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Purpose: This in vitro study aimed to gain insight into the function of fibroblast growth factor 10 (FGF10) on the ocular
surface, especially its effect on mRNA expression of the mucins Muc1, Muc4, and Muc5ac, and mucin protein synthesis.
Methods: We isolated primary cultured rat conjunctival epithelial cells (Cj-ECs) and treated them with FGF10 (1 ng/ml,
10 ng/ml, 100 ng/ml, and 200 ng/ml) and basic fibroblast growth factor 2 (FGF2; 10 ng/ml) for 24 h or 48 h. The
proliferation of Cj-ECs was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS). mRNA levels of Muc1, Muc4, and Muc5ac were determined by real-time PCR.
Synthesis levels of MUC1 and MUC4 were measured by western blot. Flow cytometry and Annexin V/PI double staining
revealed degrees of apoptosis.
Results: In primary culture, the epithelial cells were compact and cobblestone pavement in shape. Most of the cells were
positive for cytokeratin (CK). FGF10 and FGF2 significantly stimulated Muc1, Muc4, and Muc5ac mRNA expression,
cell proliferation, and synthesis of MUC1 and MUC4 proteins. FGF10 was more potent than FGF2 in these regards. FGF10
did not restrain the apoptosis of Cj-ECs.
Conclusions: The results of this study demonstrated that FGF10 is associated with the promotion of Cj-EC proliferation
and mucin production. The effects of FGF10 on Cj-ECs support a rationale to investigate its therapeutic potential for
ocular surface diseases.

Mucins are important structural and functional
components of the tear film. The hydrophilic nature of these
large and highly glycosylated glycoproteins enable them to
play a critical role in the protection of the corneal and
conjunctival epithelium [1,2]. Mucins also lubricate the ocular
surface during blinking, help to create a smooth surface, and
provide a barrier to pathogen infection. Membrane-associated
mucins such as MUC1 and MUC4 are expressed in apical
stratified epithelium [3,4], while MUC5AC is the most
prevalent mucin secreted by goblet cells. MUC5AC especially
helps maintain a wet ocular surface that protects against
infectious pathogens, and chemical and mechanical trauma
[5-8].

Although mucins are important in the maintenance of a
healthy ocular surface, abnormal expression of conjunctival
mucin has been implicated in disorders such as corneal injury,
chronic inflammation, Stevens-Johnson syndrome, dry eye
disease and hypovitaminosis A [9,10]. In dry eye patients with
Sjögren's syndrome, a significant decrease in the expression
of MUC5AC mRNA and MUC5AC protein has been reported,
suggesting that MUC5AC is important in preventing drying
diseases of the ocular surface [9,11]. Furthermore, previous
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studies performed with animal models suggest that the
neuropeptides, cytokines, and growth factors released by
nerve termini near the goblet cells promote the proliferation
of conjunctival epithelial cells and stimulate mucin
production and secretion [12-15].

Members of the fibroblast growth factor (FGF) family are
involved in a wide variety of physiologic and pathological
processes, including inflammation, repair, and regeneration.
FGF2, also known as basic FGF, stimulates cellular
proliferation and modulates endothelial cell migration. In
addition, FGF2 promotes the recruitment of inflammatory
cells to the wound site during wound recovery [16]. FGF10,
(or keratinocyte growth factor 2), promotes the growth,
proliferation, and differentiation of epithelial cells [17-20],
accelerates wound repair [21], regulates organ morphogenesis
[22,23], and induces angiogenesis [24]. The carcinogenesis of
some organs is closely associated with the abnormal
expression of FGF10 [25,26].

FGF receptor 2b (FGFR2b), expressed by epithelial cells,
is activated by FGF10 [27]. Binding specificity between
FGF10 and the receptor FGFR2b is crucial for the proper
regulation of FGF10 functions and a disruption may induce
developmental malformations in the lacrimal gland, lung,
tooth, heart, limb, thymus, and bone. It has been shown that
the embryonic development of the lacrimal and salivary
glands in humans is sensitive to FGF10 levels, which are a
reflection of the genotype. Patients with autosomal dominant
aplasia of the lacrimal and salivary glands (ALSG) present
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missing or hypoplastic parotid and submandibular glands
[28]. The gene for ALSG was mapped to 5p13.2–5q13.1,
which coincides with the FGF10 gene [28]. Furthermore, all
patients with ALSG were heterozygous for FGF10, and
Fgf10-heterozygous mouse embryos had no parotid gland,
and smaller submandibular glands [29]. FGF10 is also
necessary for the morphogenesis of mammary glands and the
distal colon [30,31], indicating the crucial importance of
FGF10 in the development of certain organs.

Some studies have shown that corneal injury and
inflammation induce the upregulation of FGFR2b and
FGF10 [32-34]. In experimental animal models and
researches, corneal damage and inflammation was related to
an increase of mucin production by the conjunctiva [35,36].
Thus we hypothesized that FGF10 may play a role in corneal
wound healing and mucin synthesis. To gain insight into the
function of FGF10 in the ocular surface, in the present study
we evaluated the effect of FGF10 on mRNA expression of
Muc1, Muc4, and Muc5ac, as well as on MUC protein
synthesis, cell proliferation, and apoptosis, using primary
cultured rat conjunctival epithelial cells (Cj-ECs) as an
experimental model.

METHODS
Reagents: RPMI-1640 culture medium, penicillin-
streptomycin, Hanks’ balanced salt solution, L-glutamine,
trypsin-EDTA, fetal bovine serum (FBS) and TriZol were
purchased from Invitrogen (Grand Island, NY). FGF10 was a
gift from Xiaojie Wang at the Wenzhou Eye Research Institute
(Wenzhou, Zhejiang, China). FGF2 was obtained from R &
D Systems (Minneapolis, MN). The Cell Proliferation Assay
(MTS) kit came from Promega (Madison, WI). Reverse
Transcription and RT–PCR System were purchased from
Roche (Mannheim, Germany) and Takara (Otsu, Japan),
respectively. All other reagents were obtained from Sigma (St.
Louis, MO).

Mouse monoclonal antibody against pan-keratin for
immunocytochemistry was from Lab Vision & Neomarkers
(Fremont, CA). For western blot analysis, rabbit monoclonal
antibody against the rat MUC1 receptor was from Epitomics
(Burlingame, CA), monoclonal antibody against rat MUC4
was from Invitrogen (Camarillo, CA), and antibody to rat β-
actin (Actb) was from Santa Cruz Biotechnology (Santa Cruz,
CA). The secondary antibodies for immunocytochemistry
were from Genentech (South San Francisco, CA), and for
western blot from Santa Cruz Biotechnology.
Animals: Male Sprague-Dawley rats (250–300 g) were used
in this study and were obtained from Shanghai Laboratory
Animal Center (Shanghai, China). Male rats were chosen to
avoid possible gender-related differences. Rats were
anesthetized with CO2 for 1 min, decapitated, and the
nictitating membranes and fornix of the conjunctival tissue
were surgically removed from both eyes.

The experimental protocols used in this study followed
guidelines established by the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research and were
approved by the Schepens Eye Research Institute Animal
Care and Use Committee.
Primary culture of rat conjunctival epithelial cells: The
removed conjunctival tissues were immediately placed into
phosphate buffered saline (PBS) containing penicillin-
streptomycin (100 ug/ml), washed 3 times, and finely minced
into approximately one cubic millimeter pieces that could be
anchored onto culture dishes. Each culture dish contained just
enough medium to cover the bottom of the dish, so that the
tissues would receive nutrients through surface tension but not
float away. The medium consisted of RPMI-1640 medium
supplemented with 2 mM L-glutamine, 10% heat-inactivated
FBS and 100 ug/ml penicillin-streptomycin. Epidermal
growth factor (10 ng/ml) was added on the first day, and 3
days after plating. The medium was changed every 2 days and
the tissues were grown under routine culture conditions of
95% O2/5% CO2 at 37 °C.

Cells were permitted to grow from the tissue plug until
spaced nodules were evident, forming a circular pattern
around the tissue plug, which was then removed. Meanwhile,
all cells that grew outside the circular perimeter were removed
by scraping the bottom of the dish with a rubber policeman.
Cells were passaged after being trypsinized with 0.05%
trypsin-0.53 nM EDTA (pH 7.4). The inoculation density of
passaged cultures was approximately 3–5×104 cells per well.
Finally, cells were identified as Cj-ECs by the following
characteristics: (1) morphology, visualized by inverted phase
contrast microscopy; (2) positive staining of pan-keratin by
immunocytochemistry; and (3) positive staining by Alcian
blue-peroidic acid Schiff (AB-PAS). All experiments used
second-passage epithelial cells.

Exogenous FGF10 at concentrations of 1, 10, 100, or 200
ng/ml were added to the culture medium (modified to a low
FBS concentration of 1%).
Immunocytochemistry: Cj-ECs were grown on glass
coverslips in 12-well plates. After reaching confluence, the
cells were rinsed in PBS, fixed in 100% methanol for 15 min
at room temperature, and washed with PBS. The coverslips
were incubated in blocking buffer that contained 1% BSA
(BSA) and 0.2% Triton-X in PBS for 30 min at room
temperature, then incubated with the pan-keratin antibody
(1:200 in PBS) for 2 h at 37 °C, then HRP-conjugated second
antibody (1:500 in PBS) for 45 min at room temperature.
Finally the coverslips were washed three times in PBS and
exposed to diaminobenzidene (DAB), then mounted and
observed under an inverted phase-contrast microscope (IX71;
Olympus, Tokyo, Japan) equipped with a digital camera
(Axioplan 2 Imaging, Carl Zeiss, Göttingen, Germany). For
the negative control, PBS was substituted for the primary
antibody.
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Histochemistry: Neutral and acidic glycoconjugates, which
are well established markers of goblet cells, were also present
in cultured goblet cells. Cells were grown on glass coverslips
in 12-well plates, fixed with 4% paraformaldehyde, and
subjected to histochemical analysis using the mucin stain AB/
PAS.

RNA isolation and RT–PCR: Total RNA was isolated from
cultured epithelial cells with TRIzol according to the
manufacturer’s protocol. One microgram total RNA was used
for cDNA (cDNA) synthesis using the Reverse Transcription
System (Takara Bio, Otsu, Japan) according to the
manufacturer’s instructions. The cDNA was amplified by
PCR using primers specific for rat Muc1, Muc4, Muc5ac, and
Actb in a thermal cycler (PCR Sprint; Thermo Hybaid,
Franklin, MA). The sequences of the primers were as follows:
Muc1 sense 5′-ACC ACG GCT ACG TCA GCT ATC AC-3′
and antisense 5′-AGA TGG GCT GCT GAC TTG GAA-3′;
Muc4 sense 5′-GCT TGG ACA TTT GGT GAT CC-3′ and

Figure 1. Phase contrast micrographs illustrating the morphology of
rat conjunctival explants grown in vitro. Magnification: (A) 100×,
(B) 400×.

antisense 5′-GCC CGT TGA AGG TGT ATT TG-3′;
Muc5ac sense 5′-ACC ACC TCC ATC TTG CTG TCA CTC
A-3′ and antisense 5′-CCC AGG ATG CCT TTC GTG TTG
TCA-3′; Actb sense 5′-AAG TTT CAG CAC ATC CTG CGA
GTA-3′ and antisense 5′-TTG GTG AGG TCA ATG TCT
GCT TTC-3′. Actb served as the internal control. Each PCR
reaction contained 0.5 uM primers, 200 uM dNTPs, 1.5 uM
MgCl2, 1.25 U of Taq polymerase, and one microliter cDNA.
The parameters were as follows: 5 min at 94 °C, followed by
35 cycles of denaturation for 30 s at 94 °C, amplification for
1 min at the indicated temperature, and extension for 1 min at
72 °C.
Western blot analysis: Cells (1×106) from primary culture
were scraped and homogenized in RIPA buffer (10 mM Tris-
HCL pH 7.4, 150 mM NaCl, 1% deoxycholic acid, and 1%
Triton X-100) containing protease inhibitors (100 μl/ml
phenylmethylsulfonyl fluoride, aprotinin 30 μl/ml and sodium
orthovanadate 100 nM). Homogenized cells were sonicated
and centrifuged at 2,000× g for 15 min at 4 °C. Proteins in the
supernatant were separated by 8 or 12% sodium dodecyl
sulfate-PAGE (SDS–PAGE) and transferred onto
polyvinylidene fluoride (PVDF) membranes. The membranes
were blocked for 2 h at room temperature in 5% nonfat dried
milk in buffer containing 10 mM Tris-HCL (pH 8.0), 150 mM
NaCl, and 0.05% Tween-20, and then incubated with primary
antibody for 2 h at room temperature or overnight at 4 °C at
the following dilutions: MUC1 antibody at a dilution of 1:300
in TBST, MUC4 antibody at 1:500, and β-actin antibody at
1:1000. The membranes were washed three times with TBST
and incubated with HRP-conjugated secondary antibody at a
dilution of 1:5,000 for 2 h. Finally the membranes was washed
3 times with TBST and developed using the enhanced
chemiluminescence method.

Cell proliferation assay: Rat Cj-ECs in primary culture were
trypsinized and seeded in 96-well plates at a density of
2×104 cells/well. Cells were grown to approximately 60%
confluence and cultured in serum-free RPMI medium for 24
h. Cells were then treated with 1% FBS (the negative control),
10 ng/ml FGF2 (the positive control), or 1, 10, 100, or 200 ng/
mL FGF10 and incubated for 24 h or 48 h. Cell proliferation
was determined by the 3-(4,5-dimethylthiazol-2-yl)-5- (3-
carboxymethoxyphenyl) -2-(4-sulfophenyl)-2H-tetrazolium
(MTS) assay, a colorimetric assay for the quantification of cell
proliferation and viability. Cells were incubated in MTS (20
ul) for 1 h; the absorbance was then read at 490 nm.
Apoptosis assay by Annexin V/PI: Cells were harvested (72 h
after exposure to FGF10 or FGF2), washed with cold PBS and
resuspended in binding buffer (0.01 M HEPES pH 7.4; 0.14
M NaCl; 2.5 mM CaCl2) at a density of 1×106/ml. Cells
(100 μl) were mixed with 5 μl fluorescein isothiocyanate
(FITC)-Annexin V and 10 μl propidium iodide (PI; 20 μg/ml)
and incubated for 20 min in the dark at room temperature.
Cells (1×104) were analyzed for each sample by flow
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cytometry (FACS Caliber, Becton Dickinson, Heidelberg,
Germany). Cell apoptosis was assayed using Cell Quest
software (BD Biosciences, San Jose, CA).
Data analysis: The amount of mucin proteins were expressed
as a ratio to basal conditions, which were set at a value of one.
Data were represented as mean±standard deviation (SD) in
the text or mean±standard error of the mean (SEM) in figures,
and analyzed by Student’s t-test. A probability (p)-value
<0.05 was considered statistically significant.

RESULTS

Characterization of cultured rat epithelial cells: After 10 to
14 days of culture, the rat primary Cj-ECs were approximately
confluent and their morphology appeared compact and
cobblestone pavement in shape (Figure 1).

Immunocytochemistry staining revealed that almost all
the Cj-ECs were positive for pan-keratin (Figure 2A,B), a
marker of epithelial cells. In addition, these cells were positive
for AB/PAS staining (Figure 2C,D), indicating that they
produced neutral and acidic mucins.

Figure 2. Photomicrographs of rat conjunctival epithelial cells (Cj-ECs) in culture. A, B: Cj-ECs stained intensely for pan-keratin, a marker
of conjunctival epithelial cells. C, D: Histochemical reactivity of primary culture of Cj-ECs to AB/PAS. Goblet cells stained intensely with
AB/PAS, indicating the presence of both neutral (pink) and acidic (blue) glycoconjugates associated with cells. Magnification: (A, C), 100×;
(B, D), 400×.
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FGF10 stimulated conjunctival epithelial cell proliferation:
The MTS assay demonstrated that FGF10 stimulated the
proliferation of Cj-ECs significantly in a dose-dependent
manner, compared to the negative control (1% FBS; p<0.05;
Figure 3). As the positive control, FGF2 significantly
stimulated the proliferation of Cj-ECs, compared to the
negative control (24 h and 48 h, p<0.001). There was no
significant difference between FGF10 and FGF2 in
stimulating cell proliferation (24 h, p=0.538; 48 h, p=0.555).
FGF10 upregulated the expression of mucin in rat primary
conjunctival epithelial cells: To investigate the effect of
FGF10 on Muc1, Muc4, and Muc5ac mRNA expression, Cj-
ECs were treated with FGF10 for 24 h (Figure 4A) or 48 h
(Figure 4B). Relative RT–PCR analysis showed that the
expressions of Muc1, Muc4, and Muc5ac were upregulated
significantly by FGF10, compared to the negative control
(p<0.05). In particular, FGF10 at the dose 100 ng/ml was more
potent than FGF2 in upregulating the expressions of Muc1,
Muc4, and Muc5ac (24 h: Muc1 p=0.048, Muc4 p=0.037,
Muc5ac p=0.046; 48 h: Muc1 p=0.043, Muc4 p=0.011,
Muc5ac p=0.041).

To confirm these observations, we performed western
blot to examine the protein levels of MUC1 and MUC4 in Cj-
ECs in conditioned media treated with FGF10 for 24 h (Figure
5A) or 48 h (Figure 5B) and the results showed that the FGF10

Figure 3. FGF10 stimulates epithelial cell proliferation. Epithelial
cells from primary culture were stimulated with FGF10 (1, 10, 100,
or 200 ng/ ml) or FGF2 (bFGF; 10 ng/ ml) for 24 h or 48 h. Cell
proliferation was measured using MTS. Data were mean±SEM from
6 independent experiments. *p<0.05 versus blank (cells treated with
1% FBS).

treatment led to a significant increase of both MUC1 and
MUC4 synthesis compared to the negative control (p<0.05).
Furthermore, the 100 ng/ml dose of FGF10 was more potent
than FGF2 in stimulating the synthesis of MUC1 and MUC4
(24 h: MUC1 p=0.036, MUC4 p=0.046; 48 h: MUC1 p=0.021,
MUC4 p=0.035).
FGF10 had no obvious effect on apoptosis of rat conjunctival
epithelial cells: FGF10-treated cells were stained with
Annexin V/PI and gated into LR (Low Right), UR (Upper
Right), LL (Lower Left) and UL (Upper Left) quadrants. The
cells in the LR and UR quadrants were considered early
apoptotic (Annexin+/PI-) and late apoptotic (Annexin+/PI+),
respectively; altogether they demonstrated apoptosis. The
cells in LL and UL quadrants were live and necrotic,
respectively.

The results showed that although the apoptosis rate
decreased in FGF10- or FGF2-treated cells compared to the
negative control (Figure 6), the difference was not significant
(1 ng/ml, p=0.307; 10 ng/ml, p=0.172; 100 ng/ml, p=0.103;
200 ng/ml, p=0.077; bFGF, p=0.295). Thus, FGF10 did not
appear to induce any significant changes in apoptosis of rat
Cj-ECs.

DISCUSSION
In this in vitro study we demonstrated that FGF10 promoted
the proliferation of rat Cj-ECs and stimulated the expression
and synthesis of mucins. These data suggest that conjunctival
epithelial cells, which have been shown to express the growth
factor receptor FGFR2b [37], respond to FGF10. Although
many functions of FGF10 have been documented, the
potential role of FGF10 in Cj-ECs remains unexplored
[17-23]. Time-dependent and dose-dependent proliferation of
Cj-ECs induced by FGF10 was demonstrated in the present
study. The effect of FGF10 on the proliferation of Ci-ECs
appears to be as dramatic as FGF2, which has been widely
used in clinical practice for its ability to stimulate cellular
proliferation, cell migration, and wound recovery [16].
Therefore, for the first time we showed that FGF10 acts
similarly to FGF2 in cellular proliferation of Cj-ECs.

By real-time PCR and western blot analysis we presented
the first evidence that FGF10 stimulates mucin expression and
production in rat Cj-ECs. We found that Cj-ECs, treated with
FGF10 for 24 or 48 h, expressed high levels of Muc1, Muc4,
and Muc5ac mRNA compared with the negative control. In
contrast, the mRNA expression of these mucins in FGF2-
treated cells was lower than FGF10-treated cells, indicating
that FGF10 is more potent than FGF2 in the upregulation of
mucins. In addition, by western blot we showed that FGF10
increased the synthesis of MUC1 and MUC4 significantly
after 24 and 48 h, compared with the negative control and
FGF2.

MUC5AC, produced and released by goblet cells, not
only maintains a wet ocular surface, but also stabilizes fluids,

Molecular Vision 2011; 17:2789-2797 <http://www.molvis.org/molvis/v17/a303> © 2011 Molecular Vision

2793

http://www.molvis.org/molvis/v17/a303


and provides a physical and chemical barrier that protects the
ocular surface from infectious pathogens, desiccation, and
mechanical, chemical, and thermal trauma [2,5]. Further
studies are needed to determine whether FGF10 regulates the
differentiation of conjunctival epithelial cells into goblet cells.
However, FGF10 has an enormous potential in improving the
condition of the ocular surface and as an auxiliary treatment
in some diseases of the eye.

The regulation of apoptosis is an important component of
tissue remodeling. Previous studies have demonstrated that
FGF10 attenuated DNA damage and apoptosis of epithelial
cells in part by MEK/ERK-dependent signaling that affects
the mitochondria-regulated death pathway [38,39]. Therefore,
in the present report we investigated apoptosis in Cj-ECs. The
Annexin V/PI assay showed that the ratio of apoptotic cells in

the group treated with FGF10 for 72 h decreased, but not
significantly, compared with the negative control. We
conjecture that the effect of FGF10 in promoting proliferation
may protect Cj-ECs from apoptosis.

This study had some limitations. Notably, the
concentrations of FGF10 used may not be physiologically
relevant. Another concern is that epithelial cells grown in vitro
may respond differently from cells in vivo. Nevertheless,
since there is no similar report yet on the effect of FGF10 in
Cj-ECs, our results indicate a potential for FGF10 in treating
ocular surface diseases such as dry eye, ocular surface injury,
inflammation, and others.

In summary, data reported in this study indicate that
FGF10 may exert pleiotropic effects in cultured Cj-ECs:
maintaining the survival of Cj-ECs, stimulating conjunctival

Figure 4. FGF10 increases the
expression of Muc1, Muc4, and
Muc5ac mRNA. RT–PCR analysis
showed that the expressions of Muc1,
Muc4, and Muc5ac mRNA were
upregulated significantly in epithelial
cells treated with FGF10 (1, 10, 100, or
200 ng/ml) for 24 h (A) or 48 h (B),
compared to the negative group. Data
were the mean±SEM of 3 experiments
performed in quadruplicate. *p<0.05
versus blank (cells treated with 1%
FBS).

Figure 5. FGF10 stimulates the
synthesis of MUC1 and MUC4.
Epithelial cells from primary culture
were stimulated with FGF10 (1, 10, 100,
or 200 ng/ml) or bFGF (10 ng/ml) for 24
h (A) or 48 h (B). Cells were scraped and
analyzed by western blot with
antibodies against MUC1 and MUC4.
Representative blots are shown in A and
B. Data shown in the chart are mean
±SEM from 6 independent experiments.
*p<0.05 versus blank (cells treated with
1% FBS).
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mucin production, and restraining Cj-EC apoptosis. These
biologic functions associated with FGF10 in improving ocular
surface conditions suggest that FGF10 is a promising
candidate for the treatment of ocular surface diseases.
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