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The Default Mode Network (DMN) is a brain system that mediates internal modes of
cognitive activity, showing higher neural activation when one is at rest. Nowadays,
there is a lot of interest in assessing functional interactions between its key regions,
but in the majority of studies only association of Blood-oxygen-level dependent (BOLD)
activation patterns is measured, so it is impossible to identify causal influences. There
are some studies of causal interactions (i.e., effective connectivity), however often
with inconsistent results. The aim of the current work is to find a stable pattern of
connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the
posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC).
For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy
subjects (1000 time points from each one) was acquired and spectral dynamic causal
modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain
fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band
of 0.0078–0.1 Hz. The best model at the group level is the one where connections from
both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p <
0.05). Connections between mPFC and PCC are bidirectional, significant in the group
and weaker than connections originating from bilateral IPC. In general, all connections
from LIPC/RIPC to other DMN regions are much stronger. One can assume that these
regions have a driving role within the DMN. Our results replicate some data from earlier
works on effective connectivity within the DMN as well as provide new insights on
internal DMN relationships and brain’s functioning at resting state.

Keywords: effective connectivity, default mode network (DMN), resting-state fMRI, dynamic causal modeling
(DCM), resting-state networks
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INTRODUCTION

One of the exiting discoveries in modern cognitive
neuroscience, which was anticipated by the founding fathers
of electrophysiology, is that our brain is never at rest. During
wakeful periods when we are trying not to do anything, global
metabolism does not decrease in the brain, and some of its
distinct areas are still active. These areas constitute networks of
the resting state conditions or RSNs. Moreover, during overall
deliberate inactivity and inattention to the external world, small
but consistent increases in activity occur in a specific set of
regions called the ‘‘Default Mode Network’’ or DMN. It is a core
part of a number of RSNs which were intensively investigated
in the past couples of decades. Motor, visual, auditory networks
and networks connected with language, working memory and
attention were identified. It is believed that DMN, which was
one of the first discovered, is closely related to the function of
consciousness.

The default-mode activity is specific not only to the human
species and non-human primates, but it is also present in
rodents (Mantini et al., 2011; Mantini and Vanduffel, 2013).
Therefore, DMN could be considered as one of the evolutionarily
old conservative systems (Mantini et al., 2011; Mantini and
Vanduffel, 2013). The DMN includes the posterior cingulate
cortex/precuneus (PCC), medial prefrontal cortex (mPFC),
bilateral inferior parietal lobule (IPL), and other regions
including the inferior temporal gyrus. Diffusion tensor imaging
(DTI; van den Heuvel et al., 2008, 2009; Greicius et al.,
2009) and resting-state functional Magnetic resonance imaging
(fMRI) studies show that these regions are highly interconnected
(Greicius et al., 2003; Biswal et al., 2010). The majority of
resent studies, that combine resting state fMRI with large-scale
‘‘network analyses’’, report about functional connectivity, which
reflects statistical dependencies (e.g., temporal correlations)
between brain regions. But correlation parameter cannot answer
the question about causal influence of one neural system on
another and we need to find ways towards understanding
the effective connectivity. As many investigators report, DMN
regions are involved in realization of different tasks, such
as introspection and spontaneous cognition (Andrews-Hanna
et al., 2010), memory retrieval, emotional process, and social
cognition. But the functions of each node within the DMN
network are still not clearly understood. And the key idea
of how to find out functions of a certain node is to
study functionality of those areas to which this node is
connected.

There are several methods proposed to measure effective
connectivity for fMRI study. They are Structural Equation
Modeling (SEM; e.g., Bavelier et al., 2000), the analysis of
Granger Causality (GC; e.g., Goebel et al., 2003), and biologically
plausible Dynamic Causal Modeling (DCM; see Friston et al.,
2003). With the first method it is possible to analyze only
steady-state brain connectivity patterns: SEM cannot deal with
dynamic changes in fMRI signal. GC is also a model-based
approach, where the vector autoregressive model (VAR) is
used to assess causal interactions between the fMRI time-
series. There are some studies, where GC approach was used to

investigate causal relations between the DMN nodes, but their
results are hardly consistent. Finally, the third method, DCM,
deals with fMRI time series and explicitly models the neuronal
dynamics according to underlying effective connectivity. In the
course of further development, the opinion starts to prevail
that DCM is a more consistent and informative approach
to infer causal relationships between brain regions on the
basis of fMRI data than others (David et al., 2008; Friston,
2009).

Bayesian approaches are also used to assess connectivity
within the DMN. In Wu et al. (2014) it was shown that the
DMN could be divided into two subsystems in respect to their
functions. These subsystems interact with each other not only
in resting-state but also when performing a semantic judgment
task. Causal interactions between the key DMN nodes changed
dramatically from the resting-state to the task-state. The authors
suggest that the DMN could be a stable functional structure
both at resting-state and task-state, but under different states
the information is processed in the DMN in different ways. The
limitation of Bayesian Network approach is that the method
cannot discover reciprocal connections of the DMN. It also
finds a temporal snapshot of the process and cannot reveal
dynamic changes in connectivity between its parts. DCM is
free of these limitations and can be supplementary to this
study.

DCM is a Bayesian approach typically used to explain effective
connectivity changes underlying task-related brain responses
(Friston et al., 2003; Sharaev and Mnatsakanian, 2014). When
a particular model is specified (including active regions and
directed connections between them) connectivity parameters
are estimated based on the model structure and the observed
fMRI data. Different models are compared using BayesianModel
Selection (BMS; Penny et al., 2004). DCM estimates effective
connectivity, which is the measure that mediates the influence
that one neuronal system exerts on another. There are many
examples of applying DCM to Magnetoencephalography and
electroencephalography (MEG/EEG) and fMRI data (see for
instance Garrido et al., 2007; Moran et al., 2009; Razi et al.,
2015).

DCM treats the brain as a ‘‘black box’’ which receives the
input and generates the output. That is why the challenge,
when using DCM to study the resting-state network, is that
the DCM model cannot be specified without any driving inputs
(Stephan and Friston, 2010). For such cases the inclusion
of stochastic terms in the model (Daunizeau et al., 2009)
might be useful, but one can argue that both spontaneous
mental state and fMRI signals during the resting-state are
not just random noise. Recently a new version of DCM was
introduced based on a deterministic model that generates
predicted cross spectra (Friston et al., 2014)—spectral DCM.
While stochastic DCM estimates time-dependent fluctuations in
neuronal states producing observable fMRI data, spectral DCM
evaluates the time-invariant parameters of their cross spectra.
This is achieved by replacing the original time series with its
second-order statistics (i.e., cross spectra), under stationarity
assumptions (Razi et al., 2015). Thus, spectral DCM does not
treat neuronal fluctuations as a stochastic noise, and this is why
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the spectral DCM approach has been chosen for the present
study.

The aim of this work is to examine effective connectivity
between themain DMNnodes and to estimate the corresponding
coupling parameters by applying a novel technique spectral
DCM together with modeling resting-state neuronal activity
from 30 healthy subjects using Discrete Cosine Set. To test
only biologically plausible hypotheses on effective connectivity
we used structural connectivity data to reduce the model
space.

The resting-state fMRI signals convey fluctuations in the low-
frequency band typically within 0.01–0.08 Hz (Biswal et al.,
1995), so to identify nodes of the DMN and specify time-series
for DCM, the resting state wasmodeled using a generalized linear
model containing a discrete cosine basis set with frequencies
ranging from 0.0078–0.1 Hz, in addition to the individual
nuisance regressors (Fransson, 2005; Kahan et al., 2014). After
this procedure, DCM models were defined, each of them
comprising of four main regions of the DMN. The best DCM
model was then determined using the BMS procedure as in
Stephan et al. (2009).

MATERIALS AND METHODS

Subjects
MRI data was obtained from 30 healthy subjects (10 males and 20
females), mean age 24 (range from 20–35 years). Consent from
each participant was provided. The participants were instructed
to close their eyes and lie still and relaxed. Each participant
was asked about wakefulness during the study; those who fell
asleep in scanner would be excluded from the study. Permission
to undertake this experiment has been granted by the Ethics
Committee of the Institute of Higher Nervous Activity and
Neurophysiology of RAS. As for spectral DCM, root mean square
error decreases as the number of time points increases; based on
results from Razi et al. (2015) we decided to acquire 1000 time
points (with a repetition time of 2 s) resulting in approximately
35 min of scanning.

Scanning Parameters
The MRI data were acquired using a SIEMENS Magnetom
Verio three Tesla. The T1-weighted sagittal three-dimensional
magnetization-prepared rapid gradient echo sequence was
acquired with the following imaging parameters: 176 slices,
TR = 1900 ms, TE = 2.19 ms, slice thickness = 1 mm, flip
angle = 9◦, inversion time = 900 ms, and FOV = 250 × 218
mm2. fMRI data were acquired with the following parameters:
30 slices, TR = 2000 ms, TE = 25 ms, slice thickness = 3 mm, flip
angle = 90◦, and FOV = 192 × 192 mm2. Also we received data
which contain the options for reducing the spatial distortion of
EPI images.

Imaging Data Analysis
fMRI and anatomical data were pre-processed using
SPM12 (available free at http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) based on Matlab. Preprocessing included

the following steps: Dicom import, adduction the center of
anatomical and functional data to the anterior commissure,
reduction of the spatial distortion using Field Map
toolbox in spm12 (Friston et al., 2007). Next, slice-timing
correction for fMRI data was performed (the correction
of hemodynamical response in space and then in time to
avoid pronounced motion artifacts; Sladky et al., 2011).
Anatomical data were segmented; both anatomical and
functional data were normalized. Functional data were
smoothed using a Gaussian function with 6 mm isotropic
kernel.

We used the SPM toolbox—WFU pickatlas (available free at
http://uvasocialneuroscience.com/doku.php?id=uva_socia:wfu_
pickatlas) to create a mask for DMN. The mask contains the
regions in the right and left hemisphere: Broadman areas 19 and
39, Parahippocampal Gyrus, Posterior Cingulate, Medial Frontal
Gyrus (Jann et al., 2010; Di and Biswal, 2014).

The resting state was modeled using a General Linear
Model with a discrete cosine basis set (GLM-DCT) consisting
of 400 functions with frequencies characteristic to resting
state dynamics: 0.0078–0.1 Hz (Biswal et al., 1995; Deco
et al., 2011), six nuisance regressors from each session
capturing head motion, and the confound time-series
from the extra-cerebral compartments. An F-contrast was
specified across all frequencies of DCT, producing an SPM
that identified regions exhibiting BOLD fluctuations within
the frequency band. The obtained statistical parametric
maps were then masked by a DMN mask based on
previously reported Montreal Neurological Institute (MNI)
coordinates for the DMN (Jann et al., 2010; Di and Biswal,
2014). Functional connectivity in DMN is well studied,
so for our DCM we took as regions of interest (nodes)
most commonly reported four major parts of DMN:
the mPFC (3, 54, −2), the PCC (0, −52, 26), left and
right intraparietal cortex LIPC (−50, −63, 32) and RIPC
(48, −69, 35) (Di and Biswal, 2014). In square brackets
there are corresponding MNI coordinates of centers of
regions.

For DCM analysis the principal eigenvariate of a (8 mm
radius) sphere was computed (adjusted for confounds) for each
region and centered on the peak voxel of the aforementioned
F-contrast (see Figure 1). To limit the number of possible
models, it was assumed that the model was left right symmetrical.
Indeed, no evidence to the contrary was found. The following
connectivity models were specified: a full connected model,
three models where different regions predominantly affected
the other ones (mPFC, PCC and bilateral modulation) and the
same models but without direct connections between bilateral
LIPC and RIPC, totally 4 × 2 = 8 models, see Figure 2. In
order to test model stability in relation to scanning interval,
we also constructed the same models (in terms of the DCM
nodes and edges) on the first 500 (‘‘initial’’ model) and last
500 scans (‘‘final’’ model). After estimating the GLM, one
subject did not reveal significant activity in mPFC during
the first 500 scans (but did reveal during the last ones), so
we had 29 subject for the initial model and 30 for final
model.
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FIGURE 1 | Illustration of the Default Mode Network (DMN). The DMN regions are identified using a conventional SPM analysis. Corresponding time-series are
principal eigenvariates of regions.

For each participant these schemes with no exogenous
inputs were inverted using spectral DCM. As we assumed
that all participants used the same model. Fixed Effects (FFX)
BMS (Stephan et al., 2009) was performed to determine
the best model which balances the fit of data and the
model complexity. Given the best model, the connectivity
parameters from each subject were analyzed quantitatively
using classical statistics and Bayesian Model Averaging
(BMA; Penny et al., 2010), to see whether some of them
are stable across a group of subjects. One sample t-tests
were conducted to examine whether these parameters have
significantly nonzero values. In addition, BMA was also

conducted to get the probability weighted values of the
model parameters. The results of t-test and BMA were then
compared.

RESULTS

BMS found the fully connected model to be the best at the group
level (eight comparedmodels, Figure 2), consistent with previous
similar analyses (Li et al., 2012; Razi et al., 2015). Moreover, this
model was the best one for 24 out of 30 subjects.

The fully connected model was the best at the group level for
both initial (23 times of 29) and final (26 times of 30) models.

FIGURE 2 | The investigated model space. (A) Models with direct connections between bilateral LIPC and RIPC, left to right: full connected model, mPFC, PCC,
bilateral modulation. (B) Models with no direct connections between LIPC and RIPC. Double arrow means reciprocal connections.
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The results of BMA and classical t-test are shown in the
tables below. To concentrate on non-trivial connections, we only
report a particular connection if its strength exceeds 0.1 Hz and
its probability is greater than 0.95. We also do not consider
self-connections in graphs for simplicity. The winning model is
shown on Figure 3.

In Tables 1, 2 mean connection strengths are presented (in
Hz) from BMA and t-test analysis, in Table 3 corresponding
standard deviations are shown.

From the Tables 1, 2 we can see that BMA and t-test results
are practically identical, though classical t-test does not take into
account the estimated precision of each connection, calculated
by DCM. So, for further analysis we can use the values obtained
from the BMA procedure.

It can be seen that connections from bilateral IPC to mPFC
and PCC are rather strong, significant nonzero (p < 0.01) and
symmetrical in strength (p < 0.05). These results are in part
similar to those previously reported by Di and Biswal (2014)
who found a strong interhemispheric asymmetry in DMN with
the emphasis on the right side. Connections between mPFC
and PCC are bidirectional, significant in the group and weaker
than connections originating from bilateral IPC (p < 0.03). In
general, all connections from LIPC/RIPC to other DMN regions
are much stronger at the group level, so we can assume that
these regions have a driving role within the DMN. This result
is also similar to the work by Di and Biswal (2014) and Razi et al.
(2015).

In Table 4 mean connection strengths are presented (in Hz)
for initial/final models respectively, in Table 5 corresponding
standard deviations are shown. First, from these tables we can see
that the connectivity parameters have, on average, lower values
than the parameters of 1000 scans (‘‘total’’) model. Especially
this could be noticed for LIPC/RIPC connectivity parameters:
all of them (except LIPC to PCC connection) are significantly
smaller (p < 0.05) in initial and final models in comparison to the
total model. Between initial and final models these parameters
are much alike, though some of them do not pass Bonferroni
correction. This could possibly be the result of the shorter
scanning time: parameter estimates are less. In Razi et al. (2015)

FIGURE 3 | The winning model at the group level and its connectivity
parameters (in Hz). Left: the winning model and its non-trivial significant
(p < 0.05) connections. Right: bayesian model selection (BMS)
results—models and their (relative) log-evidences. Models legend: 1–lateral
modulation with (w) direct connections between bilateral LIPC and RIPC,
2–lateral modulation without (wo) direct connections between bilateral LIPC
and RIPC, 3–mPFC modulation (w), 4–mPFC modulation (wo), 5–PCC
modulation (w), 6–PCC modulation (wo), 7–full connected (w), 8–full
connected (wo). ∗Non-significant after Bonferroni correction.

TABLE 1 | Mean connection strengths (in Hz) from BMA.

BMA from mPFC from PCC from LIPC from RIPC

to mPFC 0 0.149∗ 0.284 0.317
to PCC 0.116∗ 0 0.320 0.356
to LIPC −0.047∗

−0.008∗ 0 0.321
to RIPC −0.044∗

−0.045∗ 0.249 0

In rows there are source regions, in columns—target regions. Nontrivial significant

(p < 0.05) connections are shown in bold. ∗Non-significant after Bonferroni

correction.

TABLE 2 | Mean connection strengths (in Hz) from t-test.

t-test from mPFC from PCC from LIPC from RIPC

to mPFC 0 0.149∗ 0.285 0.317
to PCC 0.116∗ 0 0.320 0.356
to LIPC −0.046∗

−0.009∗ 0 0.321
to RIPC −0.044∗

−0.045∗ 0.249 0

In rows there are source regions, in columns—target regions. Nontrivial significant

(p < 0.05) connections are shown in bold. ∗Non-significant after Bonferroni

correction.

TABLE 3 | Standard deviations of connection strengths.

st. deviation from mPFC from PCC from LIPC from RIPC

to mPFC 0 0.009 0.013 0.013
to PCC 0.009 0 0.013 0.013
to LIPC 0.007 0.008 0 0.011
to RIPC 0.007 0.008 0.011 0

In rows there are source regions, in columns—target regions. Standard deviations

only for nontrivial significant (p < 0.05) connections are shown.

the authors showed root mean square error of parameter
estimates to be 50% higher for 512 scans in comparison to
1024. Nevertheless, it can be seen that nontrivial connectivity
parameters in total, initial and final models differ only in
their magnitude. These differences neither lead to changes in
connectivity patterns in terms of existing/absence of a particular
connection, nor to changes in roles of a particular connection
from being excitatory to inhibitory. This means that the winning
model is stable at different time frames in terms of its parameters
and reflects relatively stable effective connectivity pattern within
the DMN. This pattern may slightly change in time, but the main
driving areas and connections among them remain the same. So,
we can suggest that the subjects were in approximately the same
mental state during first and second half of the experiment.

It should be noted that despite the fact that the winning
model is a fully connected one, not all connection parameters
pass the significance threshold. This could be a result of the
difference between BMS and BMA. BMS is an inference about
models; BMA is an inference about corresponding parameters.
In the winning model we may have some parameters that do
not individually pass a classical t-test, but still contribute to
the model in some way. These parameters may have a big
variability across subjects, or they can have small values, or
both.
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TABLE 4 | Mean connection strengths (in Hz) for initial (first 500
scans)/final (last 500 scans) models.

BMA from mPFC from PCC from LIPC from RIPC

to mPFC 0 0.108∗/0.182 0.159/0.131∗ 0.104∗/0.156∗

to PCC 0.166/0.085∗ 0 0.238/0.186 0.124∗/0.205
to LIPC 0.020∗/0.024∗ 0.035∗/0.032∗ 0 0.129∗/0.163∗

to RIPC 0.036∗/0.006∗ 0.033∗/0.040∗ 0.130∗/0.149∗ 0

In rows there are source regions, in columns—target regions. Nontrivial significant

(p < 0.05) connections are shown in bold. ∗Non-significant after Bonferroni

correction.

TABLE 5 | Standard deviations of connection strengths for initial (first 500
scans)/final (last 500 scans) models.

BMA from mPFC from PCC from LIPC from RIPC

to mPFC 0 0.010/0.010 0.013/0.014 0.014/0.013
to PCC 0.009/0.009 0 0.013/0.013 0.013/0.013
to LIPC 0.008/0.008 0.009/0.009 0 0.011/0.012
to RIPC 0.009/0.008 0.010/0.009 0.012/0.012 0

In rows there are source regions, in columns—target regions. Standard deviations

only for nontrivial significant (p < 0.05) connections are shown.

DISCUSSION

We used discrete cosine basis set to model low frequency
fluctuations and identify the connection structure underlying the
DMN using the spectral DCM on resting-state fMRI data. The
best model in a group of 30 subjects suggested strong influence
from bilateral IPC to each other and to the mPFC and PCC
as well as an information flow from the mPFC to PCC and
vice versa.

The authors who studied the coupling between regions
within DMN have often reported inconsistent results. For
example, Li et al. (2012) using stochastic DCM showed an
influence from PCC to mPFC. Other authors (Jiao et al.,
2011; Di and Biswal, 2014) using in part different methods
such as GCA found a causal influence from mPFC to PCC
but not vice versa. We see both connections to be presented
in our winning model. Some studies (Jiao et al., 2011; Di
and Biswal, 2014) showed that bilateral IPC drives PCC and
mPFC, which also is in line with our study. Finally, there is a
strong reciprocal connection between bilateral IPC in our best
model, also reported by Li et al. (2012). Zhou et al. (2011)
found influence from RIPC to LIPC but not vice versa, while
authors such as Di and Biswal (2014) and Jiao et al. (2011)
did not find any interaction between bilateral IPC. We also
found a slight functional asymmetry in bilateral IPC which
is an evidence supporting similar findings of Di and Biswal
(2014). We found that the bilateral IPC has causal influence
on the mPFC and PCC regions, and not vice versa. So we
can assume that LIPC and RIPC have a driving or modulating
role. This finding is consistent with previous work (Di and
Biswal, 2014), partially consistent with Razi et al. (2015) who
did not find RIPC effect on the mPFC. However, there are
some works with different results, for example, a study using
GC (Jiao et al., 2011; Zhou et al., 2011). Zhou et al. (2011)

found a causal influence from the LIPC to the mPFC,
whereas Jiao et al. (2011) showed symmetrical causal influence
from the mPFC to bilateral IPC and from bilateral IPC to
PCC.

This discrepancy may be due to a small sample size in
previous studies which made some connections not significant
or to the different frameworks for measuring causality. In our
study we had a rather large sample size (30 subjects) which
is enough according to best neuroscience and experimental
psychology practices. In addition, one has to note that the
DCM framework has been demonstrated empirically to be a
more valid method than the GC to study effective connectivity
(David et al., 2008).

The mPFC and PCC are two main nodes of the DMN, and are
most often reported in different approaches such as Independent
component analysis (ICA), seed-based correlations and others.
Our results showed a causal influence from the mPFC to PCC,
and vice versa. Also, it is worth noting that connections from
mPFC to PCC and from PCC to mPFC have practically the same
strength and posterior probability.

The PCC has been described as a structural core that links to
major brain structures across the whole brain (Hagmann et al.,
2008) fulfilling crucial cognitive functions (Kozlovskiy et al.,
2012). GC study of whole brain showed that the PCC is a robustly
driven hub, which receives information from the whole brain
(Deshpande et al., 2011; Yan and He, 2011). Thus, PCC might be
a special hub region that collects information from other DMN
regions as well as across the whole brain.

The largest proportion of rich club connector hubs was found
in the DMN. According to one study, total structural connectivity
between peripheral networks with the DMN, salience (Goulden
et al., 2014), task-executive networks was dominated by rich club
connections in the network. And most connections are linked
with peripheral RSN networks.

The high density between DMN, salience, and task-executive
networks suggests that PCC can be a meaningful structural and
functional core, which accumulates information from cognitive,
multimodal networks and may have a very important role in
communication with other RSN networks mainly through their
representatives in the rich club.

Our results and previous studies show that the PCC is
driven by all major regions in the DMN and possibly by other
brain regions. From our work and previous studies it remains
unclear, however, what are the target regions of information
flow out of PCC. One possible hypothesis is that PCC might
be a hub between functional networks (Di and Biswal, 2014).
This is in line with the theory that the DMN is a higher order
cortical system that reciprocally exchanges information with
subordinate brain systems (Carhart-Harris and Friston, 2010).
Thus, further research is needed to understand how task-specific
brain networks depend on DMN.

Analysis of obtained data shows that the best model has
a structure of interactions of DMN regions (marked with
thick arrows on Figure 4A) partially similar to the models
obtained in other researches (Figures 4B,C), but it also contains
connections that integrate other models of interactions (marked
with thin arrows on Figure 4A). As in the other models,
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FIGURE 4 | Our model in a comparison to models from previous studies. (A) The winning model from current study. Effective connections, common to all
existing models are shown by thick arrows. (B) The model by Razi et al. (2015) based on spectral dynamic causal modeling (DCM) analysis; (C) the model by Di and
Biswal (2014) based on deterministic DCM.

effective control links of LIPC and RIPC regions are present,
connecting each other directly and through mPFC and PCC
regions. Obtained data have some differences compared to
results of other research groups (see Figure 4), which could
be related to change of causal connection weights of neural
networks due to active influence of adjunctive regions of
DMN. One possible reason for discrepancies between our
results and the work by Razi et al. (2015) is the number
of scans considered for modeling. When we performed the
BMA on initial and final models (first and last 500 scans)
some connections (i.e., from RIPC to mPFC) became non-
significant after Bonferroni correction. Despite the fact that
our connectivity pattern could not be generalized to the
whole population with certainty, our findings of pattern
stability in time may provide additional evidence of its
reliability.

Our next task is to verify stability of the obtained model
with the addition of new regions. For example, it is known
that PCC region has projection connections with the anterior
cingulate, prefrontal, lateral parietal, and para-hippocampal
regions (Mantini et al., 2011). It was shown (Mantini and
Vanduffel, 2013) that para-hippocampal regions that play a key
role in mechanisms of recalling from the memory are also
considered as DMN.

We suppose that addition of new functionally important
regions such as para-hippocampal cortex can change
connections in previously obtained models. This is of particular
importance for discussions about the role of DMN networks
in modulating cognitive states, as an objective parameter
of processes at basic level of neural network functioning
(Raichle and Snyder, 2007), the role of mPFC in integration of
emotional and cognitive processes (Raichle et al., 2001), and
in evaluation of mPFC contributions to mental modeling
of behavioral responses based on memory information.
Obtained data support hypotheses about involvement of
DMN in implementation of two functions—basic spontaneous
cognitive level activation (including ‘‘top-down’’ mechanisms)
and monitoring of intermodal perception of environmental
context (Morcom and Fletcher, 2007; Mantini and Vanduffel,
2013).

It is of particular interest to study causal interactions between
large scale networks. For example, whole brain functional

connectivity on healthy normal subjects (MEG experiment) has
revealed complex network interactions at multiple physiological
frequency bands (especially in alpha band; Schmidt et al.,
2014). Combination of ICA and DCM was used to confirm
the finding of Sridharan et al. (2008) that the Salience
Network (SN) is a key for switching between the Central
Executive Network (CEN) and the DMN (Goulden et al.,
2014). This novel approach to extract the ICA time courses
to represent the entire network, rather than to look at regions
of interest recently helped us in solving age-old problem
of top-down influences in visual perception (Verkhlyutov
et al., 2014). In the same vein, it is possible to use DCM
examining the relationship between a large numbers of RSNs.
In reducing the source space one can come to a better
understanding how these networks modulate switching when
mental states, task setting or environmental situation are
changing.
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