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Wound healing is one of the most complex physiological regulation mechanisms of the
human body. Stem cell technology has had a significant impact on regenerative medicine.
Adipose stem cells (ASCs) have many advantages, including their ease of harvesting and
high yield, rich content of cell components and cytokines, and strong practicability. They
have rapidly become a favored tool in regenerative medicine. Here, we summarize the
mechanism and clinical therapeutic potential of ASCs in wound repair.
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INTRODUCTION

The skin is the largest organ of the body. It is a key structure that protects internal tissues from
mechanical damage, microbial infection, ultraviolet radiation, and extreme temperatures (Falanga, 2005;
Ren et al., 2019; Rodrigues et al., 2019; Yang et al., 2020). In the United States, the annual medical cost of
adverse wounds, including surgical incisions and scars, is $12 billion (Fife and Carter, 2012; Leavitt et al.,
2016). Wound healing is a highly complex physiological regulation mechanism (Rodrigues et al., 2019)
and a sophisticated multicellular process involving the coordination of various cell types and cytokines
(Ho Jeong, 2010). Interactions involving epidermal and dermal cells, extracellular matrix (ECM),
cytokines, and growth factors coordinate the entire repair process, which can be roughly divided into
three stages: inflammation, new tissue formation, and reconstruction (Heublein et al., 2015; Rodrigues
et al., 2019). The inflammatory stage includes neutrophil and monocyte recruitment and macrophage
activation (Park and Barbul, 2004; Larouche et al., 2018). New tissue formation mainly refers to the
proliferation, migration, and recombination of endothelial cells to form new blood vessels. When new
blood vessels are formed, resident fibroblasts proliferate and invade fibrin clots to form contractile
granulation tissue and produce collagen (Heng, 2011; Ansell and Izeta, 2015;Morikawa et al., 2019). This
is followed by the proliferation of epidermal stem cells to rebuild the epidermis and stem cells from
sebaceous glands, sweat glands, and hair follicles to form epidermal attachments.

Routine Treatment of Wounds
In view of the complex, multi-stage, physiological and pathological processes of acute and chronic skin
wound healing, efficient targeted wound healing treatment methods have been studied and applied.
Thorough surgical debridement, prevention of infection, and elimination of dead spaces can minimize
the risk of poor wound healing. Emerging technologies, such as those based on growth factors, bioactive
molecules, and gene modification, can also overcome the limitations of wound healing technology to
some extent and serve as personalized therapeutic strategies (Tottoli et al., 2020).
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However, despite these efforts, existing interventions for
wound healing have not been sufficiently effective. While
there are several treatments available for both acute and
chronic wounds, traditional approaches have had limited
success. Due to the limitations of traditional methods, such
as drug-based therapy, more effective treatments are needed.
Skin regeneration therapy strategies and experimental
techniques for cell and tissue engineering have also emerged.
Stem cell-based therapy has opened a new door for wound
repair and has attracted extensive attention in the field of
regenerative medicine.

Stem Cells
There are thousands of cells undergoing constant daily dynamic
changes, such as loss and self-renewal, to maintain tissue
homeostasis. Self-renewal is mainly driven by stem cells.
Stimulation from regeneration signals, such as the accumulation
of crosstalk with niche factors or environmental changes at the time
of injury, can disrupt tissue homeostasis, change stem cell behavior,
induce self-renewal, and promote tissue growth (Hsu et al., 2011;
Cosgrove et al., 2014; Porpiglia et al., 2017). When homeostasis is
restored, differentiated progeny can return to their niche, preventing
further proliferation and tissue regeneration, and this process is
regulated by a careful balance of time-coordinated cell interactions
and molecular feedback loops (Fuchs and Blau, 2020).

Stem cells can be divided into embryonic and adult stem cells
according to their developmental stage. Embryonic stem cells
refer to cells derived from the embryonic inner cell mass or
primordial germ cells in vitro. Embryonic stem cells have
developmental totipotency and can differentiate into any
type of cell. Embryonic stem cells can be extensively
amplified, screened, frozen, and resuspended in vitro without
them losing their original characteristics (VanOudenhove et al.,
2017;Wang et al., 2019; Sun et al., 2021). Adult stem cells, which
are found in various tissues and organs of the body, are
undifferentiated cells in a differentiated tissue that can self-
renew and differentiate into the specialized cells composing that
tissue. These stem cells include hematopoietic stem cells, bone
marrow mesenchymal stem cells, neural stem cells, muscle
satellite cells, epidermal stem cells, and adipose stem cells
(ASCs) (Cinat et al., 2021; Menche and Farin, 2021). In this
review, we focus on ASCs.

Sources and Applications of ASCs
Adipose tissue is a multifunctional tissue that contains a variety of
cell types, such as the stromal vascular fraction andmature adipose
cells. Stromal vascular fragments (SVFs) are a rich source of ASCs
that can be easily isolated from human fat (Whiteside, 2008;
O’Halloran et al., 2017). The Mesenchymal and Tissue Stem
Cell Committee of the International Society for Cellular
Therapy (ISCT MSC) proposes minimal criteria to define
human MSC follows: First, MSC must be plastic-adherent when
maintained in standard culture conditions. Second, MSC must
express CD105, CD73 and CD90, and lack expression of CD45,
CD34, CD14 or CD11b, CD79alpha or CD19 andHLA-DR surface
molecules. Third, MSCmust differentiate to osteoblasts, adipocytes
and chondroblasts in vitro. ASCs conform to most of the
mesenchymal criteria of ISCT MSC, defined as
CD45−CD235a−CD31−CD34+. The phenotype of cultured ASCs
is CD13+CD73+CD90+CD105+CD31−CD45−CD235a− (Dominici
et al., 2006; Bourin et al., 2013).

ASCs have many advantages. They can be directly extracted
from the adipose layer of a patient. Adipose tissue has a high
frequency of stem cells, and ASCs can be used immediately with
primary cells without the need for culture amplification. In
addition, ASCs provide not only cellular components, but also a
large number of cytokines. Currently, ASCs have various
clinical applications, including in scar reshaping and tissue
repair, regeneration, and reconstruction, which are
treatments often associated with cancer and metabolic
diseases (Brayfield et al., 2010; Gir et al., 2012; Rodrigues
et al., 2014; Strong et al., 2015; Clevenger et al., 2016; Gentile
and Garcovich, 2019; Sabol et al., 2019; Qin et al., 2020). Skin
repair/regeneration is one of the most common clinical
applications of ASCs, which has a positive therapeutic effect
when used to treat skin wounds in patients with diabetes,
vascular dysfunction, radiation history, or burn history.

Mechanism of ASCs in Wound Healing
Factors Secreted by ASCs
The mechanisms of wound healing by ASCs are complex and
diverse. ASCs are involved throughout the entire process of
wound healing, including inflammation, proliferation, and
remodeling (Hyldig et al., 2017). During inflammation, ASCs
may induce the transformation of the macrophage phenotype

FIGURE 1 | Biogenesis and function of exosomes (Casado-Díaz et al., 2020).
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from pro-inflammatory M1 to anti-inflammatory M2 to regulate
inflammation (Lo Sicco et al., 2017). During proliferation and
remodeling, ASCs secrete biological factors such as VEGF, HGF,
IGF, PDGF, and TGF-β, which promote the proliferation and
migration of fibroblasts, the growth of new blood vessels, and the
synthesis of collagen and other ECM proteins, which have beneficial
effects on the skin (Rehman et al., 2004; Ho Jeong, 2010; Rodrigues

et al., 2014; Na et al., 2017). For example, radiation damage to the
skin can cause progressive occlusive endarteritis in local tissues,
leading to severe tissue ischemia. Mesenchymal stem cells can be
used to repair cellular damage and regenerate new blood vessels in
ischemic tissues in patients with radioactive skin injury
(Bensidhoum et al., 2005; François et al., 2006). ASC replacement
after radiotherapymay reduce the incidence of radiation-related skin

FIGURE 2 | ASCs serve as effective immunomodulators in inflammatory environments to promote wound healing and regeneration (Mazini et al., 2021).
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complications and is used for the prevention and treatment of skin
injury related to tumor radiotherapy (Rigotti et al., 2007).

In addition, ASCs inhibit ECM degradation by increasing the
binding of matrix metalloproteinases and secreting tissue
metalloproteinase inhibitors (Lozito et al., 2014). Proteins in the
ECM, in turn, protect against degradation of growth factors and
cytokines produced by activated platelets andmacrophages, such as
PDGF and TGF-β (Barrientos et al., 2008). Finally, in vitro studies
have confirmed that ASCs may promote re-epithelialization by
regulating keratinocyte proliferation and migration (Riis et al.,
2017). In summary, ASCs can promote wound healing by reducing
inflammation, inducing angiogenesis, promoting the growth of
fibroblasts and keratinocytes, and generating ECM.

ASC-Derived Extracellular Vesicles
Recent studies have shown that paracrine factors significantly promote
the effect of stem cells during tissue repair and that extracellular vesicles
may play an important role. Extracellular vesicles include exosomes
and microvesicles, which play an important role in and are considered
mediators of intercellular communication (Shao et al., 2018; Théry
et al., 2018). The differences between exosomes and microvesicles in
terms of physical function are yet to be clarified.Microvesicles are large
vesicles (50–1000 nm in diameter) that germinate outward from the
plasma membrane, whereas exosomes are small vesicles (50–150 nm
in diameter), and their secretion requires the fusion of multiple vesicles
with the plasma membrane.

In recent years, there has been extensive research on different
types of cells, such as fibroblasts, endothelial progenitor cells, and
human umbilical cord mesenchymal stem cells, that are involved in
tissue repair by regulating cell function and promoting angiogenesis
and wound healing (Zhang et al., 2015a; Li et al., 2016; Geiger et al.,
2015; Zhang et al., 2015b). ASC-derived exosomes have also been
shown to accelerate wound healing by optimizing fibroblast function
(Figure 1) (Ren et al., 2019; Casado-Díaz et al., 2020). Studies have
found that ASC-derived microvesicles (ASC-MVs) are easily
internalized by human umbilical vein endothelial cells (HUVECs),
HaCaTs, and fibroblasts, suggesting that ASC-MVs can serve as a
suitable vector for delivering a variety of biomolecules and signals to
these targeted cells. ASC-MVs can enhance the migration and
proliferation of HUVECs, HaCaTs, and fibroblasts through
internalization (Zhang et al., 2018; Bi et al., 2019; Ren et al.,
2019). Cell cycle progression can be accelerated in a variety of
ways, including by increasing the expression of genes related to
cyclin D1, cyclin D2, cyclin A1, and cyclin A2, ultimately promoting
wound healing (Bretones et al., 2015).

The migration of HUVECs and angiogenesis play an
important role in promoting wound healing. ASC-MVs can
significantly upregulate the gene expression of integrin β1 and
CXCL16 and regulate migration of HUVECs (Hattermann et al.,
2008; Tang et al., 2017). ASC-MVs can also accelerate the wound
healing process by promoting angiogenesis (Zhang et al., 2018).

ASCs Serve as Effective Immunomodulators in
Inflammatory Environments to Promote Wound
Healing and Regeneration
Adipose tissue has an immune function because it contains many
immune cells and immunomodulatory cells, including ASCs. ASCs

regulate mechanisms related to cell differentiation, proliferation,
andmigration through exosomes by upregulating genes involved in
different functions, including skin barrier, immune regulation, cell
proliferation, and epidermal regeneration (58). In addition, there
are several populations of stromal and immune cells in
heterogeneous products obtained after the digestion of adipose
tissue, including SVFs. These properties make ASCs effective
immune modulators in inflammatory environments (DelaRosa
et al., 2012; Gardin et al., 2018; Li and Guo, 2018).

ADSCs directly interact with their microenvironment and
specifically the immune cells, including macrophages, NK cell,
T cells and B cells, resulting in differential inflammatory and anti-
inflammatory effect (Figure 2) (Mazini et al., 2021). The immune
regulatory function of ASCs is manifested as regulation of the Th1/
Th2 balance and promotion of Tregs to restore immune tolerance.
ASCs secrete the anti-inflammatory cytokine interleukin-10 (IL-
10), which enhances Treg activity, and Tregs respond by further
secreting IL-10 and amplifying IL-10 signaling (Chaudhry et al.,
2011). Tregs and IL-10 attenuate Th1 and Th17 activity, thereby
reducing the aggregation of additional pro-inflammatory immune
cells at pathological sites (Skapenko et al., 2005; Chaudhry et al.,
2011). Additionally, the low expression of NK-activated receptor
ligands increases human ASC resistance to NK-mediated
recognition, which enables them to remain in the host for
longer period. Furthermore, the mechanism by which human
ASCs develop NK cell tolerance may be mediated by soluble
factors (Spaggiari et al., 2008; DelaRosa et al., 2012). The role of
these anti-inflammatory and immunomodulatory effects of ASCs
in wound healing needs to be further confirmed.

DISCUSSION

Although ASCs are fundamental to the tissue regeneration process,
the clinical transformation of ASC-based therapies remains
problematic. Due to the variation in donor age, sex, body mass
index, clinical condition, and cell sampling location, ASCs are
heterogeneous. Transplanted cells in severe trauma cases have only
a limited ability to survive, which can affect their phenotypic
features and functions, including proliferation, differentiation
potential, immune phenotype, and paracrine activity (Prieto
González, 2019). Therefore, future studies on the role of ASCs
in regenerative medicine, especially dermatology, are still needed.
Nevertheless, ASCs have promising applications in regenerative
medicine, including the development of lipogenic potential and the
construction of artificial skin by replacing dermal fibroblasts
(Trottier et al., 2008; Tartarini and Mele, 2015), which will be
the direction of our future research.
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