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ABSTRACT

Background. Hyperphosphatemia in patients undergoing dialysis is common and is associated with mortality. Recently,
the link between phosphate metabolism and iron dynamics has received increasing attention. However, the association
between this relationship and prognosis remains largely unexplored.
Methods. We conducted an observational study of patients who initiated dialysis in the 17 centers participating in the
Aichi Cohort Study of the Prognosis in Patients Newly Initiated into Dialysis. Data were available on sex, age, use of
phosphate binder, drug history, medical history and laboratory data. After excluding patients with missing values of
phosphate, hemoglobin, ferritin and transferrin saturation, we used the Gaussian mixture model to divide the cohort
into clusters based on phosphate, hemoglobin, logarithmic ferritin and transferrin saturation. We investigated the
prognosis of patients in these clusters. The primary outcome was all-cause death. In each cluster, the prognostic impact
of phosphate binder was also studied.
Results. The study included 1175 patients with chronic kidney disease who initiated dialysis between October 2011 and
September 2013. Among them, 785 were men and 390 were women, with a mean ± SD age of 67.9 ± 13.0 years. The
patients were divided into three clusters, and mortality was higher in cluster c than in cluster a (P = 0.005). Moreover, the
use of phosphate binders was associated with a lower risk of all-cause death in two clusters (a and c) that were
characterized by older age and higher prevalence of diabetes mellitus, among other things.
Conclusions. We used an unsupervised machine learning method to cluster patients, using phosphate, hemoglobin and
iron-related markers. In two of the clusters, the oral use of a phosphate binder might improve prognosis.
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INTRODUCTION

The number of patients on dialysis is increasing annually,
and these patients have a high mortality risk due to various
causes [1, 2]. Hyperphosphatemia is a common problem in pa-
tients undergoing dialysis. Because renal function decreases in
these patients, phosphate excretion is reduced, leading to hy-
perphosphatemia, which causes vascular calcification and ab-
normal bone metabolism [3]. As chronic kidney disease (CKD)
progresses, serum phosphate, fibroblast growth factor 23 and
parathyroid hormone levels increase. In contrast, vitamin D lev-
els decrease [4]. These shifts in serummarkers can cause vascu-
lar damage, leading to cardiovascular death. Furthermore, hy-
perphosphatemia can induce apoptosis in the lungs, kidneys
and muscles [5]. Patients with hyperphosphatemia have a sig-
nificantly worse prognosis than patients without hyperphos-
phatemia in Japan [6, 7]. For patients with hyperphosphatemia,
it is important to control phosphate levels. According to the
2017 Kidney Disease: Improving Global Outcomes guideline up-
date recommendation, in patients with CKD G3a–G5d, physi-
cians should decide on phosphate-lowering treatment based on
progressively or persistently elevated phosphate [8]. However,
the level of evidence for this recommendation was not graded. It
is therefore critical to provide more concrete evidence regarding
the lowering of phosphate levels.

The oral use of phosphate binders has been previously
studied. When the phosphate level is higher than 3.7 mg/dL,

the phosphate binder significantly improves prognosis [9]. The
mean serum phosphate level at 6 months was strongly associ-
ated with cardiovascular death [10]. Recently, novel iron-based
phosphate binders have been developed [11, 12], and the as-
sociation between iron and phosphate has received increasing
attention. Iron has been extensively studied, and its levels re-
flect chronic inflammation and atherosclerosis [13]. Particularly
in patients with CKD, iron plays an important role in inflamma-
tion [14]. Serum ferritin levels can predict prognosis in patients
on dialysis [15, 16]. However, even though the association be-
tween phosphate or iron and prognosis in patients on dialysis
is obvious, there has been little research on the association be-
tween phosphate and iron dynamics.

The Gaussianmixture model is becoming increasingly popu-
lar for modeling a wide variety of random phenomena for clus-
tering classification and density estimation. Themodel assumes
a multivariate Gaussian distribution for each component [17].
Unsupervised machine learning methods, such as the Gaussian
mixture model, can be a powerful tool for detecting unknown
patterns or phenotypes. Even though this has gained more
attention recently, the Gaussian mixture model has rarely been
used in clinical medicine.

Because there is no evidence about to whom phosphate-
lowering treatments should be prescribed, we used a machine
learning model to reveal potential clusters of phosphate and
iron-related markers. We further studied the cluster in which
phosphate binder could improve prognosis.
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FIGURE 1: Flow chart of patients with ESKD in this observational study. Only
patients who became stable and were discharged from the hospital and those
who gave their consent to participate in the study were included. Patients who

were not discharged and died in the hospital or who had outlier and missing
values of phosphate, hemoglobin, TSAT and ferritin were excluded.

MATERIALS AND METHODS

Patient registration and data collection

Data from the Aichi Cohort Study of the Prognosis in Patients
Newly Initiated into Dialysis [18–20] were used in this prospec-
tive multicenter study. The participants were patients who
commenced dialysis between October 2011 and September
2013 at 17 Japanese institutions. Patients who initiated dialysis
therapy from October 2011 to September 2013 were registered
into the database, and their pre-dialysis data 3 months before
dialysis initiation were also registered. Then, the data imme-
diately before dialysis initiation were defined as the baseline.
We followed up with these patients from dialysis initiation to
September 2016. This study was approved by the Ethics Com-
mittee of the Institutional Review Board of Nagoya University
Hospital (approval number 1335), and all patients provided
written informed consent.

First, we screened all patients with end-stage kidney disease
(ESKD) who were undergoing dialysis. Only patients whose con-
ditions became stable and who were discharged or transferred
from the hospital were included in this study. Patients who were
not discharged or who died in the hospital were excluded. For
the laboratory data collection, we used data immediately be-
fore dialysis initiation. Because serum ferritin had some outliers,
for example >30 000 ng/mL, we used the logarithm of serum
ferritin (logFerritin) for analysis. Patients whose phosphate,
hemoglobin and logFerritin values were outliers were excluded.
We also excluded patients whose phosphate, hemoglobin, log-
Ferritin and transferrin saturation (TSAT) records were missing
(Figure 1). Data regarding patients’ background, medical history,

comorbidities, medications and laboratory data during the pe-
riod of dialysis initiation were collected. The users of phosphate
binder were defined as patients who were on oral phosphate
binders for more than 3 months before dialysis initiation. The
phosphate binders were either calcium carbonate or lanthanum
carbonate, and most patients used calcium carbonate because
the Japanese insurance system allowed them to at the time. The
dosage and total duration of use of the oral phosphate binders
are unknown. Patients were followed up for 18months (until the
end of March 2015).

Clustering by unsupervised learning approach

The goal of our clustering approach was to divide patients into
distinct subgroups.To achieve this goal,we used aGaussianmix-
ture model.

We chose phosphate, hemoglobin, logFerritin and TSAT as
clustering inputs for Gaussian mixture modeling, and we used
the Smirnov–Grubbs test to exclude outlier values for phos-
phate, hemoglobin and logFerritin. First, from 1 to 10, the num-
ber of clusters was assessed using the Bayesian information cri-
terion (BIC). Then, after choosing the most appropriate model
and cluster number, we calculated the Gaussian mixture mod-
eling (model selection: VVV, which is unconstrained variance
across mixture components). We compared these four markers
in each cluster with the Kruskal–Wallis test.

Mortality

Patients were divided into three clusters according to the clus-
teringmodel. The primary endpoint was all-causemortality. The
causes of death were recorded to the maximum extent possible.
The occurrence of death was investigated via survey slips sent
to the dialysis facilities at the end of March 2015, until we finally
obtained the replies.

We compared the outcomes and univariate and multivariate
Cox hazard ratios (HRs) among the three groups.

Mortality based on the use of oral phosphate binder

The patients were divided into two groups in each cluster: those
who used and those who did not use an oral phosphate binder.
The primary endpoint was all-cause mortality.

We compared the outcomes and univariate and multivariate
Cox HRs between the two groups in each cluster.

Statistics

Baseline characteristics were presented descriptively and tested
with the regular analysis of variance or χ2 test. Survival
was represented graphically using the Kaplan–Meier method
and analyzed with univariate and multivariate Cox regression
analyses. In the Kaplan–Meier method, we used the Bonferroni
correction to show the pairwise comparisons between each clus-
ter. In the Kruskal–Wallis tests, each cluster was tested with the
Dunn test, and Bonferroni correction was used to adjust the P-
value.

Statistical significance was set at P < 0.05. R (version 4.0.0,
R Foundation for Statistical Computing, Vienna, Austria; http://
www.R-project.org/) was used for all statistical analyses. The R
package ‘mclust’ was used for clustering [17].

http://www.R-project.org/
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RESULTS

Baseline characteristics

The initial population included 1524 participants. Two patients
who were untraceable were excluded from the study. After we
also excluded patients with outlier values (n = 7) and missing
values (n = 340), 1175 patients remained in our cohort (Figure 1).
Among these, 785 were men and 390 were women, with a mean
age of 67.9 ± 13.0 years and amean follow-up duration of 796.7 ±
285.1 days. Figure 2 shows the BIC plot; the highest BIC was
3. Therefore, we chose the number of clusters to be 3. The
clusters were named a, b and c. Figure 3 shows the cluster-
ing of the four markers. The baseline characteristics of these
clusters are presented in Table 1. As clustered by phosphate,
logFerritin, hemoglobin and TSAT, there were significant dif-
ferences in these four markers, as shown in the table. There
was no significant difference among the clusters in terms of
gender, the use of iron supplements and intact parathyroid hor-
mone (iPTH). There were significant differences in age, causes
of CKD, some past medical histories (diabetes mellitus, coro-
nary artery disease, atrial fibrillation and admission due to heart
failure), cardiothoracic ratio, ejection fraction, the use of med-
ications [phosphate binder, calcium channel blocker, loop di-
uretic, angiotensin-converting enzyme inhibitor or angiotensin
receptor blocker, vitamin D receptor agonist and erythropoiesis-
stimulating agent (ESA)], white blood cells, platelets, albumin,
blood urea nitrogen, creatinine, sodium, potassium, adjusted
calcium, iron, uric acid, beta-2 microglobulin, C-reactive pro-
tein, pH and bicarbonate. Figure 4 shows the Kruskal–Wallis test
plots for each marker in each cluster. Among the clusters, there
were significant differences in hemoglobin, logFerritin and TSAT
(Figure 4B–D, P < 0.05), and cluster b had the highest levels of
logFerritin and TSAT and lowest hemoglobin. There were signif-
icant differences in phosphate levels between clusters a and b
and clusters b and c. However, we could not observe any signifi-
cant difference between clusters a and c (Figure 4A). Supplemen-
tary data, Figures S1–S4 show histograms of these four markers
in each cluster.

Mortality

Among the clusters, there were significant differences in car-
diovascular disease (CVD)-related deaths (Table 1). Cluster c
had the highest CVD-related and all-cause mortality among the
three clusters. Figure 5A shows the Kaplan–Meier plot for all-
cause death among the three clusters. There was a significant
difference among clusters (P = 0.041). There was a significant
difference between clusters a and c (P = 0.042), but there was
no significant difference between clusters a and b, and between
clusters b and c (P = 0.485 and P = 1.000, respectively). Table 2
shows the univariate and multivariate Cox hazard models for
all-cause mortality among the three clusters. Cluster c had a
significantly worse prognosis than cluster a (adjusted HR = 1.52,
P = 0.005), but there was no significant difference between
clusters a and b (adjusted HR = 1.51, P = 0.084). For CVD-related
death, Supplementary data, Figure S5 shows that among the
clusters, there was a significant difference (P = 0.005). Cluster
c was also significantly associated with a worse prognosis
(Supplementary data, Table S1; adjusted HR = 2.22, P = 0.002).

Figure 5B–D shows that the oral use of phosphate binder was
associated with better prognosis in all clusters, except cluster
b (cluster a: P < 0.001; cluster b: P = 0.34; cluster c: P < 0.001).
Table 3 shows that in clusters a and c, phosphate binder was
associated with better prognosis after adjustment (cluster a:
adjusted HR = 0.32, P < 0.001; cluster c: adjusted HR = 0.52,
P = 0.009). In cluster b, after adjustment, we did not observe an
association between prognosis and use of oral phosphate binder
(adjusted HR = 0.79, P = 0.689).

DISCUSSION

This study aimed to use a machine learning model to reveal
potential clusters of phosphate and iron-related markers of
prognosis among patients undergoing dialysis and to detect the
kind of patients who will benefit from oral phosphate binder
therapy. Our current results suggest that unsupervised clus-
tering by phosphate and iron-related markers can predict the
prognosis of patients who are undergoing dialysis. In particular,
cluster a (patients with the best-controlled level of phosphate
and stable iron dynamics) showed a good prognosis. Moreover,
in each cluster, the prognostic effect of oral use of phosphate
binder differed. This suggests that it is important to consider
multiple markers when prescribing oral phosphate binders to
patients with ESKD.

Previously, appropriate phosphate control has been well dis-
cussed [3–6]. In these previous studies, the authors mainly
discussed how to control the phosphate level by considering
phosphate levels with or without calcium levels. In a meta-
analysis, patients who had CKD stages 3–5d and were using
sevelamer had lower all-cause mortality than those who were
using calcium-based binders to treat hyperphosphatemia [21].
In patients with CKD, a retrospective study found that the use
of phosphate binders was associated with a lower risk of mor-
tality [22]. On the other hand, iron-deficiency anemia is a ma-
jor problem in ESKD [14]. As it is often assumed, iron-related
markers are associated with mortality [15, 16]. However, these
studies are biased due to the study protocols. The randomized
controlled trials included only patients who matched rigid pro-
tocols, andmay not always reflect real clinical practice. If a study
includes multiple factors such as phosphate, iron-related mark-
ers and anemia at the same time, it is easy to assume that the
cohort would be heavily biased. In clinical practice, physicians
usually assess prognosis with multiple parameters. Therefore,
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FIGURE 3: Plots of each marker. Each cluster has a different color. Hb, hemoglobin; P, phosphate.

our analysis is significant for assessing prognosis, especially be-
cause our clustering resultswere similar to the physicians’ expe-
rience, even though the Gaussian mixture model needs further
studies to ensure superiority over traditional statistical meth-
ods. When interpreting our results, it is notable that the clus-
ters are mainly grouped by TSAT levels. Cluster a included pa-
tients whose conditions were rather stable compared with the
other two clusters. Moreover, cluster a had these characters; as
Table 1 shows, past medical histories, such as diabetes and
chronic heart failure, are seen less than the other two clus-
ters. On the other hand, more patients in cluster a were on
medications, such as phosphate binders, ESAs and angiotensin-
converting enzyme inhibitors, and an angiotensin receptor
blocker, than in clusters b and c. Considering these, patients in
cluster a should be well controlled/treated for CKD. As shown
in Figure 3, cluster b included patients whose TSAT and phos-
phate levels were the highest among the three clusters. In clus-
ter b, we could observe less diabetes and admission of heart
failure. Normally, it could be assumed that cluster b patients
should be in the best condition; however, they were on fewer
medications than the other two clusters. We considered that
cluster b was controlled poorly. Patients in cluster c seemed
to be clinically unstable due to iron-deficiency anemia. Among
the three clusters, cluster c had the worst past medical his-
tories; however, against these backgrounds, the patients were
treated with medications such as beta blocker and statin. Clus-
ter c contains patients whose background is worse than those
in other clusters. However, in cluster c more patients were on

ESAs, and because of this, cluster c has a similar prognosis to
cluster b, in which patients’ condition is relatively good. On
the other hand, cluster a had better prognosis than cluster c.
In both clusters, the use of medications such as ESA and iron
supplement is almost same. However, cluster c has lower TSAT,
hemoglobin and ferritin than cluster a, meaning that the op-
timal levels of these markers should be higher than those of
cluster c. These indicate the importance of controlling anemia.
Regarding iron-related markers, we show that the combination
of phosphate, anemia and iron-related markers can predict the
prognosis of patients initiating dialysis. Considering these char-
acteristics and Figure 3, cluster b has patients with sparse lab-
oratory results, meaning that patients in cluster b can be con-
sidered patients who could not fit clusters a and c—probably
heterogeneous groups showing unstable iron dynamics. Inter-
estingly, among the three clusters, there was no significant dif-
ference in iPTH. The patients’ data in our cohort were recorded
before dialysis initiation, which implies that the patients had
ESKD. Therefore, because it is rather natural for ESKD patients
to have hyperphosphatemia, hypocalcemia and elevated iPTH
levels, we considered that it was better to add other mark-
ers such as iron-related markers to our clustering method. Be-
cause our clustering method is an unsupervised machine learn-
ing method that determines clusters algorithmically, we can
only assume the cluster characteristics based on the results.
Prognosis worsened from cluster a to cluster c. Moreover, as
Figure 3 shows, our clustering grouped patients rather clearly,
probably depending on TSAT, and we cannot deny other



Phosphate and iron-related markers in dialysis 333

Table 1. Baseline characteristics of each cluster of patients who initiated dialysis (n = 1175)

Cluster a (n = 565) Cluster b (n = 128) Cluster c (n = 482) P-value

Female 181 (32.0) 35 (27.3) 174 (36.1) 0.125
Age (years) 68.55 (12.33) 64.45 (14.79) 67.96 (13.24) 0.006
Causes of CKD, n (%) 0.024
Diabetes 225 (39.8) 47 (36.7) 225 (46.7)
Nephrosclerosis 149 (26.4) 31 (24.2) 129 (26.8)
Others, unknown 191 (33.8) 50 (39.1) 128 (26.6)

Past medical history, n (%)
Diabetes mellitus 273 (48.3) 56 (43.8) 277 (57.5) 0.002
Coronary artery disease 89 (15.8) 12 (9.4) 92 (19.1) 0.025
Peripheral artery disease 21 (3.7) 8 (6.2) 29 (6.0) 0.177
Atrial fibrillation 26 (4.6) 5 (3.9) 40 (8.3) 0.024
Admission for heart failure 79 (14.0) 22 (17.2) 126 (26.1) <0.001
Aortic dissection 24 (4.2) 6 (4.7) 31 (6.4) 0.273
Malignancy 62 (11.0) 13 (10.2) 56 (11.6) 0.882
Stroke 50 (8.8) 8 (6.2) 41 (8.5) 0.631

Chest X-ray
CTR (%) 54.12 (7.01) 54.72 (7.20) 56.07 (7.06) <0.001

Cardiac ultrasonography
EF (%) 61.97 (11.41) 60.05 (12.29) 60.05 (12.60) 0.042

Medication use, n (%)
P binder 225 (39.8) 36 (28.1) 181 (37.6) 0.048
Iron supplement 109 (19.3) 15 (11.7) 88 (18.3) 0.130
Spironolactone 35 (6.2) 9 (7.0) 21 (4.4) 0.317
DRI 21 (3.7) 2 (1.6) 23 (4.8) 0.237
CCB 471 (83.4) 93 (72.7) 372 (77.2) 0.005
Loop diuretic 366 (64.8) 71 (55.5) 325 (67.4) 0.042
Thiazide 114 (20.2) 28 (21.9) 116 (24.1) 0.317
ARB or ACEI 362 (64.2) 64 (50.0) 269 (55.9) 0.002
BB 204 (36.1) 35 (27.3) 171 (35.5) 0.161
Statin 237 (41.9) 43 (33.6) 219 (45.4) 0.052
VDRA 183 (32.4) 28 (21.9) 129 (26.8) 0.024
Antiplatelet 162 (28.7) 29 (22.7) 150 (31.1) 0.167
ESA 505 (89.5) 94 (74.6) 431 (89.4) <0.001

Laboratory data, mean (SD)
P (mg/dL) 5.90 (1.33) 8.44 (2.34) 6.09 (1.51) <0.001
Hb (g/dL) 9.90 (1.30) 8.30 (1.95) 9.24 (1.48) <0.001
TSAT (%) 32.32 (9.04) 52.66 (24.06) 13.80 (4.62) <0.001
Ferritin (ng/dL) 165.03 (182.91) 345.72 (419.84) 180.60 (288.35) <0.001

logFerritin 4.80 (0.76) 5.40 (0.97) 4.62 (1.09) <0.001
WBCs (μL−1) 6161 (2598) 6952 (3378) 6956 (3028) <0.001
Plt (10 000/μL) 17.02 (6.31) 17.61 (8.17) 19.81 (7.56) <0.001
Alb (g/dL) 3.33 (0.55) 3.11 (0.65) 3.11 (0.61) <0.001
BUN (mg/dL) 85.85 (24.37) 113.02 (30.33) 89.35 (27.98) <0.001
Cr (mg/dL) 8.69 (2.54) 11.59 (4.62) 8.45 (2.82) <0.001
eGFR (mL/min/1.73 m2) 5.39 (1.77) 4.40 (1.83) 5.70 (2.26) <0.001
Na (mEq/L) 138.21 (4.15) 137.35 (4.64) 137.47 (4.35) 0.009
K (mEq/L) 4.51 (0.75) 4.86 (0.93) 4.41 (0.82) <0.001
Adjusted Ca (mg/dL) 8.68 (0.93) 8.26 (1.27) 8.71 (1.02) <0.001
Fe (μg/dL) 70.54 (23.51) 102.21 (46.74) 30.40 (11.52) <0.001
Mg (mg/dL) 2.18 (0.46) 2.18 (0.55) 2.14 (0.45) 0.493
UA (mg/dL) 8.51 (2.19) 9.13 (2.67) 8.92 (2.57) 0.004
LDL-C (mg/dL) 90.93 (32.27) 90.88 (40.78) 87.86 (33.77) 0.355
CRP (mg/dL) 1.00 (2.59) 1.43 (2.69) 2.46 (5.13) <0.001
β2MG (μg/dL) 17.88 (4.78) 20.93 (6.95) 19.28 (5.76) <0.001

pH 7.34 (0.07) 7.29 (0.08) 7.35 (0.07) <0.001
HCO3 (mmol/L) 19.75 (4.04) 16.35 (5.11) 20.50 (4.89) <0.001
iPTH (pg/mL) 330.36 (239.54) 368.57 (273.91) 335.03 (310.29) 0.393

Mortality, n (%)
CVD-related death 23 (4.1) 9 (7.0) 43 (9.1) 0.005
Infection-related death 26 (4.6) 4 (3.1) 12 (2.5) 0.178
All-cause death 82 (14.5) 23 (18.0) 96 (19.9) 0.066

ACEI, angiotensin-converting enzyme inhibitor; adjusted Ca, adjusted calcium; Alb, albumin; ARB, angiotensin receptor blocker; BB, beta blocker; BUN, blood urea

nitrogen; β2MG, beta-2 microglobulin; CCB, calcium channel blocker; Cr, creatinine; CRP, C-reactive protein; CTR, cardiothoracic ratio; DRI, direct renin inhibitor; EF,
ejection fraction; eGFR, estimated glomerular filtration rate; Fe, iron; Hb, hemoglobin; HCO3, bicarbonate; K, potassium; LDL-C, low-density lipoprotein cholesterol; Mg,
magnesium; Na, sodium; P, phosphate; P binder, phosphate binder; Plt, platelet; UA, uric acid; VDRA, vitamin D receptor agonist; WBCs, white blood cells.
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Table 2. HRs of each cluster for all-cause death

Unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value

Cluster a Reference Reference Reference Reference
Cluster b 1.39 (0.88–2.21) 0.159 1.51 (0.95–2.41) 0.084
Cluster c 1.44 (1.07–1.94) 0.015 1.52 (1.13–2.05) 0.005

CI, confidence interval.
Other factors included age, sex, causes of CKD, phosphate binder and diabetes mellitus.

Table 3. HRs of phosphate binder in each cluster for all-cause death

Unadjusted HR (95% CI) P-value Adjusted HR (95% CI) P-value

P binder in cluster a 0.25 (0.14–0.46) <0.001 0.32 (0.17–0.59) <0.001
P binder in cluster b 0.59 (0.20–1.74) 0.342 0.79 (0.25–2.47) 0.689
P binder in cluster c 0.42 (0.26–0.68) <0.001 0.52 (0.32–0.85) 0.009

CI, confidence interval; P binder, phosphate binder.
Other factors included age and gender causes of CKD.

alternative approaches to clustering, including not only cluster-
ing methods but also marker selection. Even though there could
be alternative clustering methods available, our current cluster-
ing method could differentiate patients into phenotypes that
match clinical practice.

Our results suggest that there are differences among clusters
regarding prognosis based on the use of phosphate binders. We
observed that the use of phosphate binders could be associated
with a better prognosis of patients in clusters a and c. Consid-
ering that patients in cluster c had iron deficiency, it is possi-
ble that with decent control of both phosphate and iron, their
prognosis could improve, suggesting that iron-conjugated phos-
phate binders may improve prognosis. However, in cluster b, we
did not observe an association between prognosis and the use
of phosphate binders. This suggests that when seeing patients
with high TSAT levels, it may be better to control other prob-
lems first. Furthermore, as the patients’ characteristics show,we
could observe more CVD and diabetes in clusters a and c than
in cluster b. This suggests the possibility of some patients con-
sidering the use of phosphate binders. In short, our study sug-
gests that the combination of phosphate levels and iron-related
markers may be a reliable tool for assessing both the prognosis
of ESKD patients and the efficacy of phosphate binders.

Our study is remarkable because it is the first study to re-
veal the potential relationship between phosphate, hemoglobin
and iron-related markers using machine learning methods for
predicting prognosis. Although unsupervised clustering anal-
yses are becoming increasingly popular in the study of hu-
man diseases [23–27], such analyses are rarely seen in clini-
cal nephrology. Unlike classical approaches, machine learning
methods can discover more homogeneous groups within het-
erogeneous sets of data [28]. In our study, we detected possible
associations between phosphate, hemoglobin and iron-related
markers. Moreover, we found a possibility for improvement in
patients on dialysis with hyperphosphatemia. It is important to
further studymore sophisticated criteria for starting phosphate-
lowering treatments.

Our study has several strengths. First, it involved a well-
defined population and an extremely high follow-up rate.
Second, we showed a potential association between phos-
phate and iron-related markers. Third, to our knowledge, this
is the first study to use an unsupervised machine learning

method to cluster patients who are initiating dialysis ther-
apy. However, the study also has some limitations. First, as it
was an observational study, there was an inevitable selection
bias regarding the administration of phosphate binder. Sec-
ond, we could not validate our results with other datasets,
limiting our conclusions for further use. Third, our sur-
vival analyses could not entirely exclude selection bias be-
cause our clustering method does not divide patients with-
out creating background bias, meaning each cluster has dif-
ferent patient characteristics, such as age, gender and past
medical history. However, our method is not meant to match
patients’ backgrounds but rather to subtype patients. Therefore,
our aim is different.

Because our study showed an important association between
phosphate, hemoglobin and iron-related markers for predict-
ing prognosis, it is important to study this association further.
Moreover, our study showed that phosphate binders could pos-
sibly improve the prognosis of some patients. Therefore, it is
necessary to study whom to prescribe oral phosphate binders
by observing not only phosphate values but also other mark-
ers. Currently, iron-based phosphate binders are becoming pop-
ular, and it is necessary to study how phosphate and iron-
related markers are associated with prognosis when using such
medications.

CONCLUSION

We used an unsupervised machine learning method to cluster
patients using phosphate, hemoglobin and iron-related mark-
ers, which could predict prognosis. In two of the clusters, the
oral use of a phosphate binder could be associated with a better
prognosis.
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