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A B S T R A C T   

Objective: To identify a parsimonious set of markers that optimally predicts subsequent clinical progression from 
normal to mild cognitive impairment (MCI). 
Methods: 250 clinically normal adults (mean age = 73.6 years, SD = 6.0) from the Harvard Aging Brain Study 
were assessed at baseline on a wide set of markers, including magnetic resonance imaging markers of gray 
matter thickness and volume, white matter lesions, fractional anisotropy, resting state functional connectivity, 
positron emission tomography markers of glucose metabolism and β-amyloid (Aβ) burden, and a measure of 
vascular risk. Participants were also tested annually on a battery of clinical and cognitive tests (median follow- 
up = 5.0 years, SD = 1.66). We applied least absolute shrinkage and selection operator (LASSO) Cox models to 
determine the minimum set of non-redundant markers that predicts subsequent clinical progression from normal 
to MCI, adjusting for age, sex, and education. 
Results: 23 participants (9.2%) progressed to MCI over the study period (mean years of follow-up to diag-
nosis = 3.96, SD = 1.89). Progression was predicted by several brain markers, including reduced entorhinal 
thickness (hazard ratio, HR = 1.73), greater Aβ burden (HR = 1.58), lower default network connectivity 
(HR = 1.42), and smaller hippocampal volume (HR = 1.30). When cognitive test scores were added to the 
model, the aforementioned neuroimaging markers remained significant and lower striatum volume as well as 
lower scores on baseline memory and processing speed tests additionally contributed to progression. 
Conclusion: Among a large set of brain, vascular and cognitive markers, a subset of markers independently 
predicted progression from normal to MCI. These markers may enhance risk stratification by identifying clini-
cally normal individuals who are most likely to develop clinical symptoms and would likely benefit most from 
therapeutic intervention.   

1. Introduction 

The pathophysiological process of Alzheimer’s disease (AD) begins 
many years before clinical symptoms emerge (Jack et al., 2018; 

Sperling et al., 2014). This evidence prompted the shift of clinical trials 
to the preclinical stage of AD, where individuals harbor elevated β- 
amyloid (Aβ) burden in the absence of significant cognitive deficits 
(Sperling et al., 2014). Elevated Aβ burden alone, however, may not be 
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sufficient to predict imminent clinical progression (Mormino et al., 
2014; Burnham et al., 2016; Jagust, 2016). Therefore, there is a need 
for additional markers to be used along with Aβ burden to identify 
individuals at high risk of clinical progression who would likely benefit 
most from treatment. 

Longitudinal studies in asymptomatic adults have identified a range 
of neuroimaging and clinical markers that predict cognitive decline 
and/or progression to mild cognitive impairment (MCI) or dementia. In 
addition to higher Aβ burden, these include greater tau deposition 
(Dumurgier et al., 2017; Sperling et al., 2019; Betthauser et al., 2020), 
reduced glucose metabolism (Hanseeuw et al., 2017; Ewers et al., 
2014), poor vascular health (Rabin et al., 2018; Pase et al., 2016; 
Schneider et al., 2004; Arvanitakis et al., 2011), reduced cortical 
thickness/volume (Mormino et al., 2014; Bilgel et al., 2018; Fjell et al., 
2010; Bangen et al., 2018), white matter hyperintensities (Bangen 
et al., 2018; Boyle et al., 2016; Debette and Markus, 2010), altered 
white matter microstructure (Rabin et al., 2019a, 2019b; Power et al., 
2019), reduced functional connectivity (Buckley et al., 2017; Shaw 
et al., 2015), and subtle reductions in cognitive performance (Ewers 
et al., 2014; Rowe et al., 2013; Eckerström et al., 2013; Belleville et al., 
2017; Blacker et al., 2007; Insel et al., 2016). However, the combina-
tion of measures that best captures subsequent clinical progression in 
asymptomatic individuals remains to be determined. 

In the present study, participants from the Harvard Aging Brain 
Study (HABS) were assessed on a wide set of markers at baseline that 
captured multiple aspects of brain structure, brain function, and vas-
cular health. The goal of the study was to identify a set of non-re-
dundant markers that optimally predicted future clinical progression 
from normal to MCI. Secondary analyses examined a more subtle 
measure of clinical progression – a global clinical dementia rating 
(CDR) increase from 0 to 0.5. 

2. Methods 

2.1. Participants 

Participants were 250 clinically normal adults recruited from HABS 
(Dagley et al., 2017). Study protocols were approved by the Partners 
HealthCare Institutional Review Board. All participants in HABS pro-
vided written informed consent prior to study procedures. At study 
entry, all participants were clinically normal, had a global CDR of 0 
(Morris, 1993), Mini-Mental State Examination (MMSE) ≥ 27 with 
educational adjustment (Folstein et al., 1975), Geriatric Depression 
Scale  <  11 (Yesavage et al., 1982), and performed within education- 
adjusted norms on Logical Memory delayed recall (Wechsler, 1987). All 
participants were screened for major neurological, psychiatric or un-
stable medical illnesses. Only participants with complete neuroimaging 
and clinical data from all modalities were included in the present study. 
The baseline demographic and clinical characteristics of the included 
sample are summarized in Table 1. 

2.2. Clinical progression outcomes 

The primary outcome measure was progression to MCI (i.e., pro-
gressor vs. non-progressor). MCI diagnosis was determined at consensus 
meetings comprising 6 or more clinicians (neuropsychologists, neurol-
ogists, and psychiatrists). Participants were brought to consensus if they 
had a global CDR of 0.5 or greater and/or performance fell 1.5 standard 
deviations below the sample mean on composite scores of episodic 
memory, executive function, or processing speed (Rabin et al., 2019; 
Orlovsky et al., 2017). In secondary analyses, we examined a more 
subtle measure of clinical progression, namely a global CDR increase 
from 0 to 0.5. The CDR is a widely used semi-structured interview for 
staging dementia severity (Morris, 1993; Berg, 1988). A global CDR of 0 
corresponds to normal function; a score of 0.5 corresponds to very mild 
dementia; and scores of 1, 2, and 3 correspond to mild, moderate, and 
severe dementia, respectively. The CDR was administered to partici-
pants and reliable study partners by trained neuropsychologists and 
psychiatrists, and was rated independently from all other cognitive test 
results. All CDR raters were blind to participants’ biomarker status. 

2.3. Neuroimaging and clinical markers 

All neuroimaging and clinical markers were selected a priori based 
on prior studies (Rabin et al., 2018; Hedden et al., 2016) and are pre-
sented in Table 2. All measures were obtained from participants’ 
baseline visit. The measures are briefly described below. 

2.3.1. β-amyloid positron emission tomography 
As previously described (Johnson et al., 2016), baseline Aβ burden 

was measured with carbon 11–labeled Pittsburgh compound-B positron 
emission tomography (PET) using previously described protocols. Data 
were expressed as a distribution volume ratio using cerebellar gray 
matter as the reference region. As previously described (Hedden et al., 
2016), a composite measure of cortical Aβ burden within frontal, lateral 
temporal and parietal, and retrosplenial cortices was computed (‘FLR’ 
regions) and a Gaussian mixture modeling approach was used to assign 
each participant a probability of belonging to the high or low Aβ dis-
tribution. The probability values ranged from 0 to 1, with higher values 
indicating greater likelihood of high Aβ burden. 

2.3.2. Fludeoxyglucose PET 
Baseline fludeoxyglucose F18–labeled (FDG) PET imaging was 

performed using previously described protocols (Hanseeuw et al., 
2017). The mean FDG uptake was extracted from a previously pub-
lished composite reflecting AD-vulnerable regions (lateral parietal, 
lateral inferior temporal, and posterior cingulate cortices) (Landau 
et al., 2011) and was normalized using a pons and vermis reference 
region. 

2.3.3. Volume and cortical thickness analyses 
Baseline magnetic resonance imaging (MRI) scans were conducted 

on a Siemens TrioTIM 3-Tesla scanner (Siemens, Erlangen, Germany) 

Table 1 
Participant demographic and clinical characteristics overall and by MCI progressor status.        

All (N = 250) MCI Progressors (N = 23) Non-Progressors (N = 227) P Value  

Baseline age, M (SD) 73.55 (6.0) 76.17 (6.1) 73.28 (5.94)  0.04 
Years at diagnosis, M (SD) – 3.96 (1.89) –  – 
Total years of follow-up, M (SD) 5.22 (1.66) 5.52 (1.73) 5.19 (1.66)  0.39 
Education (years), M (SD) 15.80 (3.07) 15.74 (3.14) 15.81 (3.07)  0.92 
Sex, no. of males (%) 105 (42) 8 (34.8) 97 (42.7)  0.61 
MMSE, M (SD) 28.98 (1.11) 28.39 (1.53) 29.04 (1.05)  0.06 
APOE genotype, no. of ε4 carriers (%) 68 (27.9)+ 10 (43.5) 58 (26.2)++  0.13 

APOE = Apolipoprotein E; MCI = mild cognitive impairment; MMSE = Mini Mental State Exam. +APOE data were only available for 244 of 250 participants. + 

+APOE data were only available for 221 of 227 participants. The p values represent group differences between MCI progressors and non-progressors.  
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with a 12-channel coil. High-resolution 3D T1-weighted multiecho 
magnetization prepared rapid acquisition gradient-echo anatomical 
images were collected with the following parameters: time repetition 
(TR) = 2200 ms, multiecho time echoes (TEs) = 1.54, 3.36, 5.18, and 
7 ms, flip angle = 7°, 4x acceleration, 1.2 × 1.2 × 1.2 mm voxels and 
processed with FreeSurfer 5.1 (http://surfer.nmr.mgh.harvard.edu) 
using the default processing stream. As described previously (Hedden 
et al., 2016), volume measures were extracted from bilateral hippo-
campus and from bilateral striatum (average of caudate and putamen), 
and corrected for estimated total intracranial volume. Cortical thickness 
values were obtained from bilateral parahippocampal gyrus and from 
bilateral entorhinal cortex. As previously described (Hedden et al., 
2016), average cortical thickness was computed across a broad set of 
cortical regions implicated in aging (Fjell et al., 2013). 

2.3.4. Functional connectivity analyses 
Baseline data for functional connectivity analysis were acquired 

using a gradient-echo echo-planar pulse sequence sensitive to blood 
oxygen level-dependent contrast using the following parameters: 
TR = 3000 ms, TE = 30 ms, flip angle = 85°, 3.0 × 3.0 × 3.0 mm 
voxels. Two runs of 124 volumes were acquired for 6 min 12sec each. 
During the scan participants were asked to remain awake and to focus 
on a cross-hair. We processed resting-state data using SPM8 (fil.ion.u-
cl.ac.uk/spm/). Functional connectivity estimates were derived using 
the Template Based Rotation method and have been described pre-
viously (Schultz et al., 2014). Following prior studies (Shaw et al., 
2015), we focused on the following cognitive networks: default, sal-
ience, dorsal attention, and frontoparietal control. 

2.3.5. Diffusion tensor imaging analyses 
Baseline diffusion imaging data were collected with the following 

parameters: TR = 8040 ms, TE = 84 ms, time to inversion 
(TI) = 2100 ms, 2 × 2 × 2 mm voxels, 64 transverse slices, b- 
value = 700 s/mm2, 30 diffusion directions, 2× acceleration. Diffusion 
tensor imaging (DTI) data were processed in FSL v5.0.9 (The Oxford 
Centre for Functional MRI of the Brain Software Library) and were 
corrected for eddy current and motion distortions using FSL’s eddy tool 
(FMRIB Software Library) (Andersson and Sotiropoulos, 2016). Fol-
lowing tract-based spatial statistics procedures (Smith et al., 2006), we 
created a subject-specific template in Montreal Neurological Institute 
space (Montreal, Canada). This was then skeletonized and thresholded 
at 0.3 to exclude predominantly non-white matter voxels. After 

alignment to standard space, the average fractional anisotropy (FA) 
value was extracted from the full mask of the standard FSL FMRIB58 
white matter skeleton. 

2.3.6. White matter hyperintensity analyses 
Baseline white matter hyperintensities (WMH) were assessed using 

fluid attenuation inversion recovery (FLAIR) images (TR = 6000 ms, 
TE = 454 ms, TI = 2100 ms, 1 × 1 × 1.5 mm voxels, 2x acceleration). 
All WMH were identified using an automated algorithm (Wu et al., 
2006) and previously described methods (Hedden et al., 2012). Total 
WMH volume (mm3) was estimated within a mask defined by the Johns 
Hopkins University White Matter Atlas (Wakana et al., 2004). Prior to 
analysis, WMH values were log-transformed to account for a positive 
skew. 

2.3.7. Cardiovascular disease risk 
As in previous studies from our group (Rabin et al., 2018, 2019), we 

quantified total cardiovascular risk using the office-based Framingham 
Heart Study cardiovascular disease (FHS-CVD) risk score at baseline 
(D’Agostino et al., 2008). The FHS-CVD risk score represents a weighted 
sum of age, sex, antihypertensive treatment (yes or no), systolic blood 
pressure, body mass index (calculated as weight in kilograms divided 
by height in meters squared), history of diabetes (yes or no), and cur-
rent cigarette smoking status (yes or no). The FHS-CVD provides a 10- 
year probability of sustaining future cardiovascular events (defined as 
coronary death, myocardial infarction, coronary insufficiency, angina, 
ischemic stroke, hemorrhagic stroke, transient ischemic attack, per-
ipheral artery disease, and heart failure). Higher FHS-CVD scores re-
present greater risk. 

2.3.8. Cognitive measures 
Cognition was measured with a battery of neuropsychological and 

behavioral tasks selected primarily to represent domains of episodic 
memory, executive function, and processing speed. Episodic memory 
was assessed using the delayed recall score from the Wechsler Memory 
Scale-Revised Logical Memory subtest (Wechsler, 1987), the free recall 
score from the Free and Cued Selective Reminding Test (Grober et al., 
2000), and the delayed recall score from Six-Trial Selective Reminding 
Test (Masur et al., 1990). Executive function was assessed by Letter- 
Number Sequencing from the Wechsler Adult Intelligence Scale-III (the 
number of trials correctly completed); (Wechsler, 1997) phonemic 
fluency (the sum of the words produced in response to the letters F, A, 

Table 2 
Baseline values of the neuroimaging and clinical markers included in the LASSO Cox models.        

Marker Overall sample, mean (SD) MCI Progressors, mean (SD) MCI Non-progressors, mean (SD) t value p value  

Aβ GMM Probability 0.26 (0.40)* 0.68 (0.43) 0.23 (0.37)  4.96  < 0.001 
FDG PET uptake (SUVR) 1.31 (0.12) 1.26 (0.14) 1.32 (0.12)  −1.91 0.07 
Default network connectivity 0.25 (0.07) 0.20 (0.07) 0.25 (0.07)  −3.75  <  0.001 
Salience network connectivity 0.20 (0.05) 0.17 (0.05) 0.20 (0.05)  −3.16 0.004 
Control network connectivity 0.27 (0.05) 0.24 (0.05) 0.27 (0.05)  −2.55 0.02 
Dorsal attention network connectivity 0.23 (0.05) 0.22 (0.06) 0.23 (0.05)  −0.80 0.43 
Entorhinal Thickness (mm) 3.35 (0.33) 2.98 (0.23) 3.39 (0.31)  −7.82  <  0.001 
Parahippocampal thickness (mm) 2.55 (0.31) 2.42 (0.32) 2.57 (0.30)  −2.13 0.04 
Average cortical thickness (mm) 2.34 (0.09) 2.31 (0.09) 2.35 (0.09)  −1.80 0.08 
Hippocampal volume (mm3) 3608 (433) 3246 (390) 3645 (420)  −4.64  <  0.001 
Striatum volume (mm3) 4104 (490) 3987 (568) 4116 (481)  −1.05 0.30 
Log transformed WMH (mm3) 7.63 (0.91) 7.99 (0.77) 7.59 (0.91)  2.35 0.03 
DTI FA 0.511 (0.021) 0.506 (0.018) 0.512 (0.022)  −1.52 0.14 
FHS-CVD risk score (%) 32.62 (18.03) 38.23 (15.29) 32.05 (18.21)  1.81 0.08 
Memory factor score (z score) −0.001 (0.76) −0.43 (0.82) 0.04 (0.74)  −2.64 0.01 
Executive function factor score (z score) −0.02 (0.78) −0.01 (0.84) −0.02 (0.77)  0.03 0.98 
Processing speed factor score (z score) 0.01 (0.89) −0.34 (1.07) 0.05 (0.87)  −1.68 0.11 

Baseline variables represent unstandardized (raw) values, with the exception of the factor scores, which represent z-score composites. GMM = Gaussian mixture 
modeling; FDG PET = 18F-fludeoxyglucose positron emission tomography; DTI FA = diffusion tensor imaging fractional anisotropy; FHS-CVD = Framingham Heart 
Study cardiovascular disease; MCI = mild cognitive impairment. SUVR = standard uptake value ratio, WMH = white matter hyperintensities. *For comparison 
purposes, the average Aβ distribution volume ratio across the whole sample is 1.16 (0.19).  
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S, each over 60 s); (Spreen and Benton, 1977) and the Trail Making Test 
(time to complete Form B minus Form A) (Reitan, 1958). Processing 
speed was assessed by the Wechsler Adult Intelligence Scale-Revised 
Digit-Symbol Coding Test (number of items completed) (Wechsler, 
1981) and the Trail Making Test (time to complete Form A) (Reitan, 
1958). The derivation of factor scores have been previously published 
(Rabin et al., 2019; Orlovsky et al., 2017). 

2.4. Statistical analyses 

All statistical analyses were performed in R (version 3.4). In primary 
analyses, progression to MCI was used as the outcome of interest. 
Differences in demographic variables across individuals who progressed 
to MCI versus non-progressors were examined using a series of t-tests 
for continuous variables and χ2 tests for dichotomous variables. Time to 
event was operationalized as the time in years from baseline to the first 
visit in which a participant received a diagnosis of MCI. For non-pro-
gressors (i.e., censored cases) time to (non-) event was defined as the 
last available study visit. In secondary analyses, we used a more subtle 
measure of clinical progression: a global CDR increase from 0 to 0.5. 
Because a global CDR increase from 0 to 0.5 can be a less stable mea-
sure of clinical progression compared to a diagnosis of MCI, we only 
classified participants as progressors if a global CDR of 0.5 was obtained 
at a minimum of any two follow-up visits. For these analyses, time to 
event was operationalized as time in years from baseline to the first visit 
in which a participant obtained a global CDR of 0.5. Participants were 
classified as non-progressors if a global CDR of 0 was obtained at all 
follow-up visits or if a global CDR of 0.5 was obtained at only one 
follow-up visit. Neuroimaging and clinical markers were z-transformed 
prior to model entry and some metrics were reversed, so that higher 
scores represented worse outcomes across all markers. 

We used a series of least absolute shrinkage and selection operator 
(LASSO) Cox models to simultaneously evaluate the set of neuroima-
ging and clinical markers that optimally relate to clinical progression, 
adjusting for baseline age, sex, and years of education (implemented in 
the glmnet R package). A LASSO Cox model is well suited for datasets 
with correlated predictor variables and is designed for variable reduc-
tion (Tibshirani, 1997). We used a 5-fold cross-validation process, a 
resampling procedure that randomly splits the original sample into a 
training set to train the model and a test set to evaluate it. This process 
is repeated until each of the 5 folds serves as the test set. The variables 
that independently and significantly contribute to the outcome variable 
are given nonzero weights (the larger the weight, the larger the con-
tribution to the outcome); all other variables are shrunk to zero. Stan-
dard errors and confidence intervals are not typically calculated for 
penalized regression approaches, since they are not very meaningful for 
strongly biased estimates, such as those from penalized estimation 
methods; this remains an open problem (Goeman, 2010). Predictive 
performance of all models was assessed using receiver operating char-
acteristic (ROC) curves and area under the curve (AUC). Optimal cut-
points from the ROC curves were identified using the Youden Index 
(using the OptimalCutpoints package in R) (López-Ratón et al., 2014). 
Nested models were compared with a likelihood ratio test (χ2). 

3. Results 

Table 1 presents the baseline demographic characteristics of the 
overall study sample and by MCI progressor status. Of the 250 clinically 
normal adults included in the present study, 23 participants (9.2%) 
progressed to a diagnosis of MCI over an average of 3.96 years 
(SD = 1.89) of follow-up. Compared to non-progressors, participants 
who progressed to MCI were significantly older, however there were no 
significant differences in terms of total years of follow-up, proportion of 
males to females, years of education, baseline MMSE scores or Apoli-
poprotein E (APOE) ε4 status. 

In the primary LASSO Cox model, the variables that significantly 
and substantially contributed to MCI progression included reduced 
entorhinal thickness, greater Aβ burden, lower default network con-
nectivity, and smaller hippocampal volume. All non-significant vari-
ables had a coefficient of 0. The coefficients and estimated hazard ratios 
for each significant variable are summarized in Table 3. This model 
yielded an AUC of 0.90 (CI: 0.84–0.96) and a sensitivity and specificity 
of 73.9% and 90.3%, respectively. This model was an improvement 
upon a reference model that included Aβ burden alone (AUC of 0.77 
[CI: 0.66–0.89]; sensitivity of 78.3%; specificity of 74.9%) and was 
significantly better fitting (χ2 = 29.06, p  <  0.001). When we used a 
fully data-driven approach with an elastic net Cox model (resulting 
alpha = 0.65), the results were substantially similar to the LASSO Cox 
model. The same set of variables were identified as significant, with 
smaller striatum volume identified as an additional predictor by the 
elastic net Cox model, but with a very small coefficient (coeffi-
cient = 0.004; hazard ratio (HR) = 1.004). 

Next, we added baseline cognitive test scores (episodic memory, 
executive function, and processing speed) to the LASSO Cox model to 
examine whether the above markers continued to predict progression to 
MCI beyond cognitive indicators . In this model, all of the previously 
identified markers continued to predict clinical progression, including 
reduced entorhinal thickness, greater Aβ burden, lower default network 
connectivity, and smaller hippocampal volume. We also found that 
smaller striatum volume (coefficient = 0.03; hazard ratio (HR) = 1.03) 
and lower performance on tests of episodic memory (coeffi-
cient = 0.50; HR = 1.65) and processing speed (coefficient = 0.09; 
HR = 1.09) significantly predicted MCI progression. This model had 
improved diagnostic accuracy (AUC of 0.92 [CI: 0.88–0.97], sensitivity 
of 91.3%, specificity of 84.6%) and significantly better model fit 
(χ2 = 10.78, p = 0.01) compared to the MCI model without cognition. 

One potential concern regarding the present findings is that only a 
small number of participants progressed to MCI during the study period 
(n = 23/250), and predictive classifiers may perform poorly on im-
balanced datasets. To examine the sensitivity of our results to class size, 
we simulated balanced classes by down-sampling the data to the 
smallest class size (n = 23) and then up-sampling the data to the largest 
class size (n = 227) (Datta et al., 2019). Using a downsampled LASSO 
Cox model (without cognition), we found that the same four markers 
reported in the LASSO Cox model above significantly contributed to 
MCI progression, including reduced entorhinal thickness, greater Aβ 
burden, lower default network connectivity, and smaller hippocampal 
volume. In the upsampled LASSO Cox model, we once again found that 
the same four markers significantly contributed to MCI progression. 
While several additional variables were also significant, these variables 
had smaller coefficients, and included lower frontoparietal control 
network connectivity, lower striatum volume, reduced para-
hippocampal thickness, fewer years of education, and counter-in-
tuitively greater DTI FA. It was not unexpected that additional markers 
contributed to progression given the increased power with the larger 
simulated class size. 

In secondary analyses, we repeated the LASSO Cox models and re-
placed the outcome of progression to MCI with a global CDR increase 
from 0 to 0.5 at more than one time point in order to capture more 
subtle clinical progression. Participants who only had a global CDR of 

Table 3 
Coefficients and estimated hazard ratios of the significant markers selected 
from the LASSO Cox model predicting progression to MCI.     

Marker Coefficient Estimated HR  

Reduced entorhinal thickness  0.55  1.73 
Higher Aβ burden  0.46  1.58 
Lower default network connectivity  0.35  1.42 
Smaller hippocampal volume  0.26  1.30 

Estimated hazard ratios (HR) are computed as the inverse log of the coefficient. 
All non-significant variables had a coefficient of 0. MCI = mild cognitive im-
pairment.  
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0.5 at their last available visit were not included as progressors 
(n = 18). A total of 37 of the 250 participants (14.8%) were considered 
progressors on the CDR. This secondary analysis largely replicated the 
results from the primary analyses where the outcome was progression 
to MCI. Specifically, we found that reduced entorhinal thickness 
(coefficient = 0.24; HR = 1.27), greater Aβ burden (coeffi-
cient = 0.19; HR = 1.21), lower default network connectivity (coef-
ficient = 0.33; HR = 1.39), and smaller hippocampal volume (coeffi-
cient = 0.14; HR = 1.15) significantly discriminated between 
progressors and non-progressors. In this analysis, however, vascular 
risk also significantly contributed to progression (coefficient = 0.09; 
HR = 1.09). This model yielded an AUC of 0.76 (CI: 0.67–0.85) and a 
sensitivity and specificity of 56.8% and 85.0%, respectively. This model 
had improved diagnostic accuracy and significantly better model fit 
compared to a reference model that included Aβ burden alone (AUC of 
0.65 [CI: 0.55 – 0.75], sensitivity of 67.6%, specificity of 67.1%, 
χ2 = 20.87, p  <  0.001). As above, when this model was repeated as 
an elastic net model (alpha = 0.40), the results were substantially si-
milar to the results from the LASSO Cox model, with no additional 
variables identified by the elastic net. We next added baseline cognitive 
test scores to the LASSO Cox model. We once again found that reduced 
entorhinal thickness, greater Aβ burden, lower default network con-
nectivity, and smaller hippocampal volume significantly and sub-
stantially contributed to CDR progression as did lower episodic memory 
performance (coefficient = 0.71; HR = 2.03). Vascular risk no longer 
significantly contributed to progression, however we now observed a 
counterintuitive association of greater parahippocampal thickness with 
CDR progression (coefficient = −0.03; HR = 0.97). The CDR model 
that included cognition had improved diagnostic accuracy and sig-
nificantly better model fit compared to the model without cognition 
(AUC of 0.83 (CI: 0.76–0.91), sensitivity of 73.0%, specificity of 78.9%, 
χ2 = 28.54, p  <  0.001). 

4. Discussion 

The goal of the present study was to identify a parsimonious set of 
markers that optimally captures subsequent clinical progression in a 
well-characterized sample of adults who were clinically normal at 
baseline. This was accomplished using a LASSO Cox regression ap-
proach that identifies non-redundant variables that discriminate be-
tween progressors and non-progressors. We found that clinically normal 
adults were more likely to progress to MCI or a global CDR of 0.5 when 
they presented with greater Aβ burden, reduced entorhinal thickness, 
lower default network connectivity, and smaller hippocampal volume. 
In models that included cognitive tests scores, episodic memory con-
sistently and substantially contributed to progression beyond the 
aforementioned markers. Pending replication in an independent 
sample, the aforementioned markers could help to improve enrichment 
strategies for clinical trials in preclinical AD by enrolling individuals 
who present with a combination of these markers. 

Accumulating data suggest that elevated Aβ burden contributes, but 
is not sufficient, to predict imminent cognitive decline in asymptomatic 
adults (Sperling et al., 2014; Mormino et al., 2014; Burnham et al., 
2016). Therefore, additional markers are needed to identify individuals 
in the earliest stage of AD who are most likely to progress to the 
symptomatic stage of the disease. Among a large set of neuroimaging 
and clinical variables, four markers consistently and robustly predicted 
clinical progression as measured by a diagnosis of MCI or a global CDR 
increase of 0 to 0.5. Consistent with prior work (Mormino et al., 2014; 
Bilgel et al., 2018; Buckley et al., 2017; Rowe et al., 2013), these 
markers included greater Aβ burden, reduced entorhinal thickness, 
lower default network connectivity, and smaller hippocampal volume. 
When cognitive test scores were added to the model, baseline memory 
performance also consistently and significantly contributed to clinical 
progression. Many of these markers (Aβ burden, hippocampal volume, 
entorhinal thickness, and memory performance) are in agreement with 

the staging of preclinical AD proposed by the National Institute on 
Aging—Alzheimer’s Association (NIA-AA) workgroup (Sperling et al., 
2011), which suggests that individuals with elevated Aβ burden, neu-
rodegeneration, and subtle cognitive impairment (i.e., stage 3) are more 
likely to progress to MCI or dementia compared to those with only 
abnormal Aβ levels (i.e., stage 1). In addition to the variables re-
cognized by the NIA-AA workgroup, lower default network connectivity 
consistently predicted clinical progression. 

Lower default network connectivity predicted progression to MCI 
and a global CDR of 0.5 over and above other cognitive networks, in-
cluding the salience, frontoparietal control, and dorsal attention net-
works. This finding is consistent with previous work showing pre-
ferential degradation of the default network in early stages of late-onset 
AD as well as in advanced autosomal-dominant AD (Chhatwal et al., 
2018; Palmqvist et al., 2017; Hedden et al., 2009). It is also in line with 
studies showing strong associations between reduced default network 
connectivity and cognition in asymptomatic individuals (Buckley et al., 
2017; Shaw et al., 2015). Taken together, these findings suggest that 
lower default network connectivity may complement standard AD 
biomarkers in predicting clinical progression. 

When baseline cognitive test scores were included in the LASSO Cox 
models, memory performance consistently and robustly predicted 
clinical progression to MCI and a global CDR of 0.5. The models in-
cluding cognition increased sensitivity at the expense of specificity re-
lative to models that did not include cognition. One might reason that 
using cognitive performance as a predictor of MCI or global CDR pro-
gression is circular given that these outcomes take memory perfor-
mance into account. However, in our diagnostic consensus meetings, 
greater weight is placed on longitudinal test scores compared to base-
line scores and the CDR is rated independently of these cognitive test 
scores. The present findings are consistent with prior studies suggesting 
that clinically normal individuals performing at the lower end of the 
normal range on baseline memory or other cognitive tests are more 
likely to progress clinically (Ewers et al., 2014; Rowe et al., 2013; 
Eckerström et al., 2013; Belleville et al., 2017; Blacker et al., 2007; Insel 
et al., 2016). From a pragmatic standpoint, cognitive tests are in-
expensive and can be administered relatively quickly, either in the 
clinic or at home. 

Some of the significant markers discriminating progressors from 
non-progressors did not consistently predict clinical progression across 
models, such as lower striatum volume and greater vascular risk. Lower 
striatum volume explained minimal variance in its prediction of MCI 
progression, and was only significant when cognition was included in 
the LASSO Cox model and in the elastic net Cox model (HRs  <  1.03). 
As such, this marker should be interpreted cautiously. With respect to 
vascular risk, it is notable that in a recent HABS study, vascular risk 
remained a significant predictor of longitudinal cognitive decline after 
adjusting for many of the same markers included in the present study, 
such as Aβ burden, hippocampal volume, FDG-PET uptake, and WMH 
(Rabin et al., 2018). Given that vascular risk was associated with cog-
nitive decline in that study and predicted subtle progression (as mea-
sured by the CDR) in the present study suggests that vascular risk may 
be associated with a slower rate of clinical progression compared to the 
significant markers identified in the MCI LASSO Cox model. 

Our study has several strengths. Most important, we had access to a 
wide set of neuroimaging and clinical variables at baseline in a well- 
characterized sample of clinically normal adults. In addition, study 
participants were followed longitudinally for up to 8 years (median 
years of follow-up = 5.0 years), with annual cognitive and clinical 
assessments. However, the study also has several limitations. First, 
because of our relatively small sample size (n = 250), only a small 
number of participants progressed to a diagnosis of MCI (n = 23) over 
the study period. This likely limited the predictive power of our models. 
However, simulated LASSO Cox models (using both down- and up- 
sampling) identified all of the significant predictors in the original 
model, indicating that the results are likely robust to the imbalanced 
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class size (assuming that the inputs to the simulated data adequately 
represent the true distribution of progression). Second, tau is an im-
portant biomarker to consider in the prediction of clinical progression 
(Jack et al., 2018; Krance et al., 2019; Dumurgier et al., 2017; Sperling 
et al., 2019; Betthauser et al., 2020), however tau PET was not available 
at baseline (it was collected several years after study entry). Cere-
brospinal fluid collection was not a requirement for participation in 
HABS and was conducted on only a small subset of participants at 
baseline. For these reasons, tau was not included in the present study. It 
is possible that the significant contribution of entorhinal thickness or 
other variables may overlap with that of tauopathy. Third, other un-
measured variables, such as Lewy bodies, TDP-43 and hippocampal 
sclerosis, may contribute significant variance to clinical progression. 
Fourth, the connectivity network measures, although sampling multiple 
networks, were restricted to within-network connectivity measure-
ments. Between-network or other measures of network dynamics 
(Schultz et al., 2017; Chan et al., 2014) may provide additional pre-
dictive value. Fifth, our relatively small sample size did not allow us to 
test the reproducibility of the results in our sample. While we did apply 
a 5-fold cross-validation procedure to increase model robustness, re-
plication of the present findings should be examined in an independent 
sample. This is particularly important for validating whether the final 
multivariate models are superior to models that included Aβ burden 
alone. Finally, HABS participants are generally in good health, well- 
educated, and primarily Caucasian, and therefore future studies are 
needed to determine whether our findings generalize to more diverse 
samples. 

5. Conclusion 

As the field moves toward prevention at the preclinical stage of AD, 
there is a critical need to identify clinically normal individuals at high 
risk of clinical progression and most likely to benefit from therapeutic 
intervention. Although the present findings are preliminary and require 
replication, our results suggest that it is valuable to consider a set of 
biomarkers when screening asymptomatic individuals for inclusion in 
AD clinical trials. The set of clinical and neuroimaging markers that 
best captured clinical progression in our sample included reduced en-
torhinal thickness, higher Aβ burden, lower default network con-
nectivity, and smaller hippocampal volume. Lower episodic memory 
scores could also be considered as a potential predictor of clinical 
progression. While additional work is needed to establish reliable cut-
offs for these variables, the results here suggest that characterization on 
these markers may improve risk stratification. 
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