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Abstract

Background: CPD1 (also known as ANP32-E) belongs to a family of evolutionarily conserved acidic proteins with leucine rich
repeats implicated in a variety of cellular processes regulating gene expression, vesicular trafficking, intracellular signaling
and apoptosis. Because of its spatiotemporal expression pattern, CPD1 has been proposed to play an important role in brain
morphogenesis and synaptic development.

Methodology/Principal Findings: We have generated CPD1 knock-out mice that we have subsequently characterized.
These mice are viable and fertile. However, they display a subtle neurological clasping phenotype and mild motor deficits.

Conclusions/Significance: CPD1 is not essential for normal development; however, it appears to play a role in the
regulation of fine motor functions. The minimal phenotype suggests compensatory biological mechanisms.
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Introduction

Development of the nervous system is a well-coordinated

process that relies on the ability of neurons to differentiate,

migrate, extend neurites and form synapses. How each of these

processes is brought about is still obscure. To address this

shortcoming, we have taken the approach of exploring the role

of candidate developmental orchestrators—specifically, proteins

whose expression patterns mirror key developmental time-lines,

and are also likely to play important cellular functions likely

pivotal for neuronal development. To this end, we have focused

our efforts on members of the conserved family of acidic nuclear

proteins (ANPs). In previous work, we have explored the role of

the leucine rich acidic nuclear protein (LANP; also named,

pp32, I1PP2a, PHAPI, mapmodulin; ANP32-A) [1–4]. In the

present manuscript, we focus on its closely related family

member, Cerebellar Postnatal Developmental Protein-1 (CPD1,

also named LANP-like, LANPL, ANP32-E) [5]. LANP and

CPD1 were originally identified as candidate determinants of

neuronal architecture based on their tightly regulated expression

pattern during development. LANP (mouse LANP: 247 amino

acids; NCBI Reference Sequence: NP_033802.2) was the first to

be discovered, identified on the basis of a proteomic screen for

developmentally regulated proteins in the rat brain peaking in

the first few weeks of life [6]. CPD1 (260 amino acids; NCBI

Reference Sequence: NP_075699.3) was subsequently discov-

ered using similar high-throughput methods; although in this

case the technique of differential display was used to identify

messenger RNAs that increase in the immediate postnatal

period [7].

LANP—the better studied of the two— plays an important role

in regulating neurite outgrowth and neurodegeneration, likely by

its combined ability to regulate gene expression and microtubule

dynamics [8](Ulitzur et al., 1997)[4,9]. Both proteins have been

described as inhibitors of protein phosphatase 2A activity [10,11],

with CPD1 thought to modulate phosphatase activity at synapses

during synaptogenesis [11]. Besides these properties, LANP and

other ANPs have also been proposed to play a role in the

regulation of pathways involved in signaling [12], apoptosis

[13,14] and RNA transport and stability [15]. In addition to their

role in the nervous system, there is a substantial body of work that

suggests that the ANP family of proteins plays a significant role in

modulating tumorigenesis with prognostic implications [16,17,18].

Despite these wide-ranging properties LANP null mice have no

discernable behavioral phenotype suggesting functional compen-

sation by other ANP family members[3].

Here we report the generation and characterization of CPD-1

null mice. Because of our interest in its neuronal role, we have

studied these mice from a neurobehavioral perspective. Apart from

abnormal movements such as clasping, and mild impairments in

gait, these mice are virtually indistinguishable from wild-type mice.

Finally, we have mated CPD1 null mice with LANP null mice to

discover that mice lacking both LANP and CPD1 are also viable

and fertile. We propose that the functions of these proteins are

usurped by other member(s) of the ANP class of proteins that will

likely be uncovered by yet other genetic deletion experiments.
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Results

Generation of CPD1 null mice
To generate CPD1 null mice we took advantage of recent

developments in high-throughput insertional mutagenesis of

mouse embryonic stem cells (ES cells) to generate knock-out mice.

These ES cells are available to investigators from the International

Gene Trap Consortium (IGTC). An ES clone (RRK001) with the

CPD1 locus targeted was used for blastocyst injections to generate

chimeras. Germline transmission was confirmed by genotyping for

the b-Geo insertion cassette. Heterozygous CPD1 targeted mice

were mated to generate CPD1 null mice (see Figure S1 for further

details). Mice lacking CPD1 are viable and fertile. Breeding of

CPD1 heterozygous mice resulted in roughly Mendelian ratios of

progeny (Table 1).

To confirm that these mice lack CPD1 we tested for the

presence of CPD1 messenger RNA by Reverse-Transcriptase

PCR (RT-PCR) on RNA extracted from brains of CPD1+/+,

CPD+/2 and CPD12/2 mice. Loss of CPD1 transcript is

evident from the RT-PCR analysis (Figure 1A). (Similar results

were also obtained from RNA derived from other organs such as

kidney; data not shown).

There have been several antibodies purportedly synthesized

against CPD1. We tested these antibodies against CPD1 by

transfecting cells with FLAG-tagged CPD1 along with homolo-

gous FLAG-tagged ANP family members: LANP and APRIL (A

Protein Rich in Leucines, aka PAL-31 and Anp32b). We then

performed immunoprecipitations with FLAG antibody followed

by western blots. We identified that a chicken antibody made by

GenWay Biotech (San Diego, CA) recognizes the CPD1-FLAG

protein. More importantly, this antibody does not cross-react

against two ANP homologues (LANP and APRIL) (Figure 1B).

Next, using this antibody we wished to determine loss of CPD1

protein in CPD1 null mice by western blotting. Although, this

antibody recognizes several non-specific bands, we demonstrate

that a protein band of the estimated molecular weight seen in wild-

type mice disappears in CPD1 null mice (Figure 1C). (Heterozy-

gous mice demonstrate approximately a 50% reduction in the level

of CPD1 protein). To further, explore the specificity of this

antibody, we depleted CPD1 in PC12 (Rat Pheochromocytoma

cells) using RNA interference (Text S1). Depletion of CPD1 is

evident from the western blot analysis (more than 75%

knockdown; Figure S2A) and immunofluorescence microscopy

(Figure S2B).

Using this antibody for immunofluorescence we find that CPD1

displays predominantly nuclear staining with some cytoplasmic

staining. This is the case both for cells in vitro (neuro2a cells are

shown as an example; Figure 1D) and in vivo (a hippocampal slice is

shown as an example; Figure 1E). In the course of these

experiments we could not find any alterations in histological

morphology or layering of neuronal populations (data not shown).

Characterization of CPD1 null mice
Because of the described role of CPD1 in the nervous system,

we focused our subsequent efforts on characterizing the neuronal

phenotype of CPD1 null mice. Moreover, because CPD1 has been

described as a protein involved in cerebellar morphogenesis, we

particularly focused on evaluating the motor skills of CPD1 null

mice.

To assess motor learning we tested CPD1 null mice on the

accelerating rotarod test. This is an excellent screening test to

discern impairments in locomotion and cerebellar motor learning.

Mice impaired in motor function typically fall off the rotarod and

do not improve with consecutive trials (4 trials per day over 4

consecutive days). As shown in Figure2A, CPD1 null mice do not

display any motor deficits in this assay when compared to age-

matched controls.

We next tested gait in a more challenging situation. Specifically,

mice were tested in their ability to traverse a narrow balance beam

(a wooden dowel suspended at a height). In this test, we found that

CPD1 null mice perform worse than their littermates taking a

longer time to traverse the dowel between two platforms

(Figure 2B). Consistent with these motor deficits, we also observed

that CPD1 null mice tend to clasp their limbs (pull their limbs

towards the abdomen rather than extend them outwards which is

the normal response) while suspended from their tail (Movie S1

and Movie S2). This has been quantified in Figure 2C.

Finally, because we find that CPD1 expression is also quite

abundant in hippocampal neurons, we tested CPD1 null for spatial

memory using the Y maze. However, no significant differences in

behavior were observed in CPD1 null mice (Figure 3). In sum,

CPD1 null mice display only subtle motor phenotypes.

Because CPD1 is closely related to two other acidic nuclear

proteins LANP (Anp32a) and APRIL (Anp32b), we next wished to

determine the levels of LANP and APRIL in CPD1 null mice to

see if there might be any compensatory upregulation. Brain lysates

from CPD1 null mice were subjected to western blot analysis. No

significant change in protein levels of LANP and APRIL was

observed (Figure 4A and B). There was a trend in increase in the

level of RNA transcripts of LANP and APRIL; however, these

differences were not statistically significant (p.0.05) (Figure 4C).

Previously, we have generated LANP null mice that also like

CPD1 null mice are viable and fertile without significant deficits in

home cage behavior and several behavioral assays [3]. To test

whether depleting two ANP family members might uncover more

obvious deficits we crossed the LANP null and CPD null mouse

lines. To date these mice are viable and fertile and do not display

major behavioral phenotypes on home cage behavior. Viability of

double knockout mice suggests that other ANP homologues are

likely to compensate for loss of these proteins.

Materials and Methods

Ethics Statement
All protocols involving the use of animals were in compliance

with the National Institutes of Health’s Guide for the Care and

Use of Laboratory Animals and the Northwestern University

Institutional Animal Care and Use Committee (Protocol 2009–

1751 and protocol 200801411v1). These protocols are based on

our proposals to study the role of ANP proteins in development

and neurodegeneration—including this current study. Northwest-

ern University has an Animal Welfare Assurance on file with the

Office of Laboratory Animal Welfare (A3283-01).

Table 1. Breeding of CPD1 heterozygous mice resulted in
roughly Mendelian ratios of progeny.

CPD1 +/+ CPD1 +/2 CPD1 2/2

Expected % 25% 50% 25%

Expected
number

23.5 47 23.5

Obtained
number

20 46 28

Obtained % 21.27% 48.9% 29.8%

doi:10.1371/journal.pone.0012649.t001

CPD1/ANP-32E Knockout Mice
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Generation of mouse models
Generation of CPD1 null mice. Embryonic stem (ES) cells

derived from 129P2/OlaHsd mouse strain with the CPD1

targeted with a gene trap were obtained from BayGenomics

(MMRRC BayGenomics, UC Davis) [19]. The gene trap vector

(pGTLxf) contains a splice acceptor sequence upstream of

a b-Geo reporter gene (b-galactosidase fused to a neomycin

selection cassette). 59 RACE (rapid amplification of cDNA ends)

analysis suggested that the gene trap had inserted in the intron

between exon 3 and 4 of the mouse CPD1 gene. ES cells were

then injected into C57BL/6 blastocysts to generate chimeras (at

the Murine Targeted Genomics Laboratory; University of

California, Davis). Chimeras were mated to C57/BL6 mice

(Jackson Laboratory, Bar Harbor). Germ line transmission was

determined taking advantage of coat color of progeny and

subsequent genotyping (see supplementary information; Text

S1). Primers to genotype the CPD1 mice were generated by

testing various primers designed from the mouse genome

sequence on the Ensembl database (Mouse Genome

Sequencing Consortium).

Generation of LANP null mice. The generation of LANP

null mice has been previously described [3].

Figure 1. Generation of CPD1 null mice. A. Loss of CPD1 message in CPD1 null mice. RNA extracted from brains of CPD1 +/+, CPD1 +/2, and
CPD2/2 mice show loss of CPD1 transcripts by RT-PCR analysis. GAPDH is used as an internal control. Reduction in CPD1 transcript level is evident in
CPD1 +/2 mice. B. Antibody to CPD1 does not cross-react against ANP homologues. FLAG-tagged versions of CPD1, LANP and APRIL were
transfected into cells and immunoprecipitaed with anti-FLAG antibody. The antibody to CPD1 specifically recognizes CPD1 and not the other ANP
homologues. Western blot with FLAG demonstrates the transfection and pull-down of the relevant proteins. C. CPD1 null mice do not express CPD1
protein. Protein extracted from brains of CPD1 +/+, CPD1 +/2, and CPD2/2 mice show levels of CPD1 protein by western blot analysis. Actin is used
as loading control. Asterisks denote non-specific bands. D. Expression of endogenous CPD1. Immunostaining of neuro2a cells with a-CPD1 antibody
displays localization of CPD1 protein. DAPI staining marks the nucleus. E. Immunostaining on brains dissected from CPD1 +/+ and CPD1 2/2 mice
shows reduced CPD1 staining in CPD1 null mice.
doi:10.1371/journal.pone.0012649.g001

CPD1/ANP-32E Knockout Mice
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RT-PCR analysis
RNA was isolated from brains of adult mice (6 weeks of age) of

the described genotypes using Trizol (invitrogen). cDNA was

synthesized using Transcriptor first strand synthesis kit (Roche),

and quantitative PCR was performed as described [9]using 2X

PCR mix (Fermentas) employing following primers: CPD1 Fwd:

ATCGAAGGCCTGAATGACAC; CPD1 Rev: GTCATCCTC-

CTCCTCCGAGT. LANP Fwd: TGGAGATGGACAAACGG-

ATT; LANP Rev: GGCAGGAGCTTGAACACG. APRIL Fwd:

TAGCAGAAGAACTTCCAAGC; APRIL Rev: CATAGCCAT-

CCAGATAGGAC. GAPDH Fwd:ACAACTTTGGCATTGTG-

GAA GAPDH Rev: GATGCAGGGATGATGTTCTG.

Cell lines and cell culture
Mouse neuroblastoma neuro2a (N2A) cells (ATCC) were grown

in Dulbecco’s modified Eagle’s medium containing 10% FBS,

sodium pyruvate, penicillin/streptomycin, and non-essential ami-

noacids. PC12 (Rat Pheochromocytoma cells) were grown in

Dulbecco’s modified Eagle’s medium containing 8% FBS, 8% horse

serum, penicillin/streptomycin, and non-essential aminoacids.

Immunoprecipitation
HeLa cells were plated at the cell density of 26106 cells/10 cm

plate. 24 h later the cells were transfected with FLAG-CPD1,

FLAG-LANP [4]and FLAG-APRIL (gift from Dr. Joan Steitz)

[15] using lipofectamine (Invitrogen) as the transfection reagent.

48 h post transfection, the cells were lysed in lysis buffer (5 mM

Figure 2. Analysis of motor deficits in CPD1 null mice. A.
Accelerating rotarod analysis: 4 month old CPD1 +/+ (n = 6) and CPD1
2/2 (n = 12) were tested for a fall from a rotating rod. Average of 4
trails on each day is plotted. Error bars = SEM; p = 0.067, suggesting no
significant changes. B. Dowel test: 4 month old CPD1 null mice require
more time to traverse a balance beam. CPD1 +/+ (n = 6) and CPD12/2
(n = 12) were made to traverse a beam placed on two platforms for 8
trials on 8 days. CPD12/2 mice took longer time to traverse the beam
(p,0.005). C. CPD1 null mice display clasping behavior. CPD1 +/+ (n = 3)
and CPD1 2/2 (n = 16) were held from their tails and tested for
clasping of the limbs. CPD1 null mice clasp their limbs more times and
for longer duration than age matched control (p,0.005).
doi:10.1371/journal.pone.0012649.g002

Figure 3. CPD1 null mice do not depict any memory related
behavioral changes tested by Y maze. 4 month old CPD1 +/+
(n = 3) and CPD12/2 (n = 8) mice were tested on Y maze for
spontaneous alterations to enter arms of Y maze. Mice were tested
for 5 minutes or 22 entries (whichever came first) in arms of a Y maze.
No significant difference in % of alterations were observed (p.0.05).
doi:10.1371/journal.pone.0012649.g003

Figure 4. Expression levels of LANP and APRIL do not alter in
CPD1 null mice. A. Brain lysates from CPD1 +/+, CPD1 +/2, and CPD1
2/2 mice were subjected to western blot analysis with an anti-LANP
antibody to check for protein levels of LANP. Lysate from LANP null
mice served as control with actin as loading control. B. Brain lysates
from CPD1 +/+, CPD1 +/2, and CPD1 2/2 mice were subjected to
western blot analysis to check for protein levels of APRIL with an APRIL
antibody. C. mRNA expression analysis of CPD-1, LANP and APRIL was
performed using quantitative PCR. GAPDH served as an internal control
and the fold difference is relative to expression in wild type mice.
doi:10.1371/journal.pone.0012649.g004

CPD1/ANP-32E Knockout Mice
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EDTA and 0.5% Triton X-100 in PBS). Lysates were cleared by

centrifuging at high speed, incubated with 2 mg of anti-FLAG

antibody, clone m2 (Sigma) overnight, and immunocomplexes

were pulled down by protein A/G agarose beads (Clontech).

Immunoprecipitates were washed five times with PBS and the

beads were boiled with 3X SDS sample buffer before loading onto

a denaturing gel. The membrane was subjected to western blot

analysis employing antibodies against the FLAG epitope (M2

antibody, Sigma), and CPD1 (# 15-288-21207 GenWay Biotech

San Diego).

Western blot analysis on mouse tissue lysates
Tissue lysates derived from euthanized mice were homogenized

in lysis buffer (100 mM Tris pH 6.8, 25 mM dTT, 2% SDS, 5X

protease inhibitor mix (complete protease inhibitor tablets;

Roche)) using 2 ml of buffer for every 250 mg of tissue. 40 mg of

protein was separated onto a denaturing SDS gel and western

blotted using antibodies against CPD1 (# 15-288-21207 GenWay

Biotech San Diego), actin (# A5441 Sigma), LANP (3118: [4]) and

APRIL (aka PAL31, Anp32b [20])).

Immunofluorescence
Immunofluorescence on tissue cultured cells. N2A cells

were plated on coverslips at cell density of 250,000 cells/coverslip.

24 h later the cells were fixed with 4% formaldehyde and stained

with primary antibodies (anti-CPD1; GenWay) and fluorescently

labeled secondary antibody (Jackson Immunochemicals).

Microscopy was performed using a Zeiss Axiovert microscope.

Images were processed with Adobe Photoshop 7.0 software.

Immunofluorescence on fixed brain tissue. Brains from

euthanized mice were fixed in 4% paraformaldehyde overnight,

followed by incubation in 30% sucrose for 24 hrs. Fixed brains

were then embedded in OCT (Tissue Tek), and sections of 40 mm

thickness were obtained. Sections were permeabilized with

Phosphate buffered saline with Triton X (0.3% Triton X -100 in

PBS) for 10 minutes, blocked in 5% normal donkey serum

(Jackson Immunochemical) and incubated with CPD1 antibody

(GenWay) overnight. The samples were washed in Tris buffered

saline with Tween 20 (Tris pH 7.5, 145.5 mM NaCl and 0.1%

Tween 20), and incubated with fluorescently labeled secondary

antibody (Jackson Immunochemical). Upon washes in TBST, the

sections were mounted in mounting media containing DAPI

(Vectashield) and visualized with Zeiss Axiovert Microscope.

Behavioral Assays
(i) Rotating rod analysis. Three month old mice were

placed on a rotating-rod apparatus that accelerates linearly from 4

to 40 rpm over five minutes of the run, followed by rotating at

40rpm for the next five minutes. Mice were tested in four trials on

four consecutive days. The amount of time a mouse stayed on the

rotating rod was plotted to a maximum time of 10 minutes, the

duration of each trial. Two episodes of holding as the rod rotated

through 360 degrees were also scored as a fall. The average for

four trials for each day was plotted.

(ii) Balance Beam. Mice were tested for motor coordination

using a balance beam [21]. Briefly, a cylindrical beam (11 mm in

diameter, and 41 cm in length) was placed horizontally on two

platforms, 50 cm above a table. A bright light illuminated the start

platform, and a darkened enclosed escape box (20620620 cm)

was situated at the other end of the table. The time to traverse

each beam was recorded for each trial with a 20s maximum cutoff

(falls were scored as 20s). The mice were trained for the first three

trials on three consecutive days (T1-3), and then tested on five

consecutive days (T4-8).

(iii) Limb clasping analysis. Mice were tested for limb

clasping behavior by holding the mice from tail and suspending for

30 seconds. Mice were scored positive for clasping if they held the

limb towards their belly, rather than extended outward. Arbitrary

scores were given as follows: ,5s clasp = 1; .5s and ,10s = 5;

.10s = 10. Scores were calculated and an average from each

genotype was plotted.

(iv) Y maze. Mice were tested for spontaneous alterations

using Y maze. Mice were placed in the ‘‘start’’ arm of the Y maze

and left to roam freely until it has made 22 entries or until 5

minutes have elapsed. Three consecutive choices in three different

arms were considered an alteration. The average of percentage

alterations was plotted.

Statistics
All statistical analyses were performed using GraphPad (Prism)

using two-tailed t test. Paired t test were used for rotating rod assay

and balance beam where equal number of data points represent-

ing trials for each experimental genotype were compared, while

unpaired t test was used for clasping and Y maze tasks where two

groups containing unequal number of mice represent the

experimental groups.

Discussion

The ANP-family of proteins multitask in a variety of functions in

both the cytoplasm and the nucleus [5]. CPD1 is a relatively

understudied member of this family. In this study, we have

generated and characterized mice lacking CPD1 that we

demonstrate are viable and fertile.

Using an antibody validated with the help of our CPD1 knock-

out mice, we show that in tissue lysates derived from wild-type

mice CPD1 that runs at 34 kDa. Moreover, at a subcellular level,

CPD1 is present predominantly in the nucleus with some

cytoplasmic staining. The beta-galactosidase mutagenesis cassette

might provide yet another tool for detailed regional and

developmental expression analysis using colorimetric beta-galac-

tosidase substrates.

Given the previously described role in the nervous system, we

have focused our efforts on addressing the neurobehavioral

consequences of CPD1 loss. While the mice do not exhibit deficits

on the accelerating rotarod, they do show deficits on the balance

beam, a more stringent assay to detect gait disorders in mice.

These subtle motor deficits are also consistent with the clasping

phenotype that these mice display. It is possible that the minor

phenotype might reflect differences in mouse background.

However, given that we have back crossed the mice for five

generations (onto the C57Bl6 background), we think that this

scenario is unlikely.

The minimal phenotype of CPD1 loss, LANP loss (described in

an earlier study; [3]) or indeed loss of both proteins as exemplified

by the double knock-out mice warrants further comment. We take

these results to suggest one of several possibilities: The first

possibility is that ANP homologues such as LANP and CPD1 play

distinct roles that modulate cellular functions, but are not essential

for life. Depleting them either individually or in a combined

manner would thus lead to minimal phenotypes, perhaps

exaggerated in pathological situations— in keeping with the

putative role of ANP proteins in neurodegeneration and cancer.

Alternatively, given the evolutionarily conserved nature of these

proteins and the observation that they overlap in expression

patterns and functional properties of these proteins, we suspect

that as a group ANP proteins are indeed essential for vital

functions. We speculate these functions will only become apparent

CPD1/ANP-32E Knockout Mice
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by generating sequential knock-outs of other family member(s) as

well. This scenario is reminiscent of other evolutionary conserved

family members (such as the neuroligin family), where multiple

knock-outs are required [22]. The next logical choice in a

sequential gene targeting approach would be to target the close

LANP and CPD1 homologue APRIL (A Protein Rich in Leucines;

aka SSP-29, PAL31 and ANP32B NCBI Reference Sequence:

NP_570959.1 with 272 amino acids) [23]. We should point out

that two ANP proteins that are smaller in size—ANP32c and

ANP32d (234 amino acids and 131 amino acids respectively) —

have been speculated to play a role in tumorigenesis [24], but it is

not clear if they are expressed in neurons. Based on their absence

in expressed sequence tag databases and the fact that their genes

are intronless they might well be pseudogenes expressed in

pathological situations.

The LANP and now CPD1 null mice that we have developed

provide an invaluable resource. For instance, they can be used to

perform cell-based assays to test for ANP ascribed regulatory

functions underlying: intracellular signaling, mRNA stability and

transport; cytoskeletal dynamics/vesicle transport (via effects on

microtubule associated proteins), cell death (via effects on

apoptosis pathways [13], and finally, chromatin modulation and

gene expression (via effects on histone acetylation) [4,25,26,27]).

Moreover, both LANP and CPD1 have been proposed to play an

important role in tumorigenesis [17,24,28] and neurodegeneration

[2,8]. In these contexts as well, our mice should prove handy. For

instance, the cells of these mice could be used to study pathways

relevant to tumorigenesis and neurodegeneration. More impor-

tantly, by mating to CPD1 knockout mice to various tumor and

neurodegenerative models a deeper insight into disease regulation

and progression can be achieved.

Supporting Information

Text S1 Supplementary text

Found at: doi:10.1371/journal.pone.0012649.s001 (0.03 MB

DOC)

Figure S1 Genotyping of CPD1 null mice: A. Schematic of

CPD1 deletion strategy depicts location of b-geo (b-galactosidase+
neomycin R) cassette between Exons 3 and 4 (not drawn to scale).

B. Genotyping was performed on DNA extracted from tail clips of

mice using primers 5F, 6R, Neo F, and Neo R yielding 580 bp

band (WT) and 300 bp band (KO). CPD+/2 mice displayed both

bands corresponding to each allele.

Found at: doi:10.1371/journal.pone.0012649.s002 (0.64 MB TIF)

Figure S2 Depletion of CPD1 upon RNA interference. A.

Western blot analysis of CPD1 expression from PC12 cell lysates

transfected with mock, control, and siRNA for CPD1. Actin is

used as a loading control. B. Immunostaining of PC12 cells

transfected with mock, control, and siRNA for CPD1with CPD1

antibody. Scale bar = 50 mm.

Found at: doi:10.1371/journal.pone.0012649.s003 (1.91 MB TIF)

Movie S1 Video of CPD1 2/2 mouse shows clasping behavior.

When held from their tail, CPD1 null mice tend to clasp their hind

limbs towards their belly for durations ranging from 1–3 seconds.

Found at: doi:10.1371/journal.pone.0012649.s004 (3.35 MB

MPG)

Movie S2 Video of CPD1 +/+ mouse as a wild type control.

When held from their tail, wild type mice tend to position their

hind limbs and paws outwards and away from their belly.

Found at: doi:10.1371/journal.pone.0012649.s005 (3.55 MB

MPG)
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