine learning to
Frontiers in Immunology | www.frontiersin.org 7
evaluate TIME profiles by combining 18F-FDG PET/CT
radiomics data with clinical features, with an excellent
performance. When we applied our model in TCIA cohort, the
predicted CD8-high group had significantly higher immune
scores and more activated immune pathways than the
predicted CD8-low group. These findings implicate that the
approach to estimate TIME phenotypes of individual tumor
lesions by 18F-FDG PET/CT radiomics could be potentially
feasible in clinics.

Recent studies reported three distinct TIME phenotypes,
including immune-inflamed, immune-excluded, and immune-
desert (6, 26). Immune-inflamed phenotype is characterized by
high infiltration of CD8+ CTLs with upregulated IFN g signal
pathway, and expression of immune cell checkpoint markers (26–
28). Tumors with this TIME phenotype are considered
immunologically ‘hot’ tumors, which tend to respond to
immunotherapy (29–31). While, low infiltration of CD8+ CTLs
is the characteristic of the two other TIME phenotypes, immune-
excluded and immune-desert, which are considered not to be
inflamed, called immunologically ‘cold’ tumors (9, 32, 33). Thus,
CD8+ CTL was chosen to be the marker to distinguish ‘hot’ and
A

B

FIGURE 5 | Nomogram for CD8 expression status prediction. (A) Nomogram integrating clinical features with Rad-score. (B) The nomogram’s calibration was
assessed using calibration curves, which was confirmed by Hosmer–Lemeshow test in the training (left) and validation sets (right).
April 2022 | Volume 13 | Article 859323
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‘cold’ TIME in this study, which was also applied in other previous
reports (18, 34). Immune infiltration was estimated by CD8A gene
expression and CD8 immunohistochemistry, which was
consistent with the previous study that revealed the correlation
of CD8A gene with the CD8 cells infiltration (35). In addition, a
recent study revealed that CD8A was positively correlated with the
immune score in almost all 33 tumor types (36). Furthermore, in
our study, the TCGA results showed that CD8A was one of the
immune score-related DEGs. After PPI network loaded into the
cell landscape, CD8A was located in the top 10 nodes, and the PPI
network of CD8A composed of genes/proteins involved in
immunomodulation, which indicates that CD8A plays an
important role in tumor immune regulation. Therefore, we
chose CD8A and analyzed whether CD8A could represent the
TIME profiles in this study. Consistent with these previous studies,
we found CD8 expression signature could represent the TIME
phenotypes in1037 NSCLC patients from TCGA.

Given the important role of TIME in immunotherapy,
various methods were currently being used to measure TIME.
Pepe F et al. adopted cytological samples for tumor immune-
checkpoint biomarkers assessment in patients with lung cancer,
and found that cytological samples yielded more accurate results
than traditional histological matched specimens (37). However,
the preoperative preparation phase of cytology was complicated,
and was an invasive examination. Thus, emerging research
Frontiers in Immunology | www.frontiersin.org 8
focuses on using non-invasive imaging to predict the TIME
phenotypes (21, 38–41). Recently, based on CT images, some
machine learning models were reported to discriminate tumors
with ‘hot’ versus ‘cold’ TIME, and were also used for prediction
of immunotherapy efficacy in cancers (18, 42). In addition, the
metabolic pattern of the tumor microenvironment was estimated
by 18F-FDG PET/CT (21–24). Research has revealed a
relationship between metabolic status and immune cells in
TME. If machine learning is used to reflect the heterogeneity
of TIME in PET/CT images, it may have greater clinical value.
Therefore, we developed a 18F-FDG PET/CT radiomics model to
evaluate TIME profiles.

In this study, the predictive power of PET/CT radiomics
model was better than that of CT radiomics model to define
TIME phenotypes in NSCLC. Further, PET/CT radiomics-
clinical combined model, which consisted of gender, pathology,
ground glass composition, SUVmax, and Rad-score was
established. The combined model outperformed the radiomics
model or clinical model alone. In our study, significant
differences were found in gender between CD8-high and CD8-
low groups, which was consistent with the previous study (43)
and results of TCGA cohort. In clinical features, SUVmax had
been previously reported positively correlated with CD8+ CTLs
in tumors, which was consistent with our study (21, 44, 45). In
addition, tumors with ground glass composition were found
A C

B

FIGURE 6 | Application of the radiomics-clinical combined model in TCIA cohort. (A) Immune scores of the predicted CD8-high and CD8-low groups. (B) The
overall survival curve of these two predicted groups. (C) The enrichment relationship between genes and the main enriched terms (up) and the top 10 BP terms
(bottom) in GO analysis.
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more probable to be immunologically ‘cold’ tumors. In PET/CT
radiomics, three of selected nine radiomics features are first-
order radiomics features. According to Lin et al., the first-order
radiomics features were reported robust and repeatable, thus
they could accurately provide intensity-based indexes of lesions
(46). The remaining six radiomics features are all related to
image heterogeneity and uniformity. The results indicated that
NSCLCs with ‘hot’ TIME were more heterogeneous, compared
to ‘cold’ TIME. Taken together, PET/CT radiomics-clinical
combined model could predict TIME status in NSCLCs with
high performance.

Our study has some limitations. First, although the predictive
performance of this combined model was applied in independent
cohort from TCIA, the sample size is small. Thus, it is necessary
to validate this model in large-scale prospective studies and, in
the future, apply in independent multi-cohortsSecond, we
discriminated the TIME phenotypes based on CD8 expression
signature, which were also used in other studies (18, 34).
Prospective studies should include additional TIME subtypes
to understand the tumor immune functions (47, 48).
CONCLUSION

In summary, this study highlights that 18F-FDG PET/CT
radiomics-clinical combined model could be a clinically
practical approach to non-invasively detect TIME phenotypes
in NSCLCs. In spite of the necessity to validate this model in
large-scale prospective studies, these findings indicate the
potentia l for non-invasive biomarker development
in immunotherapy.
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