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Abstract
NAC (NAM, ATAF1/2, CUC2) transcription factors are involved in regulating plant develop-

mental processes and response to environmental stresses. Brachypodium distachyon is

an emerging model system for cereals, temperate grasses and biofuel crops. In this study,

a comprehensive investigation of the molecular characterizations, phylogenetics and

expression profiles under various abiotic stresses of the NAC gene family in Brachypodium
distachyon was performed. In total, 118 BNAC genes in B. distachyonwere identified, of

which 22 (18.64%) were tandemly duplicated and segmentally duplicated, respectively.

The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) algorithms

showed that they were divided into two clades and fourteen subfamilies, supported by

similar motif compositions within one subfamily. Some critical amino acids detected

using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The

different exon-intron organizations among subfamilies revealed structural differentiation.

Promoter sequence predictions showed that the BNAC genes were involved in various

developmental processes and diverse stress responses. Three NAC domain-encoding

genes (BNAC012, BNAC078 and BNAC108), orthologous of NAC1, were targeted by five

miRNA164 (Bdi-miR164a-c, e, f), suggesting that they might function in lateral organ

enlargement, floral development and the responses to abiotic stress. Eleven (~9.32%)

BNAC proteins containing α-helical transmembrane motifs were identified. 23 representa-

tive BNAC genes were analyzed by quantitative real-time PCR, showing different expres-

sion patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-

regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and

two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic

transcriptional expression analysis revealed that six genes showed constitutive expression

and period-specific expression. The current results provide novel insights into the structure

and function of the plant NAC gene family.
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Introduction
Adverse stresses affect biomass and agricultural productivity worldwide significantly due to the
deterioration of the global environment [1–3]. However, plants have developed numerous physio-
logical and biochemical strategies to protect cellular activities and maintain plant integrity to
ensure their survival under adverse conditions [3,4]. Transcription factors (TFs) regulate the
expression of stress-related genes by binding to the cognate cis-acting elements [5,6] that control
all biological processes in plants, including growth, development and regulating the gene responses
to developmental and environmental changes [7]. However, the plant-specific NACTF family, is
known for their broad roles in several developmental programs, defence and stress-responses [8,9].

Since the first comprehensive review of NAC TFs in 2005 [8], much research has provided
us more knowledge about NAC transcription factors. The name NAC was derived from the
three mutants earliest identified: NAM from petunia [10], and ATAF1-2 and CUC from Arabi-
dopsis [11]. Typically, NAC proteins have two parts: a conserved N-terminal NAC domain and
C-terminal variable transcription regulatory regions (TRRs) [8]. The N-terminal NAC domain
(~160 amino acids) consists of subdomains A–D (NAM domain in InterPro) and an additional
subdomain E [12].Generally, subdomains A, C and D are highly conserved, of which subdo-
main A may be involved in the formation of a functional dimer and subdomains C and D bind
to DNA, whereas subdomains B and E are divergent [9,12].It was reported that subdomain A–
E in typical NAC proteins contain five motifs, whereas other distinct motifs form NAC-like
proteins [13]. In addition to the N-terminal NAC domain, the C-terminal TRRs operate as
functional domains by conferring either activation or repression activity [14]. However, some
NAC TFs contain α-helical transmembrane (TM) motifs at their C terminus, which are
responsible for anchoring to the plasma membrane or endoplasmic reticulum [15]. The Arabi-
dopsis and rice genomes contain at least 85 and 45 membrane-bound transcription factors
(MTFs), respectively. Among these, at least 18 NACMTFs are present in Arabidopsis and five
are expressed in rice [16]. These NACMTFs are classified as membrane-related and named
NTL (NTM1-like or ‘NAC with transmembrane motif 1’-Like) TFs [14].

The activity of NAC genes is regulated through three processes: the binding of specific TFs
to regulatory promoter regions at the transcriptional level, miRNA164-mediated cleavage or
alternatively splicing at the post-transcriptional level and ubiquitins, dimerization and/or inter-
action with other non-NAC proteins at the post-translational level [9]. These regulatory steps
control the involvement of NAC TFs in plant developmental processes [10,17–19] as well as
the responses to biotic and abiotic stresses [1,6,20]. To date, the function of numerous NAC
genes has been verified using transgene technologies or microarrays [9,21]. The overexpression
of three Arabidopsis thaliana NAC genes (ANAC019, ANAC055 and ANAC072/RD26) in
transgenic plants increased the stress tolerance of the plants compared with the wild type plants
[6]. Arabidopsis plants overexpressing ATAF1 are highly sensitive to abscisic acid (ABA), high-
salt, oxidative stress and necrotrophic fungus (B. cinerea) [22]. OsNAC6, the rice homolog of
ATAF1, has a higher tolerance to drought and high salinity [23].In soybean, GmNAC5, a mem-
ber of CUC/NAM subfamily, plays a role in seed germination and abiotic stress responses [24].
In transgenic Arabidopsis lines, the overexpression of TaNAC2 enhances the tolerance to
drought, cold and salt stresses [3]. Nevertheless, revealing their roles in abiotic stresses remains
challenging in view of their large numbers and various functions under complex environmental
stimuli [21].

To date, the NAC gene family has been investigated and identified in Arabidopsis, rice and
some other higher plants [12–14,25–27]. However, comprehensive investigations of the NAC
family in Brachypodium distachyon have been less reported. A scanty report was published
about BdSWN5 TF, which regulates a secondary cell-wall cellulose synthase (BdCESA4), a
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xylem-specific protease (BdXCP1) and an orthologous of AtMYB46 (BdMYB1), suggesting
that it is capable of turning on secondary cell-wall synthesis and cell death programs [28]. B.
distachyon has rapidly become a powerful model system for cereals, temperate grasses and bio-
fuel crops [29]. Furthermore, the recent availability of a high-quality sequencing of the B. dis-
tachyon genome [30] provides an unprecedented opportunity for genome-wide analysis of all
genes of the NAC gene family. Therefore, research into the NAC TFs in B. distachyon species
will contribute to future studies of agriculturally important monocots.

In this study, we performed a comprehensive investigation of the molecular characteriza-
tions, phylogenetics and expression profiles of NAC genes in B. distachyon under various abi-
otic stresses. The results provide novel insights into the plant NAC genes and their molecular
mechanisms of action in response to adverse environments.

Materials and Methods

Sequence retrieval and identification
To roundly collect members of NAC gene family in B. distachyon, the protein sequences of the
published Arabidopsis thaliana NAC (ANAC) and Oryza sativa NAC (ONAC) [12,25] were
used to BLASTP program against phytozome v10.2 (http://phytozome.jgi.doe.gov/pz/portal.
html). The protein up to E value� 1E-10 was selected as candidate protein, and was excluded
if its amino acid sequence< 100 residues. Each annotated protein was confirmed a Hidden
Markov Model (HMM) profile of the NAM domain PF02365 by Pfam (http://pfam.xfam.org/)
searches and checked for the existence of NAC domain by SMART (http://smart.embl-
heidelberg.de/).

Chromosomal locations, gene duplication analyses of NAC genes in B.
distachyon
Locations of BNAC genes on the Brachypodium chromosome maps obtained from Phytozome
v10.2 were mapped by MapInspect program and modified manually. Furthermore, tandem
duplicated genes were defined as adjacent homologous genes on a single chromosome, with no
more than one intervening gene. Segmental duplication was collected using the Plant Genome
Duplication Database (PGDD, http://chibba.agtec.uga.edu/duplication/) with the range of
100kb and the gene pairs, of which synonymous substitution rates (Ks) values were between 0
and 1.0, were selected to calculate the dates of duplication events (T) using the mean Ks values.
The dates were calculated by the equation T = Ks/2λ, assuming clock-like rates of synonymous
substitution of 6.5 × 10−9 substitutions/synonymous site/year for Brachypodium [31].

Estimates of functional divergence
The functional divergence between pairwise subfamilies of the NAC proteins was analyzed
using the software DIVERGE v3 [32]. θ-I and θ-II, the coefficients of Type-I and Type-II func-
tional divergence, were calculated between pairwise clusters of the family. If θ-I or θ-II is signif-
icantly greater than 0, it means that site specific altered selective constraints or a radical shift of
amino acid physiochemical property occurred after gene duplication and/or speciation. Fur-
thermore, critical amino acid residues were predicted based on posterior probability (Qk).
Qk> 0.9, as a threshold, was to screen potentially crucial sites for functional divergence [32].

Phylogenetics and molecular characterization
Phylogenetic trees were constructed based on Bayesian inference using Markov Chain Monte
Carlo (MCMC) methods [33]. Initially, the NAC amino acid sequences of the whole coding
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regions were aligned by using the MUSCLE program with default parameters. Then bayesian
inference phylogenetic construction was performed with MrBayes v 3.2 using GTR (General
Time Reversible) model with gamma distributed rates (gamma-distributed rate variation) [34].
Bayesian analysis included mcmcngen = 106 and samplefreq = 10. When the average standard
deviation of split frequencies was below 0.01, the operation was terminated. After discarding
the burn-in samples (first 25% of samples), the remaining data were used to generate a Bayes-
ian tree, which was presented by software FigTree v1.4.2. The motifs of NAC proteins were
identified using MEME v4.10.1 (Multiple Em for Motif Elicitation, http://meme-suite.org/
index.html). The exon/intron organizations were derived from Gene Structure Display Server
(GSDS, http://gsds.cbi.pku.edu.cn/). The protein pI/Mw was determined by the Compute pI/
Mw tool (http://web.expasy.org/compute_pi/). The 1500 bp upstream sequences as promoter
regions were collected from Phytozome and submitted to PlantCARE database (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/) to search their putative cis-acting ele-
ments. The miRBase (http://www.mirbase.org/search.shtml) was used to search identified miR-
NA164s, then the secondary structures and potential targets were predicted using the RNAfold
web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) and psRNATarget (http://plantgrn.
noble.org/psRNATarget/), respectively. The predictions of membrane-bound BNAC proteins
were determined by TMHMM server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/).

Plant materials, growth conditions and stress treatments
The uniform seeds of standard diploid inbred line of Bd21 were sterilized with 75% alcohol
and 15% sodium hypochlorite and then washed three times with sterile water. The seeds were
germinated on filter paper saturated with water in complete darkness at 26°C. After 3 days,
seedlings were grown in Hoagland solution in the greenhouse under a 16/8-h (light/dark)
photocycle at 28/26°C (day/night). The nutrient solution was changed every 3 days. The
2-week-old seedlings were incubated in the following conditions: 200 mM NaCl (salinity
stress), 4°C (cold stress), PEG6000 (mild drought stress), 500 uM CdCl2 (heavy metal stress)
and 20 mMH2O2 (oxidative stress). Leaves of control and treated seedlings were harvested at
6, 12, 24 and 48h for assays. All samples were immediately stored at -80°C immediately until
used.

RNA extraction and qRT-PCR
Total RNA was extracted using TRIzol reagent (Invitrogen) based on the published manufac-
turer’s instructions. PrimeScript™ RTMaster Mix (Perfect Real Time) was used for RNA purifi-
cation and reverse transcription following the manufacturer’s instructions. For RT-PCR,
specific primer pairs (S1 Table) were designed using the Primer3Plus program (http://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). The designed primer pairs were
checked by Primer-BLAST tool in NCBI database (http://www.ncbi.nlm.nih.gov/tools/primer-
blast/index.cgi?LINK_LOC=BlastHome) to confirm the consistency and uniqueness of them.
Ubi4 (Bradi3g04730) was selected as the reference gene according to previous report [35]. The
qRT-PCR programs were performed in three biological replicates by a CFX96 Real-Time PCR
Detection System (Bio-Rad) using 2-44Ct method with the following parameters: an initial
denaturation step at 95°C for 3 min, followed by three procedures: denaturation at 95°C for
15s, anneal at 60°C for 15s, extension at 72°C for 20s, in total of 40 cycles. Fluorescence was
measured at the end of each cycle. The qRT-PCR efficiency was determined by five serial five-
fold dilutions of cDNA, the standard curve showed the RT-PCR efficiency rate and melting
curves of BNAC genes showed single peaks (S1 File).
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Results

In silico identification and annotation of the NAC gene family in B.
distachyon
A total of 115 NAC sequences from Arabidopsis and 141 fromOryza sativa were used separately
to perform a BLAST search for BrachypodiumNAC family genes, and a list of 118NAC genes of
Brachypodium distachyonwere identified and used for further analyses (S2 Table). Based on the
Arabidopsis and rice NAC nomenclature suggestions and to distinguish from existing alias, each
gene was named as following: an initial letter corresponding to B. distachyon (B), followed by the
family designation (NAC) and a number, as shown in S3 Table. Among higher plants, the dicot
species Arabidopsis is a model plant used to predict the function of unknown genes, and compar-
ative genomic analysis of the NAC family between Brachypodium and Arabidopsis allowed the
functions of several BNAC genes to be deduced from their Arabidopsis orthologous. Several
BNAC genes share an Arabidopsis orthologous, for example, BNAC030 and BNAC040 are ortho-
logous of ATAF1 with strong e-value support. Interestingly, BNAC genes belonging to subgroups
VII–IX, and XI–XIV showed low E-value with corresponding Arabidopsis orthologous, whereas
genes in subgroup X exhibited higher orthologous with ANAC genes (S3 Table).

The genetic characteristics and loci of the BNAC genes are summarized in S3 Table. The
lengths of the proteins ranged from 106 to 856 amino acids, with molecular weights of 11665.5
to 96519.0 kDa. The pI values of 4.16–10.06, did not correspond to their masses. These results
indicated that BNAC genes were not conserved during evolution.

Chromosomal distribution and gene duplication events among BNAC
genes
The locations of BNAC genes on the five chromosomes of B. distachyon were shown in Fig 1A,
members of the BNAC family were distributed non-randomly on the five chromosomes. As
shown in Fig 1B, chromosome 1 contained the largest number (31, ~26.3%) of BNAC genes,
followed by chromosome 4, which contained 28 members (~23.7%). Chromosome 5 contained
only 13 members (~11.0%). The precise chromosome position of each BNAC gene is shown in
S3 Table. However, the gene numbers on each chromosome were directly proportional to the
length of the corresponding chromosome, except for chromosome 4 (Fig 1A and 1B), suggest-
ing that NAC genes in Brachypodium have no obvious chromosomal preferences. Furthermore,
the genes were prone to being distributed in clusters at certain chromosomal regions, especially
in the chromosome 4 and 5, and were dispersed in a single manner at other locations (Fig 1A),
consistent with other plants [27,28].

Segmental duplication, tandem duplication and transposition events (retroposition and repli-
cative transposition) are the three dominant evolutionary patterns [36], of which segmental
duplication and tandem duplication, resulting from polyploidy and unequal crossing-over,
respectively, are common in plants [37]. The current study identified the ones that tandem dupli-
cated genes and segment duplicated genes both accounted for 18.64% (22 of 118). As shown in
Fig 1A, the tandem duplicated genes were distributed on chromosomes 1, 2, 3 and 4, whereas
chromosomes 1–5 contained segmentlly duplicated genes. Obviously, two groups (BNAC086,
BNAC087, BNAC088 and BNAC101, BNAC102, BNAC103) happened that three genes were
involved in tandem duplication events. The mean Ks values were determined to estimate the
dates of the segmental duplication events (Table 1). These events happened mainly during
45.38–73.05 million years ago (MYA). Almost half segmental duplications (five of eleven pairs)
occurred on the same chromosome. This suggests that both segmental duplication and tandem
duplication is the major expansion pattern of the BNAC gene family in Brachypodium.
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Phylogenetic and structural analysis of the BNAC family
The Bayesian inference, implemented by MrBayes, has become a standard approach for the esti-
mation of branch support as posterior probabilities within the time required for the run [33,38].
To reveal the phylogenetic relationships of the BNAC family and predict the functions of certain
subfamilies, we have implemented a Bayesian MCMC algorithm to infer the phylogenetic tree.
Finally the tree was classified into fourteen subgroups, of which five subgroups were named with
their orthologous groups namely, CUC (development-related NAC), VND (secondary wall-syn-
thesis NAC), TIP (membrane-associated NAC), TERN (tobacco elicitor-responsive NAC) and

Fig 1. Distribution ofBNAC genes on fiveBrachypodium chromosomes. (A) The size of each
chromosome reflects its relative length and the chromosome numbers are indicated at the top of each bar.
The red boxes represent tandem duplicated genes. The figure was produced using the MapInspect software.
The scales are shown in megabases (Mb). (B) The percent of BNAC genes on each chromosome shows their
distribution abundance.

doi:10.1371/journal.pone.0139794.g001

Table 1. Estimates of the dates for the segmental events between the duplicated BNAC genes.

Segment pairs Numbers of anchors Ks (mean ± s.d.) Estimated time (mya)

BNAC005&BNAC027 4 0.69 ± 0.034 53.08

BNAC006&BNAC026 4 0.69 ± 0.034 53.08

BNAC015&BNAC054 4 0.83 ± 0.079 63.85

BNAC049&BNAC105 3 0.79 ± 0.131 60.77

BNAC041&BNAC052 3 0.72 ± 0.253 55.38

BNAC040&BNAC051 5 0.59 ± 0.176 45.38

BNAC071&BNAC057 5 0.60 ± 0.159 46.15

BNAC072&BNAC110 5 0.79 ± 0.164 60.77

BNAC038&BNAC050 7 0.65 ± 0.190 50

BNAC058&BNAC118 4 0.95 ± 0.058 73.08

BNAC073&BNAC114 8 0.75 ± 0.188 57.69

MYA: million years ago

λ = 6.5×10−9

doi:10.1371/journal.pone.0139794.t001
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SNAC (stress-related NAC), since they may be involved in similar regulatory roles. As displayed
schematically in S1 and S2 Figs, ten types of motifs were detected, including seven types of NAC
motifs, corresponding to five NAC subdomains. Despite the great variations in the motifs among
the various subgroups VI–XIV (S1 Fig), the members clustered in the same subgroup shared sim-
ilar motif compositions, which supported our classifications (Fig 2). The members of the sub-
groups I–V had comparatively higher motif conservation, and a majority of NAC proteins
(~89.9%, 62 of 69) had seven motifs, corresponding to five NAC DNA-binding subdomains, and
two of the remaining seven proteins lacked only an E subdomain.

Subsequently, each NAC domain was classified, which revealed the E values of the A–D sub-
domains (E subdomain was not detected). The presence or absence of the various subdomains
in each subfamily is listed in S4 Table. The results were consistent with those presented in S1
Fig, members of subgroups I–V generally contained a complete NAC domain, whereas those in
subgroups VI–XIV contained an incomplete domain.

Comparative analysis of the NAC proteins from Brachypodium and Arabidopsis, which
were the monocot and dicot model plants respectively, was also performed. From S3 Table, the
members of subgroups VII–XIIV did not show high similarity with those of ANAC family
except for subgroup X. Phylogenetic tree based on Bayesian MCMCmethods (S3 Fig) showed
that the classifications of the Brachypodium NAC family was almost identical and applicable to
the ArabidopsisNAC family, especially, subgroups I–VI. Specifically, the subgroups VII–IX did
not contain any ANAC members, and similarly ANAC–1 and -2 clustered ANACs alone,
which coincided with that predicted previously (S3 Table, S3 Fig). Anyway, members in the
subgroups shared the similar motif compositions likewise (S4 Fig). The type, order, and num-
ber of motifs were summarized in S5 Fig and similar to those in the Brachypodium. Statistical
analysis revealed that the proportions of each subgroup were similar between Brachypodium
and Arabidopsis, with only a small disparity in the subgroup III (10.2% in Brachypodium and
22.6% in Arabidopsis).

Analysis of the exon/intron structures of the BNAC genes revealed that the number of exons
differed among members of the BNAC gene family, mostly ranging from one to three, whereas
BNAC028 had the greatest number of exons, (up to 15 exons, S6 Fig). However, three of five
subgroups in the Clade I showed significant proportion of three exons, except for the subgroup
III (the number of exons ranged from two to seven) and subgroup IV (two exons accounted for
42.9% and three exons accounted for 50%), and the number of NAC members of the Clade I
possessing three exons accounted for 63.8%. In contrast, the number of exons in the other sub-
groups varied greatly. Generally, 80%, 66.7% and 83.3% of the members of subgroups VII, VIII
and IX had only one exon, respectively, whereas those in subgroup X had a greater number
(Fig 3A). The similar results were obtained from the ANAC family genes (S4 Fig).

Furthermore, the relationship between the substructures of the protein and the correspond-
ing exons was analyzed comprehensively (Fig 3B). Most NAC members from subgroups II and
V and almost half of the members of the subgroups I and IV had three exons that aligned well,
showing significantly similar structural features. Specifically, the first exon encodes the A and
B subdomains, the second exon encodes C and D subdomains and the third exon begins with
the E subdomain and contains all C-terminal regions including the TRR. Nevertheless, there
were also several exceptions. The greatest variation was observed in subgroup X, which mainly
occurred in the C-terminal region (Fig 3B).

Functional divergence analysis of Brachypodium NAC proteins
The DIVERGE v3.0 software was used to identify the critical amino acid residues related to
functional divergence using a framework based on Type-I functional divergence (site-specific
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shift of evolutionary rate) and Type-II functional divergence (site-specific shift of amino acid
property) [39,40]. The methods are not sensitive to saturation of synonymous sites, therefore,
they are applied extensively in research of various gene families [41,42]. The coefficient of

Fig 2. Phylogenetic relationships of BNAC proteins. The amino acid sequences were aligned using MUSCLE program and the Bayesian tree was
generated by MrBayes v 3.2, using MCMC algorithms and GTRmodel with gamma distributed rates. Each subfamily is highlighted in a different color.

doi:10.1371/journal.pone.0139794.g002
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Type-I functional divergence (θI), which was statistically independent between the two gene
clusters, was used to determine the Type-I of functional divergence [43]. As shown in Table 2,
the θLTR value between subgroups II and III, III and VIII, III and IX was 3.642, 3.456 and 3.402
(range, 2.71–3.84), respectively, the coefficient of functional divergence (θI) between them was
statistically significant (P< 0.1). The coefficients of the five subgroup pairs (I/IV, I/X, II/X, IV/
X and V/IX) were 0.488, 0.429, 0.415 0.746 and 1.209, respectively, which were moderately sta-
tistically significant (P< 0.05). The coefficients of the nine subgroup pairs (0.467–1.580) were
highly statistically significant (P< 0.01). This suggests that specific sites might be retained
selectively in certain members of the BNAC family, which led to evolution in the direction of
subgroup-specific functions. Type-II functional divergence was divided into two cases: the
coefficients of Type-II functional divergence (θII) of some subgroup pairs were apparent, with
values ranging from 0.031 to 0.662, whereas other pairs showed the opposite trend, in which
the coefficients were not apparent, with values< 0 (Table 2). These results suggest that site-
specific shifts of evolutionary rate and of amino acid property differed greatly among subgroup
pairs and/or within each subgroup pair.

In addition, some critical amino acid residues that were responsible for functional diver-
gence were predicted by setting suitable Qk values as a threshold. Here, Qk> 0.9 was set as the
threshold to predict critical amino acid residues related to Type-I and Type-II functional diver-
gence. Based on comparisons of Type-I and Type-II (S5 Table), the number and positions of
the critical amino acid residues differed between each subgroup pair. Nevertheless, some criti-
cal sites (marked in bold font) were responsible for both Type-I and Type-II functional

Fig 3. Schematic diagram of exon distribution ofBrachypodiumNAC genes. (A) Proportions of exon
numbers within each subfamily. (B) The relationship of the substructures of BNAC proteins and the
corresponding to exons.

doi:10.1371/journal.pone.0139794.g003

NAC Transcription Factor and Brachypodium distachyon

PLOSONE | DOI:10.1371/journal.pone.0139794 October 7, 2015 9 / 23



divergence, suggesting that they played important roles in functional divergence during the
course of evolution.

Analysis of promoter regions and miRNA-mediated regulation
Gene expression can be regulated by the binding of TFs to corresponding transcription factor
binding sites (TFBSs) upstream of target genes. We analyzed the promoter sequences in 1500
bp region upstream of the start codon of BNAC genes (S6 Table). In a diverse range of meta-
bolic activities, interactions of the cis-acting elements in promoter regions with various TFs
regulate the expression of the downstream genes [44]. In particular, they play crucial roles in
the developmental and/or environmental regulation of gene expression [45]. Of the seven
types of regulatory elements, three were related to important physiological processes: light peri-
ods, hormonal/environment responses and developmental regulations. Several light-responsive
elements were present in the promoter regions, including Box I [46], Box 4 [47], GAG-motif

Table 2. Functional divergence between NAC subgroups in Brachypodium distachyon.

Subgroup 1 Subgroup 2 Type-I Type-II

θI ± s.e. LTR Qk > 0.9 θII ± s.e. Qk > 0.9

I III 0.467 ± 0.172 8.164** 2 0.117 ± 0.477 1

I IV 0.488 ± 0.205 4.649* 1 0.067 ± 0.426 2

I V 0.473 ± 0.252 13.659** 17 0.137 ± 0.585 8

I X 0.429 ± 0.232 3.946* 1 0.198 ± 0.433 8

I VIII 1.182 ± 0.164 37.079** 24 0.662 ± 0.331 0

I IX 0.502 ± 0.172 13.105** 3 0.367 ± 0.428 12

II III 0.653 ± 0.251 3.642 1 0.068 ± 0.330 1

II IV 0.549 ± 0.324 2.605 0 0.207 ± 0.252 6

II V 0.128 ± 0.433 0.213 0 0.121 ± 0.475 6

II X 0.415 ± 0.252 3.909* 0 0.327 ± 0.268 8

II VIII 1.105 ± 0.251 15.871** 24 0.608 ± 0.265 0

II IX 0.810 ± 0.287 12.122** 24 0.302 ± 0.319 8

II VII −0.816 ± 0.022 0 0 0.031 ± 0.656 2

III X −0.016 ± 0.378 0.013 0 −0.283 ± 0.454 1

III VIII 0.594 ± 0.327 3.456 1 −0.541 ± 0.703 0

III IX 1.371 ± 0.542 3.402 21 −0.943 ± 0.773 0

IV X 0.746 ± 0.264 4.854* 1 0.166 ± 0.295 8

IV VIII 1.245 ± 0.238 17.672** 24 0.090 ± 0.416 4

IV IX 1.580 ± 0.243 16.928** 24 0.071 ± 0.369 0

IV VII 0.066 ± 0.022 0 0 −0.070 ± 0.724 2

V X 0.362 ± 0.207 2.448 0 0.280 ± 0.487 14

V VIII 0.977 ± 0.300 9.734** 21 −0.187 ± 0.804 1

V IX 1.209 ± 0.364 6.517* 19 −0.624 ± 0.877 0

X VIII 0.084 ± 0.022 0 0 0.066 ± 0.505 6

X IX −0.189 ± 0.305 0.140 0 −0.122 ± 0.447 2

X VII −0.030 ± 0.022 0 0 0.306 ± 0.680 11

Note: θI and θII, the coefficients of Type-I and Type-II functional divergence; LRT, Likelihood Ratio Statistic

*, p < 0.05

**, p < 0.01

Qk, posterior probability.

doi:10.1371/journal.pone.0139794.t002
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[48] and G-box [49]. Among these, the G-box element had more copies in the NAC family,
particularly in the subgroup IV (a mean of 7.62). In addition, the sp1 also had a high abun-
dance, ranging from 2.1 to 8.0 copies per subgroup (S6 Table). The results described above sug-
gest that the NAC genes might be related to photosynthesis and/or carbohydrate metabolism.
Phytohormones and other abiotic stress-responsive mechanisms also play a crucial role in
plant self-defence against environmental stresses, such as ABRE [50], TGA-motif [51], TCA-
motif [52] and MBS [53]. Of these, ABRE (72.2%, 35 of 118) is one of the most abundant hor-
mone-related regulatory elements in B. distachyon, indicating that the expression of several
BNAC genes is induced by ABA-mediated signal transduction. Obviously, the subgroup IV
likely conferred a great advantage due to the high number of copies of each member (19.08 per
gene). In addition, development-related elements are also present, including those related to
meristem expression (CAT-box, CCGTCC-box and NON-box), circadian control (circadian
element), endosperm expression (skn–1 motif and GCN4 motif) and other related regulations.
Promoter analysis showed the presence of several cis-acting regulatory elements in the regions
upstream of the BNAC genes, which further confirmed that BNAC genes are likely involved in
regulating the growth, development and response to environmental stresses of plants.

Post-transcriptional regulation mechanisms mediated by microRNAs (miRNAs), ~22
nucleotide non-coding RNAs, are endemic in plants and animals, which regulated gene expres-
sion by targeting mRNAs for cleavage or translational repression [54,55]. We identified and
analyzed miRNA164s and their corresponding targets in the NAC gene family in B. distachyon
using the miRBase [56] and psRNATarget databases [57]. First, a total of 113 members of
miR164 family were retrieved from 32 plant species in miRBase (version 20.0). Their sequences
were collected into S7 Table. Among these, most shared an identical sequence (50-UGGAGAA
GCAGGGCACGUGCA–30), which is regarded as the standard mature sequence of miR164,
while other members showed 1–5 nucleotide differences compared with the standard sequence
(Figure A in S2 File). In Brachypodium, five miRNA164s (Bdi-miRNA164a-c, e, f) were
searched, and distributed on chromosomes 1, 2 and 3. Three members of the BNAC family
(BNAC012, BNAC078 and BNAC108) were targeted by miRNA164, which were divided into
subgroup I (S2 File). The mature miRNAs were all 21 nucleotides in length, whereas the pre-
miRNA sequences of B. distachyon were diverse both structurally and in terms of size, ranging
from 127 to 209 bp (Figures B and C in S2 File and S8 Table).

Membrane-bound BNAC subfamily
With the aid of TMHMM Server v.2.0, 11 (~9.32%) BNAC proteins containing α-helical
TMs were identified (Table 3), among which BNAC057 and BNAC075 were predicted to
contain two TMs. Besides, the transmembrane motif in BNAC081 and BNAC069 is located
at position of 7–25 and 7–29 of N-terminus, respectively. The redundant motifs and abnor-
mal positions were also reported in other species. For example, soybean has 11 (~7.23%) pre-
dicted NTLs, and two proteins (GmNAC013 and GmNAC136) contain two TMs [16]. In
addition, of the 17 (~8.33%) NTLs in Chinese cabbage,1 (Bra012470) contains a TM at its N-
terminus [29]. A phylogenetic tree of membrane-bound NAC proteins from Brachypodium,
Arabidopsis and rice was constructed based on Bayesian MCMCmethods (Fig 4). Totals of
18 ArabidopsisMTFs (NTLs) and 5 rice MTFs (OsNTLs) were identified using TMHMM
Server v.2.0 and Aramemnon (http://aramemnon.botanik.uni-koeln.de/) and were named
based on previous reports [16,26]. As shown in Fig 4, the tree was divided into three clades.
Of these, Clade I shared the greatest number (17) of NTLs, followed by Clade II (15), while
most of BNAC were distributed in Clade II. They may be candidate genes for identifying
functions of BNACMTFs.
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Expression profiles of BNAC genes under different abiotic stress
conditions
To investigate the roles of NAC genes in B. distachyon under diverse environmental stresses, a
total of 23 BNAC genes were selected and their expression patterns were analyzed quantita-
tively in response to the following five abiotic stresses: cold, cadmium, drought, H2O2 and salt.
A heat map representation of expression in response to the five stresses was shown in Fig 5.
From the heat map, all the analyzed BNAC genes displayed variations in their expression quan-
tity in response to one or more stresses, of which the majority of BNAC genes were regulated
under drought, H2O2 and salt conditions, and approximately half were regulated under cold

Table 3. PutativeBrachypodiumNACmembrane-bound transcription factor (NTLs).

Names Locus name Size (aa) Transmembrane regionsa

BNAC004 Bradi1g14461 302 220–246

BNAC021 Bradi1g52480 565 539–561

BNAC031 Bradi1g77217 710 687–708

BNAC036 Bradi2g09530 495 462–484

BNAC039 Bradi2g24790 464 416–436

BNAC057 Bradi3g12470 653 411–438 624–644

BNAC061 Bradi3g16480 800 777–799

BNAC075 Bradi3g56080 648 559–576 620–639

BNAC093 Bradi4g34022 689 652–670

BNAC081 Bradi4g13586 204 7–25

BNAC090 Bradi4g26470 573 7–29

a were identified using the TMHMM Server v.2.0.

doi:10.1371/journal.pone.0139794.t003

Fig 4. Compared analysis of phylogenetic relationships of NACMTFs ofBrachypodiumwith
Arabidopsis NTL and OsNTL proteins. The phylogenetic tree was constructed using Bayesian MCMC
algorithms. The Bayesian tree was divided into three clades.

doi:10.1371/journal.pone.0139794.g004
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and cadmium conditions. Of these, the expression levels of 18, 17 and 11 genes were up-regulated
more than threefold under drought, H2O2 and salt stresses, respectively. Only four and two genes
were up-regulated more than threefold by cold and cadmium stress, respectively. During the five
stress treatments, the following eight genes accounted for 34.8% of the significant changes in
expression (> 10-fold up-regulation) in one or two stresses: BNAC006, BNAC022, BNAC024,
BNAC026, BNAC049, BNAC073, BNAC079 and BNA105, among which five were divided into
the SNAC subfamily. Only BNAC070was induced by only one stress (H2O2, Fig 6).

To further investigate the dynamic changes in gene expression, six representative genes were
analyzed using qRT-PCR (Fig 7). During drought treatment from 200 mM PEG6000, four genes
were up-regulated at 24 h, of which BNAC031 and BNAC076 were induced significantly. Whereas
the expression of BNAC070 and BNAC079was down-regulated significantly from 12 to 48 h. Fur-
ther analyses showed that the expression of only BNAC039 and BNAC070 increased after recov-
ery compared with that at 48 h under drought treatment, suggesting that both genes are sensitive
to environmental stress. The expression of four genes (BNAC010, BNAC031, BNAC070 and
BNAC079) was down-regulated at 24 h compared to that at 12 h under salt treatment. However,
the expression of BNAC079 was up-regulated at 24 h. Under cold treatment, the expression of
most of genes showed subtle variations from 12 to 48 h, with the exception of BNAC079, which
was down-regulated significantly at 24 h. Obviously, five of the six genes were expressed at the
highest levels at 4 h under H2O2 stress. As shown in Fig 7, the expression of five genes (except for
BNAC070) was not a single trend by treatment with gibberellin. Furthermore, the expression of
several genes was distinct after 6, 12 and 24 h: there were small changes in BNAC079 expression,
whereas that of BNAC010varied greatly during the period of stress exposure.

Fig 5. Expression profiles of BNAC genes in response to abiotic stresses. The heat map was generated
using cluster 3.0 software. The relative expression values were log2 transformed. The bar at the bottom of the
heat map represents the relative expression values.CK, before treatment; Cd, cadmium stress.

doi:10.1371/journal.pone.0139794.g005
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Discussion

Evolutionary variation and duplication patterns of Brachypodium NAC
gene family
Molecular characterizations revealed great variations, of which the motif compositions differed
markedly among the subfamilies, whereas the NAC proteins clustered in the same subfamily
shared a similar motif composition (S1 Fig). Such motif variation specifies the diversification

Fig 7. The relative expression ratio of 6 representative BNAC genes in response to different abiotic
conditions. The name of each gene is provided at the top of each bar diagram (error bars indicate standard
deviations). D12, D24, D48 and R48: drought treatments for 12, 24, 48 h and recover 48 h, respectively; S12,
S24 and S48: salt treatment for 12, 24 and 48 h, respectively; C12, C24 and C48: cold treatment for 12, 24
and 48 h, respectively; G6, G12 and G24: gibberellin treatment for 6, 12 and 24 h, respectively; H2, H4 and
H6: H2O2 treatment for 2, 4 and 6 h, respectively.

doi:10.1371/journal.pone.0139794.g007

Fig 6. The relative expression ratio of 9 representative BNAC genes in different abiotic stresses. The
single and double asterisks indicate genes whose expression was up- or down-regulated by more than three-
and tenfold, respectively. The y-axis represents the relative expression level of the stresses-treated seedling
compared with that of control seedling. CK, before treatment; Cd, cadmium stress. Error bars represent the
standard errors.

doi:10.1371/journal.pone.0139794.g006
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in biological functions [11]. Obviously, the N-terminal regions exhibited conserved motif com-
positions, whereas the C-terminal regions shared variant regions, indicating that the major dif-
ferences in the NAC sequences among various subfamilies were present mainly in the C-
terminal TRR, which is consistent with the viewpoint that C-terminal regions are highly diver-
gent [14]. Nevertheless, the divergent C-terminal regions of NAC proteins generally operate as
functional domains (activators or repressors), which might explain the divergent functions of
these proteins. In addition, ANAC family and BNAC family existed variant motif compositions
in the Clade II, indicating that they may result from independent evolutionary events.

Gene duplications have been one of the primary driving forces in the evolution of genomic
and genetic systems [58], and are a major mechanism for the establishment of new functions
[59]. A recent report revealed that 70%–80% of angiosperms have undergone duplication
events [60]. In the current study, the time of segmental duplication ranged from 45.38 to 75.08
MYA. However, the divergence time of Brachypodium from wheat was 32–39 MYA, and that
from rice and sorghum was 40–60 MYA [30], indicating that the duplication of Brachypodium
NAC gene family occurred before the divergence from wheat, and almost concurrently withits
divergence of genome from rice and sorghum. Furthermore, the genomic duplication of Bra-
chypodium occurred 56–72 MYA, which is consistent with approximately half of these genes
and the rest genes occurred duplication during the diversification of the grasses.

Phylogenetics and functional divergence of NAC gene family
NAC transcription factors have been annotated functionally in other higher plants, such as
Arabidopsis, rice and soybean. Proteins with similar domains may have the same or similar bio-
logical functions [61]. Such phylogeny-based function prediction has been applied to other spe-
cies [13,62]. Therefore, the phylogenetic analysis of Brachypodium NAC family and published
ANAC proteins with known functions contributes to predicting the possible functions of
BNAC genes belonging to the same subfamily. The known NACmembers are involved in
diverse aspects of plant growth and development, and stress responses, revealing that the high
sequence diversification of the NAC family induces functional diversity [13]. Together, the
information described above provides a solid basis for identifying the Brachypodium NAC
family genes. Up to date, three phylogenetic analyses of NAC proteins have been published
based on NAC domain (S9 Table). The first study was a comprehensive analysis of the NAC
family in 105Arabidopsis and 75 rice sequences based on subdomains A–E, which were divided
into two groups (I and II) and 18 subfamilies [12]. Nuruzzaman et al. [25] classified the
OsNAC gene family into two major groups (A and B) and 16 subgroups: Group A did not
include any of analyzed members of NAC, consistent with the current analysis. Shen et al [63]
divided the NAC family into eight subfamilies and summarized the known functions of the
NAC-a, NAC-b, NAC-c and NAC-d subfamilies: (a) responses to biotic or abiotic stresses, (b)
cytokines with roles in signaling during cell division or endoplasmic reticulum stress responses,
(c) regulation of plant cell wall development, and (d) organ initiation and formation, respec-
tively. This is consistent with our phylogenetic classifications. This comparative analysis is ben-
eficial for a more comprehensive understanding of the BNAC genes.

During gene duplication, significant site-specific changes may result in selective functional
constraints between gene clusters of a family, leading to subgroup-specific functional evolution
after diversification [64]. Generally, an amino acid residue is highly conserved in one duplicate
gene, but highly variable in the other [65]. The accumulation of amino acid site mutations
could lead to functional divergence of duplicated genes [60]. Therefore, the contributors
between nine subfamilies to functional divergence can be determined by detecting critical
amino acid sites (S5 Table). Furthermore, determining the suitable cut-off values is also
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essential. When Qk value< 0.9, there will be too many residues being fallen into contributors
to functional divergence, while Qk value> 0.95 may ignore certain pivotal sites. Hence, we
used Qk value> 0.9 in this study to reduce false positives.

Expression and regulation of NAC genes
In this study, using qRT-PCR combined with the sequence similarity comparisons and phylo-
genetic analyses, we identified 23 genes that treated with five abiotic stresses (cold, cadmium,
drought, H2O2 and salt). The different expression patterns (Fig 5) provide crucial information
for determining gene functions [9], and indicate that these genes are involved in several signal
transduction pathways [27]. Surprisingly, the majority of genes were up-regulated slightly and
some (BNAC024, BNAC070 and BNAC0113) were down-regulated in response to cadmium,
manifesting that these genes cannot respond rapidly to such a short duration of stress (3 h).
Obviously, all seven BNAC genes divided into the subgroup IV showed stress responses, consis-
tent with previous reports [27,29], suggesting that this subgroup is stress-responsive. Subfamily
IV contains the ATAF subfamily and the NAP subfamily (S9 Table). ATAF1 and RD26 are
involved in the ABA pathway [66], while NAP regulates stress-resistant processes via both
ABA-dependent and ABA-independent pathways [67], indicating that NAC genes belonging
to subfamily IV are involved in ABA-dependent and -independent pathways. It is noteworthy
that most of the selected genes are up-regulated under drought, salt and H2O2 conditions, but
down-regulated under cold conditions (Fig 5). It is known that osmotic stresses caused by
drought and salt participate in the ABA signaling pathway by activating SnRK2s, which subse-
quently activates AREB/ABF transcription factors through multiple-site phosphorylation, to
regulate ABRE-dependent gene expression [68]. However, the responses to cold stress are
mediated via ABA-independent pathway, among which it tempts CDPK up-regulation by
destroying calcium ion balance, increasing the expression of ABF TF. Furthermore, some
genes, such as BNAC010 and BNAC017, exhibited opposing expression patterns under differ-
ent stress conditions, which indicate that these are involved in the communication between dif-
ferent signal transduction pathways. In summary, NAC genes are regulated by both ABA-
dependent and ABA-independent pathways on account of various promoter elements [9],
while the expression of BNAC genes is likely to be regulated mainly through ABA-dependent
pathways.

Interestingly, BNAC002 was orthologous of ATAF2 (At5g08790) and up-regulated under
the stresses of cold and H2O2, while ATAF2 was known as repressor of pathogenesis-related
genes [69]. NST1 (At2g46770), as a key regulator of the formation of secondary walls woody tis-
sues [70], showed higher similarity with BNAC019, while BNAC019 was down-regulated by
cold stress and showed high expression in H2O2 and Salt. The genes with higher structural sim-
ilarity may be conserved in the functions among species, which contributed to identifying the
potential functions of such BNAC genes.

In addition, the temporal expression of each gene varied in response to the five stresses (Fig
7). Plant hormones play pivotal roles in regulating various plant processes―such as signaling
and gene expression―during abiotic and biotic stresses [15]. They influence signaling responses
by acting in conjunction with or antagonizing each other to maintain the cellular homeostasis
[66]. Together, the results described above suggest that certain BNAC genes show stress-spe-
cific and/or time-specific responses.

In fact, gene expression is regulated by multiple levels of control. Proper control of the
expression level and the activity of target genes are essential [8]. At transcriptional level, gene
expression is regulated by the binding of specific TFs to its regulatory region [9]. The sites rec-
ognized by numerous TFs are present in NAC promoters (S5 Table), including Skin–1 motif,
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GCN4_motif, CCGTCC-box and RY-element (development-related elements), as well as
ABRE, DRE, MBS and W-box (hormonal/environment response-related elements), supporting
that NAC TFs are involved in plant developmental programs and stress responses. It is well
recognized that the miRNA-mediated cleavage of genes is important for post-transcriptional
regulation. Most predicted targets of miRNAs are transcription factors, which play roles in
developmental timing, patterning or cell differentiation [71,72]. MiRNA164 targets NAC
domain-encoding mRNAs (such as CUC1/2, NAC1), which is necessary for lateral organ
enlargement, floral development and responses to abiotic stress [73–77]. Therefore, the pre-
dicted miRNA164-targeted genes (BNAC012, BNAC078 and BNAC108) in this study likely
have functions identical to those of the CUC1/2 genes.

Furthermore, NAC proteins with a TM are involved in post-translational regulations via
two mechanisms: regulated intra-membrane proteolysis (RIP) and regulated ubiquitin/protea-
some-dependent processing (RUP) (Fig 8) [78]. Under abiotic stresses, the gathering NTLs

Fig 8. A putative pathway of membrane-bound NAC TFs in response to various abiotic stresses. Transcription factors such as DREBs or AREBs
might regulate the transcription ofNAC genes by binding to stress-related cis-acting elements in the upstream promoter. The NTLs are released from RIP
and RUP in response to ER stress. During RIP, activated NTLs are released frommembrane by specific membrane-integrated proteases, such as calpain.
During RUP, the NTLs are ubiquitinated and degraded by the 26S proteasome to maintain the protein stability. DREB, dehydration responsive element
binding protein; AREB, ABA-responsive element binding protein; ER, endoplasmic reticulum; RIP, regulated intramembrane proteolysis; RUP, regulated
ubiquitin/proteasome-dependent processing; NTL, NACmembrane-bound TF; KRP, KIP-related protein; H4: histone H4; FT, FLOWERING LOCUS T; ROS,
reactive oxygen species.

doi:10.1371/journal.pone.0139794.g008
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unfolded or misfolded is released from the membranes in response to ER stress. During RIP,
specific membrane-integrated proteases, including calpain, cleave the transmembrane domain
(TMD) of NTLs. The resulting activated NTLs are transferred into the nucleus, in which they
target the corresponding genes. On the other hand, the protein stability of activated NTLs is
modulated further by repression of the ubiquitin or 26S proteasome pathway. Ubiquitination
not only degrades unfolded and misfolded proteins but also attenuates auxin signaling for pro-
teasomal degradation [9]. In our analysis, BNAC031 and BNAC039 with a TM were up-regu-
lated in treatment of PEG, H2O2 and Salt, verifying that the kind of proteins respond to abiotic
stresses. Admittedly, the activated NTM1 regulates cell division by inducing a subset of CDK
inhibitor genes (KRPs) and suppressing histoneH4 expression [79]. Furthermore, NTL4 and
NTL9 induce leaf senescence by mediating osmotic stress signaling [19,80]. Salt-mediated
NTL8 delays flowering by repressing FT expression, whereas GA-mediated salt signaling may
regulate seed germination [18,81]. It is evident that NTLs have distinct or overlapping func-
tions during stress responses [78]. Hence, comparison analysis of Brachypodium NTLs with
Arabidopsis and rice NTLs (Fig 4) contributes to validating the putative functions in the future
works.

Conclusions
The current analyses demonstrated that segmental and tandem duplications may be responsi-
ble for the expansion of the Brachypodium NAC gene family. Motif compositions and exon-
intron organizations analyses of BNACs and ANACs revealed their similar NAC architecture.
Type-I and Type-II functional divergence might be relevant to functional classification of NAC
gene family. The predicted functions of some BNAC genes were consistent with the phylogeny-
based functional prediction. qRT-PCR revealed that BNAC genes were regulated under various
abiotic stresses, which may manifest their involvement in general stresses response rather than
stress-specific responses. These results not only provide a better understanding of the struc-
tures and functions of BNAC genes but will also facilitate genome-wide studies of NAC tran-
scription factors in several important related species.
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