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Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in
the micro-environmental metabolic characteristics are recognized as important tools for
cancer cells to interact with the resident and infiltrating T-cells within this tumor
microenvironment. Cancer-induced metabolic changes in the micro-environment also
affect treatment outcomes. In particular, immune therapy efficacy might be blunted
because of somatic mutation-driven metabolic determinants of lung cancer such as
acidity and oxygenation status. Based on these observations, new onco-immunological
treatment strategies increasingly include drugs that interfere with metabolic pathways that
consequently affect the composition of the lung cancer tumor microenvironment (TME).
Positron emission tomography (PET) imaging has developed a wide array of tracers
targeting metabolic pathways, originally intended to improve cancer detection and
staging. Paralleling the developments in understanding metabolic reprogramming in
cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of
studies with additional imaging tracers has been published. These tracers are yet
underexploited in the perspective of immune therapy. In this review, we provide an
overview of currently available PET tracers for clinical studies and discuss their potential
roles in the development of effective immune therapeutic strategies, with a focus on lung
cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of
interactions between cancer cells and T-cells in the lung cancer microenvironment, and
we identify areas of research which are yet unchartered. Thereby, we aim to provide a
starting point for molecular imaging driven studies to understand and exploit metabolic
features of lung cancer to optimize immune therapy.

Keywords: tumor microenvironment, lung cancer, T-cells (or lymphocytes), immunotherapy, metabolism,
molecular imaging
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1 INTRODUCTION

Metabolic reprogramming is one of the hallmarks of cancer (1,
2), and the many ways by which cancer cells manipulate their
metabolic micro-environment are increasingly being
understood. Excellent and comprehensive reviews approaching
this topic from the angle of specific cancer types such as non-
small cell lung cancer (NSCLC) (3, 4) and head and neck cancer
(HNSCC) (5) or from the most common metabolic substrates –
oxygen (6), essential nutrients/amino acids (7), lipids/free fatty
acids (8), acetate (9) or genetic drivers (10–13) - are available
from recent literature.

Alterations in the tumor microenvironmental (TME)
metabolites are recognized as important tools for cancer cells
to interact with supportive cells in their direct vicinity (14).
These supportive cells include endothelial cells, inducing
angiogenesis when activated by increased demands for oxygen
(15, 16) or cancer-associated fibroblasts driving glycolysis (5, 17).
Also, tumor-associated macrophages can modulate glucose
metabolism in the TME in favor of cancer progression (18).
Interactions between cancer cells and supportive cells are
reciprocal in nature (18) and the derivative metabolic
phenotypes result from underlying oncogenic mutations (11,
19), pathology (20, 21) as well as from tissue of origin (22). Lung
cancer frequently harbors mutations which directly affect cellular
glucose metabolism and associated metabolic pathways, as
reviewed previously (4). In addition to STK11/LKB1 mutations
(23, 24), mutations in the PI3K (phosphoinositide-3-kinase)-
AKT-mTOR (mammalian target of rapamycin) pathway (23),
the oncogenes RAS, c-MYC, and master regulator HIF-1a
(hypoxia inducible factor-1a), or the tumor suppressor gene
TP53 are known to reprogram lung cancer metabolism.

By modulating metabolic pathways and depriving the TME
from essential nutrients, cancer cells create unfavorable
conditions for invading adaptive immune cells (20, 25–27). To
execute their effector functions, T-cells should undergo rapid
Frontiers in Oncology | www.frontiersin.org 2
metabolic reprogramming (28, 29), which mainly involves
upregulation of aerobic glycolysis by CD28 co-stimulation,
acting through PI3K and Akt pathways (30, 31), very much
alike the Warburg effect in cancer cells (32). Yet on the longer
term, a sustainable memory T-cell response requires a distinct
metabolic profile that relies on oxidative phosphorylation and
intact mitochondrial function to prevent T-cell exhaustion (33–
35). Figure 1 introduces the main potential sources of energy
available in the TME, which will be discussed in this review, and
the preference of cancer cells and T-cells to perform glycolysis or
oxidative phosphorylation, respectively. Glucose metabolism
therefore illustrates that nutrient availability represents a
highly conserved fundamental framework to guide decisions
on cell survival or apoptosis (36), a process which is
continuously taking place in the TME. Next to glucose
metabolism, other basal metabolic pathways involving amino
acids (7) like glutamine (37) and lipids (8, 38, 39) are reported to
affect T-cell immunity.

Cancer-induced metabolic changes in the TME not only favor
cancer progression and immune suppression but can also be a
limiting factor concerning treatment efficacy. The most studied
example in lung cancer is the adverse role of lack of oxygen
availability blunting radiotherapy efficacy (40–42). Similarly,
blocking adaptive metabolic pathways renders standard
chemotherapy more effective in lung cancer (43, 44). Also,
development of resistance to targeted therapies is related to
plasticity in metabolic pathways associated with Kirsten rat
sarcoma viral oncogene homolog (KRAS) mutations in NSCLC
(45, 46), a vulnerability which can be exploited in combination
treatments (47). More recently, the metabolic determinants of
immune checkpoint inhibition are being understood (48). For
example, glucose consumption by cancer cells might be a
metabolic adaptation to restrict T-cell effector function (26,
49). Furthermore, blocking programmed death ligand-1 (PD-
L1) on cancer cells reduces their glycolysis rate by inhibition of
mTOR-related pathways, which would permit T-cells to exploit
FIGURE 1 | Preferential metabolic pathways and potential energy sources available in the tumor microenvironment for cancer cells and T-cells.
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their glycolytic capacity and restore IFN-g production (26).
Acknowledging the intertwined roles of immune checkpoint
molecules, both on cancer cells and T-cells, in immune
signaling and regulation of cellular metabolism, this is now an
active area of research (50, 51). Ongoing onco-immunology
studies on checkpoint inhibitors search to utilize the effect of
checkpoint molecule inhibition on cancer cell metabolism, as
adjunct to enhancing immune cell function (52, 53).

In addition, onco-immunological treatment strategies emerge
that employ the metabolic vulnerabilities of cancer cells,
especially at the level of mitochondria (54–58). These strategies
include enzymatic drugs that interfere with dominant metabolic
pathways in the TME (59), such as metformin, atovaquone,
glucose (60), indoleamine 2,3-dioxygenase (IDO inhibitors),
glutamine inhibitors (37) and AKT-mTOR inhibitors (27). The
efficacy of mitochondrial targeting drugs indicates that oxidative
phosphorylation remains important for adenosine-triphosphate
(ATP) production in a multitude of tumors, including NSCLC
(61, 62).

Tumor senescence represents another important tumor
suppressor mechanism (63), apart from apoptosis, embanking
cancer cell proliferation as well as malignant progression. Tumor
senescence implies stable cell-cycle arrest induced by cellular
stress associated with alterations in gene expression patterns, a
metabolic shift towards a more glycolytic state and a
proinflammatory secretory phenotype (64, 65). Multiple
anticancer therapies such as chemotherapy, radiotherapy and
cancer immunotherapies are applicable to induce irreversible
tumor senescence. Thus, tumor senescence has to be taken into
account as an essential component in the treatment of cancer.

PET imaging has developed a wide array of tracers targeting
metabolic pathways, originally intended to improve cancer
detection and staging (66, 67). Paralleling the developments in
understanding metabolic reprogramming in cancer cells, as well
as its effects on T-cells, a wave of additional imaging tracers has
been published (68, 69) (Figure 2).

Definitively, imaging can contribute to more effective anti-
cancer therapies (70–72), as it assesses functional processes with
high sensitivity and, if applied longitudinally, can monitor
treatment effects on an individual patient basis. This adds
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important insights to immunohistochemistry that can provide
a detailed but static insight in the expression of transporters,
enzymes and other molecular markers involved in metabolic
pathways. Although the methodology allows quantitative
assessment of these functional processes this is limited to
accessible lesions and hampered by sampling errors. In
addition, molecular imaging facilitates evaluation of intra-
tumoral regional differences, a critical aspect for the net
treatment efficacy (73) which cannot be assessed with invasive
sampling procedures such as biopsies. As metabolic adaptation
of T-cells can have tissue-specific determinants (74) which might
differ from in vitro experiments (75), the wide field of view of
PET imaging is a critical asset in this domain of research.

However, molecular imaging tools that probe metabolic
processes are yet under-utilized in the perspective of immune
therapy development. In this review, we provide an overview of
currently available PET imaging tools for clinical studies and
discuss their potential roles in the development of effective
immune therapeutic strategies in lung cancer. We report on
ongoing efforts that include PET/CT to understand the outcomes
of interactions between lung cancer and T-cells in the tumor
microenvironment, and we identify areas of research which are
yet unchartered. Thereby, we aim to provide a starting point for
molecular imaging driven studies to understand and exploit
metabolic features of tumor environment to optimize
immune therapy.
2 GLUCOSE METABOLISM

2.1 Glucose Metabolism in Cancer Cells
The most studied metabolic phenomenon in cancer is its
tendency to increase its’ rate of glycolysis in adjunct to
oxidative phosphorylation, despite the presence of sufficient
levels of oxygen in the TME. This feature of cancer
metabolism is called the Warburg effect, named after the
German scientist who first described this (76). Although
glycolysis is less efficient in producing ATP, it does generate
increased levels of additional metabolites for the biosynthesis of
ribose, glycosylation precursors, amino acids, and lipids (77, 78).
FIGURE 2 | Molecular imaging tracers to visualize key receptors and pathways involved in cell metabolism.
January 2022 | Volume 11 | Article 786089
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Inefficient ATP production would only be problematic in
scarcity of nutrients, which is in general not the case in cancer.
Therefore ‘aerobic glycolysis’ means a survival advantage for
cancer cells in terms of increased anabolism and avoidance of
oxidizing precious carbon-carbon bonds (79).

To meet their greatly enhanced demand for glucose under
conditions of ‘aerobic glycolysis’, cancer cells have upregulated
levels of the key glucose transporter 1 (Glut-1) on cell
membranes (10) and associated hexokinases. Hexokinases are
enzymes that phosphorylate six-carbon sugars, primarily
glucose, by transferring a phosphate group from ATP to its’
substrate. As phosphorylation charges the hexoses, it is trapped
intracellularly and available for further metabolic processes,
resulting in a stable down-slope gradient that drives glucose
transport into the cell. For this reason, hexokinase activity is the
rate limiting step for most metabolic pathways involving glucose.
The isoform hexokinase II (or hexokinase B) is the dominant
isoform in many cell types (80), including most cancers, and
located at the outer mitochondrial membrane to have direct
access to ATP (81). Upregulation of aerobic glycolysis results in
an increase of pyruvate, which is further metabolized into lactate
(77). Intracellular lactate is transported out of the cell, along with
protons, via monocarboxylate transporters (e.g., MCT-1 and
MCT-4) into the TME. In addition to lactate shuttles,
intracellular acidification is prevented by carbonic anhydrase 9
(CAIX), a transmembrane metalloenzyme that facilitates
secretion of acids produced under oxidative stress. Indeed, it
has long been noticed that tumors often have an acidic
environment (82).

2.2 Regulation of Metabolic
Reprogramming in Lung Cancer
Metabolic reprogramming in cancer is partly due to oncogenic
activation of signal transduction pathways and transcription
factors, HIF-1a is a master regulator of glycolysis and the
pentose phosphate pathway (20, 83, 84). In lung cancer,
oncogenes and pathways divert intracellular glucose flux
towards increased usage of glucose into the hexosamine
biosynthesis, required for protein glycosylation and pentose
phosphate pathway [reviewed in (4)]. Well-studied signaling
pathways, including PI3K/Akt/mTOR and RAS/RAF/MEK/
MAPK, with high prevalence in lung cancer, associate with
increased glycolysis as well as metabolic plasticity, by initiating
compensatory mechanisms and facilitating alternative metabolic
sources, e.g., amino acids, nucleotides or fatty acid biosynthesis
and macropinocytosis. At a transcriptional level, the
transcription factor nuclear factor erythoid-2-related factor
(NFE2L2/Nrf2) is identified as one of the main regulators of
metabolic reprogramming in lung cancer, and its activity is
associated with poor survival (85).

Epigenetic mechanisms also contribute to the regulation of
gene expression involved in cancer metabolism (86). Disruption
of the epigenome is present in cancer cells, including DNA
methylation, histone proteins and histone modification enzymes,
as well as proteins that regulate the function of metabolic
enzymes (87). Reciprocally, activity of histone and DNA
Frontiers in Oncology | www.frontiersin.org 4
modifying enzymes regulates the expression of metabolism-
associated genes, leading to a complex interplay between
metabolism and epigenetic during cancer progression (88).
Understanding the relation between metabolism, signaling
pathways and epigenetics may open new avenues for anti-
cancer immune therapy (89), which will be discussed later.

2.3 How Glucose Consumption by Cancer
Cells Affects T-Cells
Upon activation, naïve T-cells also undergo metabolic adaptation
to meet the increased bioenergetic demands associated with
proliferation and effector function (29, 90–93). In contrast to
static cancer cells, which can thus invest in creating a favorable
metabolic niche, effector T-cells migrate through the body and
are merely passengers who need to adapt to changing
environmental conditions, from well-supplied lymph nodes
and spleen to rather oxygen and nutrient deprived cancer
lesions (94). In general, nutrient competition between cells
strongly influences cell fate (36, 95) and function (90). More
recently, this interplay between cancer cells and immune cells has
been reviewed (51, 96, 97). Aerobic glycolysis is not required for
activation or proliferation during early stages of T-cell activation
(98), however, it is essential for optimal T-cell effector function in
the TME (99, 100). In vitromodels previously demonstrated that
cancer cells outcompete T-cells for glucose, directly restricting
cytokine mediated anti-cancer immunity (101). Also in vivo,
tumor infiltrating CD8+ T-cells face restricted glucose
availability, which consequently hampers increased rate of
glycolysis by restricted mTOR activity and thus reduced IFN-g
production (98, 102).

In addition to direct competition for glucose, limiting the
magnitude of aerobic glycolysis in T-cells, high lactate excretion
by cancer cells further suppresses T-cell effector functions (103–
105), directly correlated it to reduced survival rates in e.g., head
and neck cancer (106). The acidic TME inhibits both T-cell
trafficking and cytotoxicity (102, 103, 107) and sheds new light
on the role of lactate as immune metabolic mediator (14). The
enzyme lactate dehydrogenase A (LDHA) which converts
pyruvate into lactate, not only plays a central role in cancer
cell aerobic glycolytic capacity but exerts similar function in T-
cell function through PI3K signaling (31, 108).

The costimulatory molecule CD28 on T-cells, ligating to
CD80 during antigen-specific activation, induces this PI3K
signaling (30), resulting in increased expression of Glut-1. By
facilitating glycolysis increase, CD28 signaling prepares T-cells to
anticipate on changing metabolic demands associated with
sustained effector functions. This necessary metabolic switch is
furthermore under the control of inhibitory members of the
CD28 superfamily (mainly PD-1 expression), with the intend to
delicately control T-cell activation (97, 109–111). PD-1 on T-
cells is mostly studied as an exhaustion marker, induced by
chronic antigen exposure and endurable stages of activation. Its
increased expression on T-cells indicates a critical stage of T-cell
development, at the verge of going in retraction and clearance
(109, 112). The expression of PD-L1, by cancer cells and myeloid
derived suppressor cells in the TME not only suppresses
January 2022 | Volume 11 | Article 786089
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cytotoxic effector function of T-cells, but it also entangles the
metabolic reprogramming of T-cells via ligation of PD-1. PD-1
ligation suppresses the ability of T-cells to perform glycolysis and
glutaminolysis, thus pushing T-cells further towards retraction.
Therefore, one of the effects of therapeutic monoclonal
antibodies targeting CTLA-4 (interacting with CD28) and PD-
L1 (interacting with PD-1), is allowing T-cells to maintain their
increased glycolytic and glutaminolytic capacity to execute anti-
cancer effector functions in the TME (113, 114).

2.4 Imaging Targets Related to Glucose
Metabolism
The most widely applied tracer to image the upregulation of
glycolysis is 2’-deoxy-2’-[18F]fluoro-D-glucose ([18F]FDG). [18F]
FDG is extensively used for the detection of primary tumors,
metastases and recurrences, and monitoring responses to anti-
cancer treatments (115–117). [18F]FDG uptake by glycolytic
cancer cells is directly related to upregulated levels Glut-1
transporters (118) and hexokinases act iv i ty (119).
Consequently, levels of [18F]FDG uptake also correlate with
increased levels of derivates of the glycolytic pathway; pyruvate
and lactate (120).

2.4.1[18F]FDG to Characterize the Tumor Immune
Microenvironment
Given the reciprocal relation of glucose metabolism between cancer
cells and T-cells, several studies investigated the relation between
[18F]FDG-uptake, as parameter for glycolysis in the TME, and
expression levels of immune checkpoint molecules and presence of
CD8+ T-cells. Independent of the well-known higher [18F]FDG-
uptake in squamous cell histological subtypes as compared to
adenocarcinoma in NSCLC (20), some studies found a trend
towards higher SUVmax and SUVmean in lung cancers with
increasing numbers of CD8+ T-cell numbers and increased
Frontiers in Oncology | www.frontiersin.org 5
expression of PD-1 (121). Not surprisingly, CD8+ T-cells and
PD-1 expression were highly intercorrelated and overlapping their
positive correlation with [18F]FDG-uptake. However, there was no
such relation between [18F]FDG-uptake and presence of tumor-
associated macrophages, measured by CD68 staining, or PD-L1
expression (Figure 3). Others did find a positive relation between
[18F]FDG uptake and PD-L1 expression on immunohistochemistry
in patients with NSCLC (122–124). High maximum [18F]FDG
uptake in NSCLC seemed prognostic for poor disease free
survival (121), but it might be predictive for a favorable response
to immune checkpoint inhibition (125).

In contrast, high levels of [18F]FDG uptake by cancers cells,
corresponding with upregulated expression of glycolysis-related
genes, was correlated with reduced numbers of CD8+ T-cells,
increased T-cell exhaustion gene signatures and higher levels of
PD-L1 in NSCLC by others (126), which potentially can stratify
patients for subsequent immune checkpoint inhibition. This
negative trend has also been observed in HNSCC using a
systems biology approach, correlating omics data with
histopathological data; CD8+ T-cell numbers were inversely
correlated with HIF-1a and EGFR regulated aerobic glycolysis
(127). This was confirmed by a similar approach in HNSCC
demonstrating reduced numbers and activation status of CD8+
T-cells as well as myeloid cells with increasing [18F]FDG uptake
(128), and renal cell carcinoma (129, 130).

2.4.2 [18F]FDG to Monitor Response to Immune
Checkpoint Inhibition
Decrease in [18F]FDG uptake in melanoma, renal cell or lymphoma
lesions within 3 months after start of immune checkpoint inhibition
was correlated with a favorable clinical outcome at 1 year (131).
Several additional studies confirmed the role of [18F]FDG
to monitor response to immune checkpoint inhibition in
patients with advanced melanoma treated with CTLA-4 inhibitors
A B

FIGURE 3 | (A) patient with pT2bN0 well-differentiated primary adenocarcinoma of the right upper lobe, with markedly increased [18F]FDG uptake (A). This tumor
was PD-L1 negative. Molecular analyses: mutations found in KRAS (p.G13C), BRAF (p.G464V) and STK11, no amplifications, no micro-satelite instability. An
additional example of a patient with pT1bN0 well-differentiated primary adenocarcinoma of the left lower lobe, with faint [18F]FDG uptake (B). This tumor was PD-L1
negative and molecular analyses detected mutations in KRAS (p.G12A), no amplifications and no micro-satellite instability.
January 2022 | Volume 11 | Article 786089
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(132–134) and advanced NSCLC patients under PD-1 inhibition
(124) These studies suggest that [18F]FDG may serve as a predictor
of response of immune checkpoint inhibition (132, 133), as long as
immune therapy related response patterns are taken into account,
e.g. appearance of new lesions or initial limited increase in tumor
burden not per se define progression (135, 136). At this moment
several clinical trials are ongoing with [18F]FDG as a biomarker of
therapeutic responses to immunotherapy in various cancer types,
including thoracic cancer (NCT02608528), NSCLC (NCT02753569
and NCT04082988), and melanoma (NCT04272658). These
current studies, generally hinting at a conventional role for [18F]
FDG PET/CT to assess cancer responses to immune therapy,
presumably demonstrates that in the TME cancer cell glycolysis
largely outcompetes glycolysis by tumor-infiltrating immune cells.

However, early signs of increased T-cell activity, by
upregulated [18F]FDG-uptake as a surrogate for increased
glycolysis, at sites distant from the TME are readily visualized
using [18F]FDG PET imaging (137). Immune related adverse
events like thyroiditis are associated with favorable clinical
outcome (131). In addition, systemic immune activation,
linked to increased glycolysis in hematopoietic bone marrow
and secondary lymphoid organs such as the spleen, show a
positive correlation with favorable response to immune
checkpoint inhibition (138–141).
3 OXYGEN AVAILABILITY

3.1 How Oxygen Availability Affects
Cancer Cells
Glycolysis, even when increased, contributes relatively little to
cellular ATP content; its majority is provided by oxidative
phosphorylation in mitochondria, which requires oxygen in
the electron transport chain (142). Although oxygen
availability is only limiting mitochondrial electron transport
chain at very low levels (<0.07% oxygen) (143, 144), its
lowering levels are sensed carefully. Through HIF1a activation,
hypoxia promotes glycolysis in addition to increasing oxidative
phosphorylation (145, 146). Imbalances in oxygen levels occur in
a range of physiological conditions, e.g., wound healing (147),
and disease conditions, e.g. chronic obstructive pulmonary
disorders (148). In cancer however, the chaotic tissue
vascularization results in chronic diffusion-limited hypoxia as
well as acute perfusion limited hypoxia (15). Enduring long-term
hypoxia results in additional oxidative stress caused by increased
levels of reactive oxygen species (ROS) produced from
mitochondrial complex III in cancer cells (149, 150) Excessive
levels of intracellular ROS can cause oxidative damage to
intracellular lipids, protein and DNA, which might reciprocally
drive diversification of cancer phenotypes (151) but at a given
point culminates in cell cycle arrest and apoptosis (152).

3.2 Lung Cancers’ Response to Hypoxia
Intracellular oxygen homeostasis is regulated by the hypoxia-
inducible factor (HIF), a heterodimer that is composed of two
subunits HIF-1a and HIF-1b (153). HIF-1a transcriptional
Frontiers in Oncology | www.frontiersin.org 6
activation is triggered by short-term hypoxia of 2–24 h with
oxygen tensions <0.1% oxygen, while the isoform HIF-2a
activation occurs under milder hypoxic conditions (<5%
oxygen). Under normoxic conditions, HIF-1a is degraded
under control of the von Hippel-Lindau (VHL) protein. Under
hypoxic conditions, HIF-1a is stabilized and binds to HIF-1b
before translocating to the nucleus to bind the hypoxia response
elements (HRE) that targets genes involved in intracellular acid-
base balances, such as carbonic anhydrase IX (CAIX) (154).
Furthermore, it induces transcription of genes involved in
glycolysis (including Glut-1, hexokinases (155, 156)),
angiogenesis and proliferation (157). While HIF initiates
increase in glycolysis, the glycolytic products pyruvate and
lactate in their turn induce HIF-1a accumulation, indicative of
a sustained feed-forward mechanism driving tumor metabolism
towards glycolysis (158, 159).

Another result of HIF-1a upregulation is increased
expression of CAIX as is described above (160) and MCT-4
(161). The interaction of CAIX with MCT-1 and MCT-4 is
linked to acidification of the TME (162) and associated with
poorer prognosis (163) and immune suppression (164).
However, whether CAIX expression can serve as a surrogate
for tumor hypoxia is debatable (165) and clinical studies on
CAIX expression in lung cancer are scarce.

As VEGF is the main mediator of angiogenesis in many types
of cancer to cater to chronic hypoxic conditions and as VEGF is
under control of HIF signaling, it is also aberrantly expressed in
lung cancer (166), in particular in adenocarcinoma (167). The
level of VEGF expression is correlated with micro-vessel density
and development of hypoxia and is involved in the so-called
secondary vascular growth phase (168–170). It is suggested that,
although VEGF expression stimulates angiogenesis, the
disorganized and immature features of newly formed blood
vessels in fact sustain the presence of intra-tumoral regions of
hypoxia (171). Consequently, VEGF expression is in most
studies correlated to a worse survival in NSCLC (172).

In parallel to oxidative stress, oncogenic mutations in lung
cancer can also induce HIF activation, e.g., phosphatase and
tensin homolog (PTEN), PI3K/Akt/mTOR pathway (152, 173),
or epigenetic alterations (174, 175). As a consequence of
increased HIF-1a signaling, PD-L1 expression on lung cancer
cells increases (176–179).

3.3 How Oxygen Availability Affects T-Cells
On a general note, cancer cells show a greater metabolic plasticity
than effector T-cells and have evolved to manipulate the host
TME to their benefit, which enables them to utilize a variety of
alternative metabolic pathways and substrates also under
hypoxic conditions. Consequently, these alternative metabolic
pathways often come with side-products, such as ROS, which
require an additional set of processes to compensate for collateral
damage. Although T-cells have differential metabolic preferences
throughout their lifespan, they display limited plasticity or
compensating pathways to deal with the ‘metabolic waste’ from
cancer cells, resulting in ‘exhausted’ states in the TME (93, 101).
For example, high levels of ROS in the TME are toxic for T-cells
(180–182). Central to these effector function insufficiencies is
January 2022 | Volume 11 | Article 786089
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mitochondrial function, which shows hyperpolarization,
fragmentation, and increased ROS production in the TME (35,
59, 114, 130, 183). Furthermore, intratumoral hypoxia also limits
T-cell migration away from the blood vessels into the tumor
micro-environment, creating hypoxic immune privileged niches
within the tumor (184). Thus, in addition to the limited
availability of glucose itself, hypoxia further restricts T-cells’
capacity to perform aerobic glycolysis (paragraph 2.3),
hampers T-cell infiltration and hypoxia-related waste products
directly affects T-cell viability.

3.4 How T-Cells Respond to Hypoxic
Conditions
As mentioned above, induction of glycolysis is essential for T-cell
effector functions and this induction is under control of
mitochondrial ROS signaling and HIF-1a under normoxic
conditions (6, 94) In particular Th17, Th1 CD4+ T-cells and CD8
+ T-cells rely on increased glycolysis, whereas regulatory T-cells
show less glycolysis dependency (93). For example, upon activation
of CD3/CD28 on CD8+ T-cells, the expression of HIF-1a increases
via PI3K/AKT/mTOR pathways to allow for increased glycolysis
and effector functions such as IFN-g and TNF-a secretion (185,
186). Under hypoxic conditions, HIF-1a induces downregulation of
IFN-g production by Th1 cells (187). These observations suggest a
complex dual role for HIF-1a signaling in T-cells, which is
environment and stimulus dependent. While glycolysis is required
for T-cell effector functions, glutaminolysis and the pentose
phosphatase pathway are necessary for biosynthesis. T-cell
receptor triggering increases amino-acid transporters, along with
upregulation of glucose metabolism, and therefore contributes to T-
cell activation. However, given its different role glutaminolysis does
not compensate for the dependency on glycolysis under hypoxic
conditions. In fact, depletion of amino acids in the TME such as L-
arginine by myeloid derived suppressor cells, inhibits T-cell
proliferation (101). Perhaps the most important alternative
metabolic pathways for T-cells in the TME to meet their
metabolic demands is fatty acid oxidation (188). T-cell effector
function is partially preserved by upregulating PPAR-a signaling to
metabolize fatty acids under hypoxic and hypoglycemic conditions
(39). Promotion of fatty acid metabolism could synergize with PD-1
blockade to control tumor growth, as shown in a preclinical
melanoma model.

3.5 Hypoxia Blunts Efficacy of Anti-Cancer
Treatment
Several preclinical and human studies have identified roles of
hypoxia in blunting treatment efficacy, as a longstanding notion
across cancer types (106, 189, 190), and in particular in
radiotherapy (191). Radiosensitivity starts to decrease at
oxygen tensions below 2% oxygen, most directly by decreased
availability of molecules for radiolysis to produce ROS by
ionizing radiation. The hypoxia found in cancer also leads to
downregulation of the type I IFN pathway, while this pathway is
necessary for an adequate immune response.

In addition to directly reducing the therapeutic potential of
ionizing radiation, the downregulated type I IFN pathway due to
Frontiers in Oncology | www.frontiersin.org 7
hypoxia impairs immune activation upon immunogenic cell
death, a phenomenon that is observed for radio- as wells as
chemotherapy (192). Furthermore, regulatory T-cells and
memory CD8+ T-cells largely depend on oxidative
phosphorylation, which is also restricted under hypoxia (101),
and at least partly explains the arduous task of immune
activation in hypoxic tumor regions. Lastly, the disturbed
vascularization in tumors is known to hamper the intra-
tumoral delivery of therapeutic agents, resulting in sub-
therapeutic intra-tumoral concentrations (193, 194). To this
end, anti-angiogenic treatments have been introduced in
adjunct to radiotherapy (191, 195) targeted- or chemotherapy
(196, 197). The overall results over combination treatments
targeting VEGF in NSCLC so far have been disappointing (198).

More recently, other processes involving tumor vasculature
associated endothelial cells have been identified, which act in
addition to the typical vessel sprouting induced by hypoxia-
driven or mutation-driven PI3K/Akt signaling. These processes
include vessel co-option and vascular mimicry and may partly
explain previous ambiguous results of combination treatments in
NSCLC. These alternative angiogenic process also illustrate the
complex network between NSCLC, supporting stromal cells,
such as endothelial cells and pericytes, and mobile immune cell
populations. It is generally accepted that angiogenesis factors
drive an immune suppressive microenvironment (16, 184). In
preclinical models VEGF inhibition resulted in enhanced T-cell
infiltration and improved anti-cancer immune responses (199)
and help the induction of tertiary lymphoid structures. These
studies sparked the interest in combining anti-angiogenic
treatment with immune checkpoint inhibitors (200).

3.6 Imaging Targets Related to Oxygen
Availability
Most of the current clinical hypoxia PET tracers are 18F-
fluorinated nitroimidazole compounds, which target the altered
redox status in cancer cells and its uptake is increased in hypoxic
cells. The mechanism of fluorinated nitroimidazoles is based on
an oxygen-reversible single-electron reduction of the nitro
group, resulting in the formation of oxygen radicals which
covalently bind to macromolecules in hypoxic cells (201),
resulting in intracellular trapping of the tracer. In clinical
setting, 18F-fluoromisonidazole ([18F]FMISO) is the most
widely used tracer for hypoxia (202, 203). However, [18F]
FMISO has slow clearance and low tumor uptake (204), which
led to the development of second generation 2-nitroimidazole
tracers, [18F]fluoroazomycinarabinofuranoside ([18F]FAZA),
[18F]FETNIM, [18F]EF3, [18F]EF5 (205). Even a third
generation 2-nitroimidazole hypoxia tracer ([18F]HX4,
Figure 4) has been developed and clinically tested, showing
more favourable pharmacokinetic and clearance properties than
other 18F-fluorinated nitroimidazole compounds (206, 207).
[18F]HX4 is for these reasons favored over previous hypoxia
tracers for response monitoring to (chemo-)radiation therapy
(208–210).

Besides nitroimidazole analogues, other compounds that
target the redox status in cancer cells are diacetyl-bis(N (4)-
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methylthiosemicarbazone (ATSM), radiolabeled with different
copper radioisotopes, or ionic copper (II) (211). [64Cu]ATSM
has several advantages over other nitroimidazole derivative
hypoxia markers, including rapid tumor uptake and faster
clearance from normoxic tissues (212). Several studies in lung
cancer have shown that radiolabeled ATSM targets different
regions within a tumor as compared to [18F]FDG (213, 214),
and enable prediction of response to radiotherapy (215). Similar
findings have been observed in patients with locally advanced
HNSCC, in which [62Cu]ATSM was evaluated as a predictor of
response (216), with results paralleling [18F]HX4.

As hypoxia upregulates expression of CAIX on cancer cells,
multiple radiotracers have been identified and tested pre-
clinically for the imaging of CAIX, such as the anti-CAIX
monoclonal antibody (mAb) G250, girentuximab (cG250),
girentuximab antibody fragment Fab’ and F(ab’)2, and more
recently affibody molecules. In a recent comparative preclinical
study, the affibody ZCAIX:2, antibody fragment girentuximab-F
(ab’)2, and a complete antibody-based tracer were evaluated for
imaging upregulation of CAIX in head and neck cancer
xenograft models (217). Radiolabeled girentuximab,
girentuximab Fab’ and F(ab’)2 fragments are also evaluated in
human colorectal cancer xenografts (218). According to these
studies the complete girentuximab IgG tracer showed the most
promising results in both human tumor xenografts. In the
clinical setting, the chimeric mAb girentuximab is mostly
tested for targeting of CAIX in clear cell renal cell carcinoma
(ccRCC) (219), but no clinical studies have been performed on
primary lung cancer.

Alternatively to molecular imaging tracers with a particular
target in a hypoxia related pathway, multi-modal imaging that
combines tissue characteristics, using dynamic contrast
enhanced CT, and glucose metabolism, using routine [18F]FDG
PET, was shown to accurately predict the presence of intra-
tumoral regions with hypoxia (as defined by [18F]HX4
accumulation (208)).

3.7 Hypoxia Imaging to Monitor Response
to Immune Checkpoint Inhibition
As the agreement among different hypoxia-related tracers for
PET imaging, or agreement with regional [18F]FDG uptake in
NSCLC is modest (220–224), it remains critical to obtain tissue
validation or solid clinical endpoints (225) when incorporating
hypoxia tracers in NSCLC studies. However, the most
extensively tested hypoxia-related imaging tracer for response
prediction in the clinical setting is [18F]FMISO. In early stage
NSCLC, the combined pattern of high [18F]FDG and high [18F]
FMISO uptake was associated with an increased risk of
recurrence after stereotactic radiotherapy (226). Such metabolic
profile based in molecular imaging could help in guiding
intensity-modulated treatment, as demonstrated in locally
advanced NSCLC to avoid deleterious effects on organs-at-risk
(227–229).

No studies have yet been performed regarding hypoxia
imaging and immunotherapy in NSCLC, but in HNSCC [18F]
FMISO imaging was used pre-clinically in combined anti-PD-1
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and anti-CTLA-4 treatment to monitor changes in the TME
during treatment. Preliminary data shows the potential to predict
response to checkpoint blockade with anti-PD-1 and anti-CTLA-
4 therapy [Reeves et al. J Nucl Med 2020, volume 61, supplement
1; 407, meeting report]. In HNSCC patients, increased
lymphocyte infiltration is seemingly determined by a hypoxia-
dependent response to chemoradiation (230), and persistent
hypoxia during definitive chemoradiation treatment correlated
with persistent PD-L1 expression and reduced outcomes (230),
illustrating the potential of hypoxia related imaging to probe the
tumor microenvironment. Several clinical trials are ongoing with
[18F]FMISO as read-out in radiotherapy trials. One phase IB/II
trial is ongoing to examine the feasibility and safety of the
combination of two immune checkpoint inhibitor therapies
(nivolumab and ipilimumab) in the neoadjuvant setting in
resectable HNSCC. In this study, hypoxia measured by [18F]
FMISO PET imaging is investigated as determinant for the effect
of immune checkpoint inhibitors on the intratumoral T cell
capacity (NCT03003637).
4 GLUTAMINE METABOLISM

4.1 Glutaminolysis in Cancer Cells
In addition to glucose, most tumor types also display increased
uptake of amino acids, such as glutamine, to meet their high
demands in biosynthesis and macromolecular synthesis (79,
231). Glutaminolysis is the intracellular conversion of
glutamine to glutamate by glutaminase (GLS). This process is
facilitated by the upregulation of the alanine-serine-cysteine
transporter 2 (ASCT2, also known as SLC1A5) receptors in
different cancer types (231), including lung cancer (232). In
particular under low-oxygen conditions, glutamine becomes a
carbon source for proliferating cancer cells to perform
lipogenesis via reductive carboxylation (142), taking over up to
80% of de novo lipogenesis in A549 lung carcinoma cells (233).
Via several other routes, glutaminolysis provides a back-up for
metabolic pathways that are usually sustained by glucose
metabolism; by providing a source of NADPH (234) and the
glycolytic intermediate PEP when gluconeogenesis can no longer
be performed (235). Thus, increased glutaminolysis in most
cancer types illustrates their metabolic plasticity and provides
an alternative source to glycolysis for intracellular bioenergetics.
This dual reliance of lung cancer is further illustrated by the
upregula t ion of g lutaminolys i s once g lyco lys i s i s
suppressed (236).

Another important role for glutamate in cancer cells is its
conversion into glutathione, a critical intracellular redox buffer,
which is necessary to counteract the oxidative stress inflicted by
aerobic glycolysis (237).

Similar to glycolysis, increased glutaminolysis is driven by
increased signaling in the PI3K and/or Akt, which results in
increased signaling of mTOR. Lung cancer frequently harbors
mutations in the receptor tyrosine kinases or further
downstream (238), and some of the metabolic heterogeneity
observed in lung cancer cell lines can be attributed to mutations
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in KRAS or Trp53, apart from their histological subtype being
adenocarcinoma (239) or squamous cell carcinoma (240).

4.2 How Glutaminolysis in Cancer Cells
Affect T-Cells
Engagement of the T-cell receptor and the co-stimulatory molecule
CD28 triggers pathways under the control of transcription factors
HIF-1a and mTOR, which not only increase glycolysis, but also
upregulate the expression of amino acid transporters (7). Thus
activated and proliferating T-cells also display increased glycolysis
and glutaminolysis (94, 100, 241), which associates with the
increased expression of SCL1A5 for glutamine (242), similar to
cancer cells. In vitro experiments demonstrated that glutamine
deprivation indeed reduces T-cell proliferation, suppresses
differentiation towards Th1 phenotypes but stimulates regulatory
FoxP3+ phenotypes (243). In addition to its role as intracellular
antioxidant similar to cancer cells, glutathione in T-cells also
supports mTOR and NFAT activation, thus driving glycolysis and
glutaminolysis (92) and promoting inflammatory responses.

Blocking glutaminolysis in lung cancer cell lines results in
upregulation of PD-L1 expression via NF-kB activity and
dampened T-cell activation, but when glutaminolysis is
inhibited together with PD-L1 blockade, the balance tips
towards T-cell mediated cancer cell death (37).

Besides glucose, and glutamine, T cells also consume
tryptophan. Deprivation of tryptophan can impair the function
of these T cells (244). Pathologic conditions as hypoxia induce
the presence of IDO on tumors, resulting in a significantly
increased tryptophan metabolism by the kynurenine pathway
(245). This increase of the metabolic product kynurenine is toxic
for T-cells and leads to immunosuppression (246). Tryptophan
2,3-dioxygenase (TDO) is like IDO as it also catalyzes
tryptophan into kynurenine (247, 248). Since IDO and TDO
Frontiers in Oncology | www.frontiersin.org 9
both convert tryptophan into kynurenine, they are both
important targets to image this tryptophan metabolism.

4.3 Imaging Targets Related to Glutamine
Metabolism
4.3.1 Glutamine Metabolism
Glutamine metabolism in the TME can be visualized using
glutamine radiolabelled with 18F or 11C (249–251). In
preclinical experiments that studied the interplay between
glutaminolysis and glycolysis, by using specific inhibitors in
squamous cell lung cancer mouse models, PET imaging using
[18F]FDG or [11C]Gln was used to quantify tumor metabolic
profiles (240). In a lung cancer xenograft model, as well as in
genetically engineered EGFR-mutant lung cancer model,
increased [18F]Gln correlated with expression levels of SLC1A5
(252). Besides the fluorinated glutamine analogue, another PET
tracer has been developed and tested in vitro and in animal
models, namely L-[5-11C]-glutamine ([11C]Gln) (250). In
contrast to [18F]Gln, this tracer is subjected to glutamase
activity, converted to glutamic acid and further metabolized.

A clinical study in different cancer types, including lung
cancer, supports the preclinical data that [18F]Gln (Figure 5)
can be used as a biomarker of glutamine flux and metabolism in
the TME (253–255). However, these studies focus on tumor
detection and at present no clinical studies have incorporated
glutamine-tracers to classify TME or monitor responses to
immunotherapy. One clinical study showed a decrease in [18F]
Gln uptake in the bone marrow upon chemotherapy with
doxorubicin/rituximab, associated with a decrease in number
of leukocytes (256). No clinical imaging studies are performed so
far with [11C]Gln.

Another tracer that can be a potential marker of glutamine
metabolism is [18F]Fluciclovine, which is predominantly
FIGURE 4 | A patient with a cT3N2M0 non-small cell lung cancer not otherwise specified. PD-L1 status or molecular analyses was not performed. The tumor showed
increased [18F]FDG uptake (left panels) as well as increased [18F]HX4 uptake (right panels), indicative of increased hypoxic stress. Note the regional differences of metabolic
profiles in the tumor, for example the cranial part ([18F]HX4 more than [18F]FDG) versus the caudal part (both [18F]HX4 and [18F]FDG increased).
January 2022 | Volume 11 | Article 786089

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


van Genugten et al. Imaging Metabolism in Lung Cancer
transported by the glutamine transporter SLC1A5. It is approved
by the FDA as radiotracer for prostate malignancies (257), but its
uptake is also increased e.g. breast cancer (258, 259) and it has
preliminary been investigated to discriminate inflammatory lung
lesions from lung cancer (260), with limited success. However,
increased [18F]Fluciclovine uptake is anecdotally reported in
squamous cell carcinoma and adenocarcinoma lung cancer
(261), and complementary to [18F]FDG PET (Figure 6). Also,
for this tracer, no studies in the context of immune therapy have
yet been performed.

4.3.2 Tryptophan Metabolism
Imaging of tryptophan metabolism and presence of IDO in the
tumor metabolism is performed by using the clinical available a-
[11C]methyl-L-tryptophan (AMT) PET tracer (262), in the
context of breast, lung cancer and gliomas (263). One phase II
study is enlisted on clinicaltrials.gov to investigate [11C]AMT as
a predictive imaging biomarker of response to immunotherapy
Frontiers in Oncology | www.frontiersin.org 10
with the PD-1 inhibitor Pembrolizumab in melanoma patients
(NCT03089606), but this study is not yet recruiting. As its short
half-life of this tracer limits clinical application, other tryptophan
analogues were developed and tested pre-clinically, such as 1-L-
[18F]FETrp (264, 265), which will likely be translated to
clinical setting.
5 DISCUSSION

The incremental use of advanced technologies, such as
metabolomics (51) or optical imaging (68), that yield in-depth
information on a cellular level, has deepened our understanding of
the complexity of tumor metabolism and its impact on other
components of the tumor microenvironment. Metabolic
adaptation is now an established hallmark of cancer (1) and
NSCLC is no exception to this. Prevailing metabolic pathways in
lung cancer, its’ counterpart in tumor infiltrating T-cells and its’
FIGURE 5 | A patient with a squamous cell lung cancer lesion (arrow) scanned with [18F]Gln, showing increased uptake (A–C). Corresponding [18F]FDG images
show increased uptake as well (D, E).
A B

FIGURE 6 | A patient with a T2bN0 primary adenocarcinoma of the left upper lobe, accidently detected on a [18F]Fluciclovine PET/CT scan for prostate cancer
staging (A). This tumor was PD-L1 negative and molecular analyses detected mutations in KEAP1, amplification in HER2 and CDK12 and no micro-satellite
instability. The corresponding [18F]FDG PET images show increased uptake as well (B).
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underlying regulatory mechanisms, including the role of immune
checkpoint molecules, have been described in this review. Apart
from advancing our insights in metabolic pathways in lung cancer
cells and T-cells, these high-throughput cell-based technologies
applied in in vitro studies implicitly pointed towards a role for
in vivo molecular imaging in translating mechanistic insights into
clinical applications. These in vitro studies illustrate that the
complex interplay between cancer cells and immune cells cannot
be fully recapitulated by cell cultures alone, as different metabolic
processes might occur in the multi-cellular TME (266), as opposed
to mono-cellular cultures. Studies in lung cancer have for example
demonstrated that the source of carbon used to fuel mitochondrial
metabolism is context dependent. In vitro, glutamine is the
predominant carbon source for mitochondrial metabolism,
whereas in vivo, glucose carbon contributes to a greater degree
(22, 103, 239, 267). Furthermore, immune cells can to a certain
extent adapt their metabolic pathways to tissue specific preferences
(74), which is highly relevant when designing novel metabolic
interventions to manipulate the TME to enhance anti-cancer
immunity. Lastly, intra-tumoral co-existence of clones with
differential metabolic dependencies is frequently observed in
preclinical models, and mostly relates to impaired treatment
outcomes (73). Both these assets, tissue specific immune
metabolism and intra-tumoral heterogeneity, can best be
investigated with the use of in vivo imaging.

As molecular imaging using PET has the potential to
complement the current body of knowledge with information
on in vivo processes in live subjects, tissue specific characteristics
and the impact of regional differences in tumor metabolism,
radiolabeled metabolic substrates are attractive tracers in the
setting of a clinical study. These small molecules have the
capacity to rapidly diffuse into tissues, accumulate intracellularly
Frontiers in Oncology | www.frontiersin.org 11
in target cells, often in direct relation to transporter expression and
enzyme activity allowing easy kinetic modelling, and rapid
clearance. These features translate to simple radiochemistry with
short-lived tracers, such as 18F, with favorable target-to-
background ratios obtained within short time frames of minutes
to an hour and thus low effective dose for subjects. However, the
complicating disadvantage of in vivo PET imaging of metabolic
pathways in lung cancer is that in fact it quantifies the net result of
the targeted metabolic pathway at rather low spatial resolution
(268). It does not allow thorough assessment of relative
contributions of cancer cells, supportive or immune cells.

Despite this limitation, we envision a clear role for in vivo
molecular imaging to advance the development of effective
treatment for lung cancer in two domains. First, an imaging-
based metabolic profile of a lung cancer lesion with conserved
spatial information can optimize the efficacy of current standard
of care treatments. The rapid clearance and short half-lives of
tracers currently in use allow to perform consecutive PET scans
with different tracers and thus providing a spatial profile of its
dominant metabolic pathways (Figure 7). Such multi-modal
imaging approach requires solid image registration techniques
(269) as well as methods to quantify the correlative data.
Although these required imaging processing techniques are yet
under development, in principle such technology can be
standardized and broadly implemented within current image
processing platforms.

Instead of providing merely a summation of glucose
metabolism in a lung cancer lesion, measured by its’ maximum
uptake value (SUVmax), [

18F]FDG should be complemented with
e.g.[18F]Gln or [18F]FMISO. When overlaying these quantitative
PET-derived datasets, these measures of the downstream net
results of regional metabolic interactions in lung cancer provide
FIGURE 7 | Towards metabolic profiling of lung cancer using PET/CT imaging. As cancer lesions progress, the metabolic stress increases which enforces metabolic
competition between cancer cells and T-cells and drives further diversification of intra-tumoral regional differences. Whereas in smaller lesions single PET parameters
might be sufficient to differentiate benign from malignant lesions. As the tumor lesions grow, radiomics are currently applied to quantitate the increasing intra-tumoral
heterogeneity. Using complementary tracers, serial PET imaging would allow to address regional differences in dominant metabolic pathways, with conserved spatial
information.
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an impression whether the metabolic balance is tipped towards
glucose dominant metabolism (tracer 1, e.g. [18F]FDG) or
alternative/compensating metabolic pathways are active (tracer
2, e.g. [18F]Gln).

Current approach to assess intra-tumoral (metabolic)
heterogeneity is via radiomics, which provides quantitative
features that describe the distribution of signal intensities in a
particular volume-of-interest. Indeed, increased intra-tumoral
heterogeneity is inevitably linked to reduced overall survival
(73, 270, 271) and this heterogeneity can be traced back to
single cell level (272), providing a solid conceptual base for
radiomics in lung cancer. Radiomics studies on intra-tumoral
(contrast-enhanced) differences in tissue density on CT or
differences in glucose metabolism on [18F]FDG PET, often
identify a correlation between radiomics features and mutation
status in lung cancer. Most studies have been insufficient to
provide solid prediction upfront of responses to treatment
(273–275). This can be explained by the complex interactions
of regionally located sub-clones of lung cancer with other
cellular components in the TME, as described in this review,
which lack a direct link with radiomics-based measures of
heterogeneity. Moreover, radiomics analyses lose spatial
information, which is necessary to guide local treatments.
Thus, imaging-based metabolic profiling of lung cancer
based, with conserved spatial information of regional
differences within a lesion, will therefore be complementary
to radiomics and allow tailoring treatment on a regional level
in the tumor (276).

For example, in individualized radiotherapy planning, such
information would enable radiotherapy planning based on
intra-tumoral regional differences and adapt the radiation
portal prior to treatment (277) or during treatment (278).
Since ‘dose-painting’ is increasingly applied in lung cancer,
especially in early-stage lung cancer (62, 279) local ablative
(stereo-tactic) radiotherapy is considered a reasonable
alternative to surgery. The imaging-based metabolic profile
of an individual lung tumor may allow personalized dose
prescription resulting in minimal toxicity with maximal
chance of control in lung cancer. For the locally advanced
stage, comprehensive metabolic profiling of lung cancer using
a dual-tracer approach might allow selection of patients who
will benefit from metabolic interventions accompanying
chemoradiotherapy. Previous studies failed to demonstrate
benefit in a randomized, unselected approach (280), and the
existence of metabolic heterogeneity in a lung cancer lesion is
deemed one of the underlying reasons underscoring the
necessity to select patients based on the intervention that
is addressed.

Second, the metabolic TME is one of the major
determinants of an immune suppressive microenvironment
for tumor-infiltrating T-cells, and T-cell metabolism is
regulated by druggable immune checkpoint molecules such
as PD-1. Therefore, complementary to immune imaging,
imaging-based metabolic profiling also holds potential in
metastatic setting. During PD-1/PD-L1 targeting therapy,
tumor-infiltrating T-cells find themselves entangled between
Frontiers in Oncology | www.frontiersin.org 12
the metabolic constraints of the TME and the unleashed
potential to accelerate cellular metabolism and execute their
cytotoxic function. The incomplete understanding of which
metabolic pathways are actual in a particular patient with lung
cancer and its’ intra-tumoral regional differences, is likely one
of the reasons why current response rates are usually below
50%, and for most patients, long-term survival is not the
reality (281). For example, if hypoxia is dominating the
metabolic TME, adding CD28 blockade by anti-CTLA4
monoclonal antibody to anti- PD-1 therapy might yield
higher clinical benefit than in patients where hypoxia is
relatively less , and PD-1 inhibit ion is sufficient to
reinvigorate T-cells. In the first line setting, monotherapy
immunotherapy, chemo-immunotherapy with and without
angiogenesis inhibition (282), chemo-immunotherapy (283)
as well as immunotherapy doublets have become available
(284). Except for PD-L1 status, current selection for a certain
treatment regimen is usually based on national/local
standards and preferences. We postulate that imaging-based
metabolic profiling can provide an additional role to rationally
choose first-line treatment, increase its’ efficacy and avoid
unnecessary exposure to potential adverse effects.

In addition, the trial-and-error approach in developing
novel (combination) immunotherapies is failing (285) and
new tools for smarter drug-development pipelines are
mandatory. Upon progression on first-line therapy, multiple
studies with new immunomodulatory compounds are
ongoing, including metabolic interventions (56), usually in a
“one-size-fits-all” approach. Complementary to platform
trials (e.g. HUDSON (NCT03334617)), attrition rates can
probably be improved the metabolic TME is taken into
consideration, and results from the few studies that
incorporated molecular imaging of metabolic pathways are
eagerly awaited.

In conclusion, to advance the treatment landscape of
lung cancer, molecular imaging of the metabolic TME
should be integrated, as a biomarker tool to support the
rational select current treatments and design of next
generation of clinical trials.
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