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Abstract
Doxorubicin (DOX) is widely used to treat various cancers affecting adults and chil-
dren; however, its clinical application is limited by its cardiotoxicity. Previous studies 
have shown that children are more susceptible to the cardiotoxic effects of DOX than 
adults, which may be related to different maturity levels of cardiomyocyte, but the 
underlying mechanisms are not fully understood. Moreover, researchers investigating 
DOX‐induced cardiotoxicity caused by human‐induced pluripotent stem cell‐derived 
cardiomyocytes (hiPSC‐CMs) have shown that dexrazoxane, the recognized cardio-
protective drug for treating DOX‐induced cardiotoxicity, does not alleviate the toxic-
ity of DOX on hiPSC‐CMs cultured for 30 days. We have suggested that this may be 
ascribed to the immaturity of the 30 days hiPSC‐CMs. In this study, we investigated 
the mechanisms of DOX induced cardiotoxicity in cardiomyocytes of different matu-
rity. We selected 30‐day‐old and 60‐day‐old hiPSC‐CMs (day 30 and day 60 groups), 
which we term ‘immature’ and ‘relatively mature’ hiPSC‐CMs, respectively. The day 
30 CMs were found to be more susceptible to DOX than the day 60 CMs. DOX leads 
to more ROS (reactive oxygen species) production in the day 60 CMs than in the 
relatively immature group due to increased mitochondria number. Moreover, the day 
60 CMs mainly expressed topoisomerase IIβ presented less severe DNA damage, 
whereas the day 30 CMs dominantly expressed topoisomerase IIα exhibited much 
more severe DNA damage. These results suggest that immature cardiomyocytes are 
more sensitive to DOX as a result of a higher concentration of topoisomerase IIα, 
which leads to more DNA damage.
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1  | INTRODUC TION

Doxorubicin (DOX), one of the anthracyclines, is widely used to 
treat various cancers in adults and children, including leukaemias, 
lymphomas and solid tumours.1-4 However, DOX‐induced car-
diotoxicity, characterized by dilated cardiomyopathy and heart 
failure, limits its clinical application.5-7 Furthermore, clinical stud-
ies have shown that DOX‐induced cardiotoxicity is age‐related. 
Children are more susceptible to the cardiotoxic effects of DOX 
than adults, especially children younger than 4  years.8-12 This 
may be due to the level of maturity of cardiomyocyte. It has been 
shown in previous studies that DOX‐induced apoptosis gradually 
decreases during cell maturation.13-15 However, the underlying 
mechanism remains unclear due to a lack of in vitro cellular mat-
uration models.

Since human induced pluripotent stem cell‐derived cardiomy-
ocytes (hiPSC‐CMs) can mimic many aspects of human cardiomy-
ocytes, such as contractile function, cardiac genes expression and 
electrophysiological phenotypes, they have become an important 
technology in human cardiovascular disease modelling.16 Moreover, 
hiPSC‐CMs provide a drug‐testing platform for large‐scale screen-
ing of compounds. The US Food and Drug Administration initiated 
a new program, the Comprehensive In Vitro Proarrhythmia Assay 
(CiPA), to assess the clinical cardiac safety of compounds prior to 
Phase I clinical trials.17 One essential requirement of the CiPA is 
to assess the electrophysiological effects of new drugs on hIPSC‐
CMs assays. In 2016, Burridge et al established the DOX‐induced 
cardiomyocyte injury model based on hiPSC‐CMs.18 However, they 
found that dexrazoxane (DEX), a recognized cardioprotective drug 
used for treating DOX‐induced cardiotoxicity, whose properties 
were confirmed by animal experiments and clinical trials, could 
not alleviate the toxicity caused by DOX on hiPSC‐CMs cultured 
for 30 days.18 The immaturity of hiPSC‐CMs might be the leading 
cause of different responses to the same drug in the heart in vivo 
and in vitro.

To better understand the mechanism of DOX‐mediated cardio-
toxicity in cardiomyocytes of different maturation levels, we chose 
30‐day‐old (day 30) and 60‐day‐old (day 60) hiPSC‐CMs to repre-
sent immature and relatively mature cardiomyocytes, respectively. 
We suggest that the level of maturity may affect the modelling of 
DOX‐induced cardiotoxicity.

2  | MATERIAL S AND METHODS

2.1 | The hiPSC culture

HiPSCs were purchased from the Cellapy Biological Technology 
Company. HiPSCs (Cellapy) were routinely maintained in PSCeasy 
culture medium (Cellapy) and passaged every 3‐4  days using 
0.5  mmol/L EDTA (Ethylene Diamine Tetraacetic Acid, Cellapy). 
Cell lines were used between passages 20 and 85. All cultures 
were routinely tested for mycoplasma using a MycoAlert Plus Kit 
(Lonza).

2.2 | Cardiac differentiation of hiPSCs and 
purification

HiPSCs were split at 1:8 to 1:12 ratios using EDTA, and grown for 
3‐4  days until they reached ~85% confluence. The media were 
changed to CDM3,19 which consisted of RPMI 1640 (Corning), 
500  µg/mL Oryza sativa‐derived recombinant human albumin 
(Oryzogen Sciencell), and 213  µg/mL L‐ascorbic acid 2‐phosphate 
(Sigma‐Aldrich). The media were changed every 48  hours. On day 
0, the media were changed to CDM3 supplemented with 6 µmol/L 
CHIR99021 (MedChem Express).20,21 On day 2, the media were 
changed to CDM3 supplemented with 2 µmol/L Wnt–C59 (Biorbyt). 
The media were changed on day 4 and every other day for CDM3. 
Contracting cells were observed from day 8. On day 10, the media 
were changed to a purification medium made using RPMI 1640 (no 
glucose) (Corning), 500  µg/mL recombinant human albumin, and 
213 µg/mL L‐ascorbic acid 2‐phosphate. The medium was replaced 
with RPMI 1640 (Corning) supplemented with 500 µg/mL recombi-
nant human albumin 48 hours before the experiment in order to avoid 
antioxidant effects.

2.3 | Flow cytometry cardiac differentiation efficiency

For assessment of cardiac differentiation efficiency, cells on day 15 
of differentiation were dissociated using Cell Dissociation Solution 
(Cellapy) for 25 minutes at 37°C and transferred to flow cytometry 
tubes (BD Biosciences). Cells were then fixed with 4% paraformal-
dehyde (PFA) for 10 minutes, permeabilized with 0.1% saponin for 
20 minutes, and stained using 1:100 mouse monoclonal IgG1 TNNT2 
(Santa Cruz) for 30 minutes at RT. Isotype control Alexa Fluor 594 
mouse IgG (Life Technology) was used to establish gating. Cells were 
then analysed using a flow cytometre.

2.4 | Cardiomyocyte plating and drug treatment

Cells were separately cultured to 25 and 55 days and then immedi-
ately used for experiments. The hiPSC‐CMs were dissociated using 
Cell Dissociation Solution (Cellapy) for 25 minutes at 37°C, centri-
fuged at 1000 rpm for 2 minutes and plated onto coverslips, 12‐well 
cell culture plates or 96‐well culture plates coated with matrigel 
(Corning) 5 days before experimentation. Doxorubicin hydrochloride 
(Sigma‐Aldrich) was resuspended to stock solution 1000 μmol/L in 
PBS. For treatments on hiPSC‐CMs, 2.5 µmol/L DOX was diluted 
in P11a and cells were treated for 24  hours. For DEX treatment, 
hiPSC‐CMs were co–treated with 100 μmol/L of DEX (Selleck) with 
DOX. For N‐Acetyl‐L‐Cysteine (NAC) treatment, hiPSC‐CMs were 
co‐treated with 1 mmol/L NAC (Sigma‐Aldrich) with DOX.

2.5 | Quantitative real‐time PCR

Total mRNA was isolated using TRIzol, and 1  µg of the mRNA 
was used to synthesize cDNA using the GoScript Reverse 
Transcription System (Promega). A concentration of 0.25 µL of the 
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reaction mixture was used to quantify gene expression by qPCR 
using SYBR® Premix Ex Taq (TaKaRa). Quantitative real‐time (RT) 
PCR conditions were as follows: initial denaturation at 94°C for 
4 minutes followed by 40 cycles at 94°C for 1 minute, anneal-
ing for 1 minute at 56 and 72°C for 1 minute, with a final exten-
sion at 72°C for 10 minutes. Expression values were normalized 
to the average expression of GAPD. Primer sequences are shown 
in Table S1.

2.6 | Immunofluorescence staining

The cells were plated on 20 mm coverslips and were fixed with 4% 
PFA for 20 minutes. Then, after washing with PBS three times for 
10 minutes, the cells were successively treated with 0.2% Triton 
X‐100 (Sigma‐Aldrich) for 30  minutes, washed as above, and 
treated with 3% bovine serum albumin (BSA, Solarbio) at room 
temperature. Primary antibodies included OCT4 (1:100, Abcam), 
SSEA‐4 (1:100, Santa Cruz), NANOG (1:100, Abcam), TRA‐1‐60 
(1:100, Santa Cruz), TNNT2 (1:100, Santa Cruz), α‐actinin (1:100, 
abcam), CX43 (1:100, Santa Cruz) and γ‐H2A.X (1:200, Abcam). 
Cells were washed and then incubated for 45 minutes at RT in 
the dark with 1:200 Alexa Fluor secondary antibodies (Life 
Technology). Cells were washed again as above, mounted with 
Fluoroshield Mounting Medium with DAPI (4, 6‐diamino‐2‐phe-
nylindole), and imaged using a Confocal Microscope (Carl Zeiss, 
LSM 510 Meta).

2.7 | T‐tubules fluorescent staining

After preparing the 100  μmol/L di‐8‐ANEPPS in 20%(w/v) 
Pluronic‐F127 (Invitrogen) in DMSO from a stock solution of 
2 mmol/L di‐8‐ANEPPS in DMSO, cells were incubated with lipo-
philic fluorescent indicator Di‐8‐ANEPPS (10 μmol/L, Invitrogen) 
prepared in the cell culture medium for 15 minutes at 37°C, and 
then washed thrice using PBS. Cells were then fixed with 4% PFA 
for 20 minutes at RT, washed again, mounted with Fluoroshield 
Mounting Medium with DAPI and imaged using the confocal 
microscope.

2.8 | Calcium (CA2+) imaging

The hiPSC‐CMs were dissociated and seeded in 24mm ×  24mm 
coverslips for calcium imaging. Cells were loaded with 5 μmol/L 
Fura‐2, AM (Invitrogen) and 0.02% Pluronic F‐127 (Invitrogen) in 
Tyrodes solution (137 mmol/L NaCl, 5.4 mmol/L KCl, 1 mmol/L 
MgCl2, 10 mmol/L glucose, 1.8 mmol/L CaCl2, 1mM NaH2PO4 
and 20 mmol/L HEPES at pH 7.4 with NaOH at 25°C) for 10 min-
utes at 37°C. Following Fura‐2, AM loading, cells were washed 
three times with Tyrodes solution. Ca2+ transients imaging was 
collected using the confocal microscope with a 40x lens using 
Zen software (Carl Zeiss). Cells were perfused with calcium‐free 
Tyrodes solution containing 0.5  mmol/L EGTA, and then the 
5  mmol/L caffeine prepared in the same calcium‐free Tyrodes 

solution was delivered via perfusion apparatus. The analysis was 
performed using Zeiss physiology software.

2.9 | Cell viability assay

The hiPSC‐CMs were passaged and cultured in 96‐well plates at 
8×104 cells/well. After DOX treatment for 24 hours, 10 µL of CCK–8 
(Cell Counting Kit‐8, Dojindo) was added directly to each well in the 
96‐well plates, which were then incubated at 37°C for 3 hours; ab-
sorbance was read at 450 nm.

2.10 | TUNEL staining

Cells were stimulated with DOX of different concentrations 
for 36 hours. Apoptosis was measured using a TUNEL assay kit 
(Promega). The cells were plated on 20 mm coverslips, fixed with 
4% PFA for 20 minutes at RT and washed twice for 5 minutes 
with PBS. Next, cells were treated with 0.2% Triton X‐100 for 
30 minutes and washed twice for 5 minutes with PBS. Then the 
cells were pre‐incubated with terminal deoxynucleotidyl trans-
ferase buffer for 10  minutes at room temperature. In the ab-
sence of light, the reaction buffer was added to the cells, and 
the coverslips were incubated in a humid atmosphere at 37°C 
for 1 hour. Coverslips were washed again three times for 5 min-
utes, mounted with Fluoroshield Mounting Medium with DAPI, 
imaged using the confocal microscope and analysed using Imagej 
software.

2.11 | Measurement of mitochondrial 
transmembrane potential (Δψm) loss

Mitochondrial depolarization was monitored with the potentio-
metric dye JC‐1 using the Mitoprobe assay kit (Invitrogen) in ac-
cordance with the manufacturer's instructions. JC‐1 accumulates 
in polarized mitochondria with a resting membrane potential and 
fluoresces red. However, during ΔΨm loss, JC‐1 aggregates are 
released from the mitochondria, which results in a green fluo-
rescence. Thus, in order to assess mitochondrial depolarization, 
treated cells were stained with 2 μmol/L JC‐1 for 20 minutes at 
37°C at 5% CO2, washed and resuspended in fresh media; and then 
red and green fluorescence were monitored using High Content 
Analysis (MetaXpress).

2.12 | Mitochondrial reactive oxygen species assay

In order to determine the levels of mitochondrial superoxide using 
fluorescence microscopy, the cells were grown in a 20 mm glass slide. 
Following treatment, MitoSOX (Invitrogen) reagent was dissolved in 
dimethyl sulfoxide (5 mmol/L), diluted to 5 µmol/L in serum‐free me-
dium, and was then added to the cells; this was followed by incuba-
tion for 10 minutes at 37°C; the cells were then washed twice with 
PBS. Subsequently, the cells were fixed with 4% PFA for 20 minutes 
at RT, washed again, mounted with Fluoroshield Mounting Medium 
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with DAPI, imaged using the confocal Microscope and analysed 
using High Content Analysis.

2.13 | Intracellular reactive oxygen species assay

The intracellular reactive oxygen species (ROS) level was de-
termined using 2', 7'‐dichlorodihydrofluorescein diacetate 
(DCFH‐DA) (Beyotime). The cells were grown in the 20  mm 
glass slide. Following treatment, DCFH‐DA reagent was diluted 
to 10 µmol/L in serum‐free medium and was then added to the 
cells; this was followed by incubation for 20 minutes at 37°C; 
the cells were then washed twice with PBS. Subsequently, the 
cells were fixed with 4% PFA for 20  minutes at RT, washed 
again, mounted with Fluoroshield Mounting Medium with DAPI, 
imaged using the confocal microscope and analysed using High 
Content Analysis.

2.14 | Mitochondria staining

In order to determine the distribution and level of mitochondria, the 
cells were grown in the 20 mm glass slide. Mitotracker (Invitrogen) 
reagent was diluted to 1 µmol/L in serum‐free medium, and was then 
added to the cells; this was followed by incubation for 30 minutes at 
37°C; the cells were then washed twice with PBS. Subsequently, the 
cells were fixed with 4% PFA for 20 minutes at RT, washed again, 
mounted with Fluoroshield Mounting Medium with DAPI, imaged 
using the confocal microscope and analysed using High Content 
Analysis.

2.15 | Statistical methods

Data were analysed using the SPSS Statistics 20 (IBM) package 
and graphed using Prism (GraphPad). The data are presented as 

F I G U R E  1  Cardiomyocytes are 
differentiated from hiPSC. (A), hiPSCs 
observed under low power microscopy 
(scale bar = 200 μm). (B), hiPSCs observed 
under high power microscopy (scale 
bar = 50 μm). (C), The multipotency 
related genes expression of the hiPSC 
and human‐induced pluripotent stem 
cell‐derived cardiomyocytes (hiPSC‐CMs) 
by QPCR assay (n = 3). (D), Representative 
immunofluorescence staining of hiPSC 
for markers of stem cell, including 
OCT4, SSEA4, NANOG and TRA‐1‐60 
(scale bar = 50 μm). (E), The protocol of 
hiPSCs differentiating into hiPSC‐CMs. 
(F), hiPSC‐CMs observed under low 
power microscopy (scale bar = 200 μm). 
(G), hiPSC‐CMs observed under high 
power microscopy (scale bar = 50 μm). 
(H), Purified hiPSC‐CMs expressing the 
cardiac marker TNNT2 by flow cytometry 
analysis. *P < 0.05 doxorubicin vs control. 
Error bars represent SEM
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(mean  ±  SEM). Comparisons were conducted using the one‐way 
ANOVA test, followed by either the All Pairwise Multiple Comparison 
Procedures (Sidak) method or an unpaired, two–tailed Student's t test.

3  | RESULTS

3.1 | Generation of hiPSC‐CMs

In an effort to ensure reproducibility, we cultured hiPSCs under 
chemically defined conditions, and hiPSCs showed normal colony 
morphology (Figure 1A,B). Then we examined the pluripotency of 
hiPSCs using immunofluorescence staining for pluripotent markers 
OCT4, SSEA‐4, NANOG and TRA‐1‐60 (Figure 1D). Using a small 
molecule‐based directed differentiation method (Figure 1E), we 
were able to generate high purity CMs from the hiPSCs cultured as 
a monolayer. The expression of multipotency related genes POU5F1, 
SOX2, NANOG, LIN28 and FOXD3 decreased significantly after dif-
ferentiating into hiPSC‐CMs (Figure 1C). Approximately 8 days after 
induction, the differentiated cells started to contract spontaneously 
(Figure 1F,G). Flow cytometry analysis indicated that the hiPSC‐CMs 
were highly pure cellular populations, with more than 95% of cells 
expressing the cardiac marker TNNT2 (Figure 1H).

3.2 | hiPSC‐CMs matured over time when cultured 
in vitro

We found that the maturity of hiPSC‐CMs increased with culture 
time, so we chose hiPSC‐CMs that were 30 days old and 60 days old; 
we compared their characteristics in terms of molecular expres-
sion, myofilament structure, gap junctions and calcium transients. 
We first compared the changes in the gene expression profiles of 
structural and functional genes using quantitative real‐time PCR. 
The expression of sarcomeric genes (such as MYL2, LRRC1 and 
MYH7) and ion channel genes (such as CACNA1C, KCNH2, KCNJ2, 
KCNQ1 and SCN5A) were significantly up‐regulated in the day 60 
hiPSC‐CMs compared to the day 30 hiPSC‐CMs (Figure 2A,B). 
Meanwhile, the MYH7/MYH6 and MYL2/MYL7 gene expression 
ratios increased over time (Figure 2C), implying an increased per-
centage of ventricular‐like cells in the day 60 hiPSC‐CMs.22 The 
number of differentiated cells had increased in the day 30 hiPSC‐
CMs, whereas multiplication of cells in the day 60 hiPSC‐CMs had 
been inhibited. We also observed that the cell cycle‐related genes 
MKI67 (encoding the proliferation marker protein KI67) were richly 
expressed in day 30 hiPSC‐CMs (Figure 2D), signifying immatu-
rity. Immunofluorescence staining showed that day 60 hiPSC‐CMs 
possessed distinct, well‐developed and abundant sarcomeres that 
were organized in parallel, in contrast with the day 30 hiPSC‐CMs 
(Figure 2E). The sarcomere length of day 60 CMs is longer than 
day 30 cardiomyocytes as shown in Figure 2F (2.308 ± 0.091 41, 
n = 10 vs 1.638 ± 0.059 61, n = 12). Electron microscopy images 
indicated that immature mitochondria were distributed surround-
ing the nucleus, and the sarcomere was underdeveloped in day 30 
CMs (Figure S1A). Whereas mature mitochondria were distributed 

along the myofilament of day 60 CMs (Figure S1B). The day 60 
hiPSC‐CMs also had defined T‐tubules, which are invaginations 
of the cardiomyocyte plasma membrane along the boundary 
between adjacent sarcomeres, and which are responsible for 
transmitting the action potential from the sarcolemma to the sar-
coplasmic reticulum (SR)23 (Figure 2G). In addition, connexin‐43 
(CX43), the predominant cardiac gap junction protein, was ob-
served to be more abundantly distributed throughout the cardio-
myocyte membrane in the day 60 hiPSC‐CMs than in the day 30 
cells (Figure 2H). Calcium transients comprise one of the char-
acteristics of cardiomyocyte: we assessed calcium transients by 
loading single cells with Fura‐2, AM in order to probe the differen-
tial characteristics of the two group cells in terms of calcium tran-
sients. The day 30 cells showed limited capacity to release Ca2+ 
when treated with caffeine (SR Ca2+ channel opener) compared 
with the day 60 cells (Figure 2I), confirming that immature hiPSC‐
CMs had significant lower level of SR function (0.8167 ± 0.026 03, 
n  =  3 vs 1.307  ±  0.020  28, n  =  3; day 30 vs day 60, P  <  0.01). 
After measuring the spontaneous calcium transient, we found 
that the amplitude of day 60 CMs was higher than day 30 CMs 
(15.84 ± 0.4439, n = 5 vs 10.70 ± 0.250 9, n = 5), and the transient 
duration of day 60 CMs was also longer (1.276 ± 0.022 84, n = 3 
vs 0.701 7 ± 0.011 26, n = 3) (Figure S2A,B). These results sug-
gested that the day 60 hiPSC‐CMs were more mature in terms of 
structural and functional phenotypes than the day 30 hiPSC‐CMs.

3.3 | Maturation decreased the cytotoxicity of DOX 
in hiPSC‐CMs

We have suggested that the degree of maturity influences the 
cells’ response to DOX and affects the modelling of DOX‐in-
duced cardiotoxicity. Therefore, we measured the cell viability of 
cells exposed to DOX. Notably, the day 30 hiPSC‐CMs showed 
significantly reduced cell viability compared to the day 60 group 
at concentrations of 2.5 μmol/L DOX (Figure 3A). To reveal the 
cause of viability reduction, we then assessed cellular apoptosis 
using TUNEL staining. Compared to the day 60 cells, the day 30 
hiPSC‐CMs treated with DOX displayed a significantly increased 
apoptosis rate (Figure 3B,C). Relative quantification of Bcl‐2/Bax 
expression ratios of the two hiPSC‐CM groups after 24 hours of 
treatment with 2.5 μmol/L DOX showed a higher apoptosis level in 
the day 30 hiPSC‐CMs (Figure 3D). The mitochondrial membrane 
potential assay by JC‐1 probe showed a more obvious decrease in 
the day 30 cells (Figure 3E). These results demonstrated that the 
day 30 hiPSC‐CMs are more sensitive to the cytotoxicity of DOX 
than the day 60 hiPSC‐CMs.

3.4 | Maturation led to more ROS production in 
hiPSC‐CMs

Doxorubicin‐induced cardiotoxicity is known to have two major 
mechanisms: induction of ROS through redox cycling causing in-
jury to membrane structure, and binding to Top2 causing DNA 
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damage.24-27 We assessed the production of mitochondrial ROS 
after DOX treatment and found that DOX treatment led to an in-
crease in mitochondrial ROS levels in a dose‐dependent manner in 
the hiPSC‐CMs (Figure 4A,C). The intracellular ROS production ex-
hibited the same trend (Figure 4B). To explore the underlying mech-
anisms, we assessed the mitochondrial mass and distribution of 

both cell groups, and found that the day 60 hiPSC‐CMs possessed 
more abundant mitochondria distributed around the cells, whereas 
the mitochondria of the day 30 hiPSC‐CMs was less abundant and 
was accumulated around the nucleus in the cytoplasm (Figure 4D,E). 
Furthermore, in applying NAC, a common antioxidant, we found 
it could attenuate ROS production in the day 60 hiPSC‐CMs to a 

F I G U R E  2  Different characteristics of human‐induced pluripotent stem cell‐derived cardiomyocytes cultured 30 d and 60 d, 
respectively. (A), Structure genes expression quantities of the two groups by QPCR assay (n = 3). (B), Functional genes expression quantities 
of the two groups by QPCR assay (n = 3). (C), The expression ratio of ventricular‐like structure genes and atrial‐like genes in the day 30 
and day 60 hiPSC‐CM groups (n = 3). (D), Proliferation‐related gene MKI67 expression quantity of the two groups by QPCR assay (n = 3). 
(E), Immunofluorescent staining for TNNT2 and phalloidin to demonstrate sarcomeric organization in the two hiPSC‐CM groups (scale 
bar = 25 µm). (F), Quantified sarcomere length of day 30 and day 60 CMs. (G), Immunofluorescent staining for T‐tubules in the two groups 
(scale bar = 25 µm). (H), Immunofluorescent staining for connexin 43 in the two groups (scale bar = 50 µm). (I), Representative Ca2+ transient 
traces from the two groups followed by caffeine exposure. *P < 0.05 doxorubicin vs control. Error bars represent SEM

F I G U R E  3  Day 30 human‐
induced pluripotent stem cell‐derived 
cardiomyocytes (hiPSC‐CMs) are more 
vulnerable to Doxorubicin (DOX) 
compared with day 60 hiPSC‐CMs. (A), 
Detection of relative cell viability in the 
two groups after 24 h treatment with 
DOX of different concentrations by CCK8 
assay (n = 3). (B), Quantitative analysis of 
TUNEL staining of the two groups treated 
with DOX of different concentrations 
(n = 3). (C), Cell apoptosis assay in the two 
groups after 24 h treatment with DOX of 
different concentrations demonstrated by 
TUNEL staining. (D), Relative quantitative 
analysis of BCL‐2/BAX expression ratio of 
the two groups after 24 h treatment with 
DOX (n = 3). (E), Mitochondrial membrane 
potential assay of the two groups after 
24 h treatment with DOX of different 
concentrations by JC‐1 probe (n = 3). 
*P < 0.05 DOX vs control. Error bars 
represent SEM
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greater extent than in the day 30 group (Figure 4F,G). In order to 
determine the impact of ROS overproduction on cell viability re-
duction, we analysed the cell viability following co‐treatment with 
antioxidant NAC. Our results showed that NAC could restore cell 
viability in both groups, but more evidently so in the day 60 group 
(Figure 4H).

Consequently, we may conclude that DOX can induce ROS pro-
duction in hiPSC‐CMs in a dose‐dependent manner and that DOX 
leads to more ROS production in the day 60 hiPSC‐CMs.

3.5 | DOX led to more severe DNA damage in less 
mature hiPSC‐CMs through TOP2α

However, the above results do not explain the phenomenon of 
more severe toxicity in the day 30 hiPSC‐CMs, so we considered 
the other pathway of DNA damage. DOX, targeting Top2, plays its 
cytotoxic role due to the formation of a Top2‐DOX‐DNA complex. 
Top2 plays an important role in maintaining the DNA topology.28 
There are two Top2 isozymes in human cells: Top2α and Top2β.29 
Top2α is only expressed in proliferative cells and tumour cells, 
and is highly expressed in the G2/M period of cell cycle. DOX is 
thought to bind to Top2α, which has a highly elevated expression in 
cancer cells.30 By contrast, Top2β is present in all cells. It is worth 
noting that adult mammalian cardiomyocytes express TOP2β but 
contain no detectable TOP2α. There is substantial evidence that 
Top2β is predominantly responsible for DOX‐induced cardiotoxic-
ity via DNA damage.31 The role of Top2β was verified by a previ-
ous study showing that cardiomyocyte‐specific deletion of Top2β 
protects mice from the development of DOX‐induced progressive 
heart failure.32

We assessed the level of double‐stranded DNA damage by de-
tecting phosphorylated H2A histone family member X (γ‐H2A.X). 
We observed a dose‐dependent increase in DNA damage, which 
was significantly higher in the day 30 hiPSC‐CMs (Figure 5A,B). 
Given that the day 30 hiPSC‐CMs were more proliferative than 
the day 60 cells, it was necessary to explore the gene expression 
of TOP2α and TOP2β. The test showed that the day 60 hiPSC‐
CMs expressed a higher percentage of TOP2B, whereas the day 
30 hiPSC‐CMs expressed mainly TOP2A (Figure 5C). Therefore, 
we have suggested that the difference in DNA damage caused 
by DOX between two groups of cells may be related to the ex-
pression of different TOP2 subtypes. To verify the hypothesis, 
we used DEX, which induces Top2β depletion and antagonizes 

DOX‐induced cardiotoxicity by preventing DOX‐induced DNA 
damage, whilst not decreasing the anti‐tumour efficacy at the 
same time.33 In our findings, DNA damage signal γ‐H2A.X is 
more significantly reduced with treatment of DEX in the day 
60 cells than in the day 30 cells, which supports our hypothesis 
(Figure 5D,E). In order to establish the impact of DNA damage 
to cell viability reduction, we analysed cell viability following co‐
treatment with DEX. The results showed that DEX only restored 
cell viability in the day 60 group (Figure 5F). These results indi-
cated that DEX is capable of reducing DOX‐induced DNA damage 
in hiPSC‐CMs via depletion of Top2β in the day 60 group, which 
suggests that the day 60 hiPSC‐CMs may serve as a better dis-
ease model for DOX‐induced cardiotoxicity. Moreover, cardiomy-
ocytes of a low degree of maturation are more sensitive to DOX, 
which may be related to the high content of TOP2α and thus to 
more severe DNA damage.

4  | DISCUSSION

We have shown that DOX injury to hiPSC‐CMs occurs in a dose‐
dependent manner in terms of cell viability, oxidative stress level 
and DNA damage, and that the day 30 hiPSC‐CMs and day 60 
hiPSC‐CMs respond differently to DOX. The different responses 
correlate with the degree of maturity of the two groups. The day 
60 hiPSC‐CMs had more mature phenotypes in terms of molecu-
lar expression, myofilament structure, gap junctions and calcium 
transients; the day 30 hiPSC‐CMs by comparison are relatively 
immature. The overproduction of ROS is one of the most impor-
tant mechanisms of DOX‐induced cardiotoxicity24-27 and ROS 
originates mainly from mitochondria. The mitochondria content 
of the day 30 hiPSC‐CMs is much lower than that of the day 60 
hiPSC‐CMs. The day 60 hiPSC‐CMs simulated the physiological 
processes of ROS overproduction better than the day 30 hiPSC‐
CMs. However, these results contradict the observations that day 
30 hiPSC‐CMs present much more reduction in cell viability, sug-
gesting that ROS might play a minor role of DOX‐induced cardio-
toxicity in less mature hiPSC‐CMs. Moreover, previous research 
has shown that there are differences in the type and content of 
TOP2, the target of DOX, in cells with or without proliferative 
capacity.29 We found that the day 30 hiPSC‐CMs mainly express 
TOP2A, the gene for TOP2α, similar to tumour cells, whereas 
day 60 hiPSC‐CMs predominantly express TOP2B, the gene for 

F I G U R E  4  Higher reactive oxygen species (ROS) is produced in the day 60 human‐induced pluripotent stem cell‐derived cardiomyocytes 
(hiPSC‐CMs) compared with day 30 hiPSC‐CMs. (A), Mitochondrial ROS production under treatment by Doxorubicin (DOX) of different 
concentrations demonstrated by MitoSOX immunofluorescent staining (n = 3). (B), The baseline level of MitoSOX fluorescence intensity 
of the two groups (n = 3). (C), The fluorescence intensity of DCFH‐DA, representing intracellular ROS production (n = 3). (D), Cells 
incubated with DOX for 24 h and mitochondrial ROS production was detected using MitoSOX fluorescent staining (scale bar = 50 µm). (E), 
Immunofluorescent staining for mitochondria in the two groups by Mitotracker fluorescent probe (scale bar = 50 µm). (F), Quantitative 
analysis of Mitotracker fluorescence intensity (n = 3). (G), Effects of DOX to ROS production with or without N–acetyl–L–cysteine (NAC) 
demonstrated by MitoSOX quantitative analysis (n = 3). (H), Effects of DOX to ROS production with or without NAC demonstrated 
by MitoSOX immunofluorescent staining (scale bar = 50 µm). (I), Effects of DOX to the cell viability with or without NAC treatment 
demonstrated by CCK8 assay (n = 3). *P < 0.05 DOX vs control, #P < 0.05 DOX + NAC vs DOX. Error bars represent SEM
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F I G U R E  5  More severe DNA damage by Doxorubicin (DOX) in day 30 human‐induced pluripotent stem cell‐derived cardiomyocytes 
(hiPSC‐CMs) via TOP2α. (A), Detection of DNA damage using immunofluorescent staining for γ‐H2A.X after 24 h treatment of DOX (scale 
bar = 15 µm). (B), Quantitative analysis of γ‐H2A.X fluorescence intensity (n = 3). (C), Expression quantities of genes TOP2A and TOP2B in 
the two groups by QPCR assay (n = 3). (D), Effects of DOX to the DNA damage with or without dexrazoxane (DEX) treatment demonstrated 
by γ‐H2A.X quantitative analysis (n = 3). (E), Effects of DOX to the DNA damage with or without DEX treatment demonstrated by γ‐H2A.X 
immunofluorescent staining (scale bar = 15 µm). (F), Effects of DOX to the cell viability with or without DEX treatment demonstrated by 
CCK8 assay (n = 3). *P < 0.05 DOX vs control, #P < 0.01 DOX + DEX vs DOX. Error bars represent SEM
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TOP2β, which is similar to the phenotype of adult cardiomyo-
cytes; therefore, day 60 hiPSC‐CMs can more accurately mimic 
DOX‐induced cardiotoxicity in the pathophysiological process of 
DNA damage (Figure 6).

The maturity of hiPSC‐CMs increases with culture time,34 
something that has been repeatedly confirmed. However, this ar-
ticle is perhaps the first to investigate the effects of maturity on 
disease modelling. In 2016, Paul et al established a DOX‐induced 
cardiotoxicity model based on hiPSC‐CMs, and showed that the 
recognized DOX cardiotoxicity cardioprotective drug DEX could 
not alleviate the toxicity of DOX on hiPSC‐CMs cultured for 
30 days.18 In this study, we have shown that DEX has a protec-
tive effect on day 60 hiPSC‐CMs but no protective effect on day 
30 hiPSC‐CMs, the latter which might have been affected by the 
main expression of TOP2α instead of TOP2β. Given that binding to 
TOP2β is one of the important mechanisms of DOX‐induced car-
diotoxicity, we conclude that day 60 hiPSC‐CMs, the more mature 
group, serve as a better model of DOX‐induced cardiotoxicity. As 
illustrated above, we found that the degree of maturity of hiPSC‐
CMs has an impact on the model of DOX‐induced cardiotoxicity. 
On the one hand, relatively mature cardiomyocytes can better 
model DOX‐induced cardiotoxicity for pathogenesis research and 
drug screening; on the other hand, the effects of the degree of 
maturation should be taken into consideration when establishing 
other disease models based on hiPSC‐CMs. In addition, building a 

disease model requires hiPSC‐CMs of the same level of maturity 
in order to avoid inconsistent experimental results. Therefore, the 
significance of this study is that it sheds light on the importance 
of optimizing the establishment of the disease model based on 
hiPSC‐CMs.

Previous studies have confirmed that as the heart of a human 
or a mouse develops, the expression of TOP2A gradually decreases, 
and the expression of TOP2B generally increases.35-37 We specu-
late that the sensitivity of age‐related DOX‐induced cardiotoxicity 
may be related to the different levels of expression of these TOP2 
genes, which might help guide clinical medication and prevent DOX 
cardiotoxicity.

We aimed to clarify this phenomenon, rather than studying 
DOX‐induced cardiotoxicity itself, and so we used the hiPSC‐CMs 
of a healthy individual instead of those taken from patients suf-
fering from DOX‐induced cardiomyopathy. However, it is bet-
ter to choose hiPSC‐CMs from patients who are suffering from 
DOX‐induced cardiomyopathy for pathogenesis studies and drug 
screening. The technology used for hiPSC‐CM analyses has de-
veloped rapidly over the past 10 years. HiPSC‐CM analyses take 
into account the overall genetic background of a specific individ-
ual, and thus have many advantages over animal models. However, 
hiPSC‐CMs do not match the phenotype of adult cardiomyo-
cytes in terms of maturity. There are a number of ways to pro-
mote the maturation of hiPSC‐CMs, but these methods only allow 

F I G U R E  6  Schematic illustration of 
doxorubicin (DOX)‐induced cardiotoxicity 
in human‐induced pluripotent stem cell‐
derived cardiomyocytes (hiPSC‐CMs) 
cultured 30 d and 60 d respectively. 
The day 60 hiPSC‐CMs were relatively 
mature, with well‐developed and distinct 
sarcomeres, defined T‐tubules, and more 
abundant connexin‐43 and mitochondria, 
compared to the day 30 hiPSC‐CMs. 
When treated with Doxorubicin (DOX), 
the day 60 hiPSC‐CMs produced more 
reactive oxygen species (ROS) and better 
simulated the physiological processes 
of ROS overproduction, although both 
groups responded to N‐Acetyl‐L‐Cysteine. 
In addition, the day 30 hiPSC‐CMs 
mainly expressed TOP2α rather than 
TOP2β, and failed to mimic DOX‐induced 
cardiotoxicity in the pathophysiological 
process of DNA damage
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hiPSC‐CMs to approach the phenotype of late foetal cardiomyo-
cytes, which is far from the phenotype of adult cardiomyocytes.23 
This is an emerging technology, and there remains considerable 
room for improvement.
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