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Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is an important
experimental method for detecting specific protein-mediated chromatin loops genome-
wide at high resolution. Here, we proposed a new statistical approach with a
mixture model, chromatin interaction analysis using mixture model (ChIAMM), to detect
significant chromatin interactions from ChIA-PET data. The statistical model is cast
into a Bayesian framework to consider more systematic biases: the genomic distance,
local enrichment, mappability, and GC content. Using different ChIA-PET datasets, we
evaluated the performance of ChIAMM and compared it with the existing methods,
including ChIA-PET Tool, ChiaSig, Mango, ChIA-PET2, and ChIAPoP. The result showed
that the new approach performed better than most top existing methods in detecting
significant chromatin interactions in ChIA-PET experiments.

Keywords: ChIA-PET, chromatin interactions, genome-wide, mixture model, bayesian framework

INTRODUCTION

Diverse high-throughput methods have been developed to detect genome-wide chromatin
interactions, including chromatin interaction analysis by paired-end tag sequencing (ChIA-
PET) and high-throughput chromosome conformation capture (Hi-C) (Fullwood et al., 2009;
Lieberman-Aiden et al., 2009). ChIA-PET was first introduced in 2009 as an essential experimental
method for studying genome-wide chromatin interactions mediated by a specific protein of interest.
It can discover many chromatin interactions at a higher resolution that are needed for studying
gene transcription regulation. It has been widely used to study various proteins such as estrogen
receptor alpha, RNA polymerase II (RNAPII), CCCTC binding factor (CTCF) in human and mouse
genome (Fullwood et al., 2009; Handoko et al., 2011; Li et al., 2012; Tang et al., 2015), and H3K4me3,
H3K9me2, and RNAPII in rice and maize (Peng et al., 2019; Zhao et al., 2019).

The processing of raw ChIA-PET data is not easy. ChIA-PET experiment will generate tens
of millions of paired reads containing a tag and linker sequence (barcode). The tag can be short
(generated by the original protocol, and it is about 20 base pairs) or long (generated by the improved
protocol, and it is about 150–250 base pairs) (Li et al., 2017). The steps to process raw ChIA-PET
data include linker trimming, read alignment, paired-end tag (PET) filtering, PCR duplicate
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removal, peak calling, and chromatin interaction calling. In
ChIA-PET data, similar to other high-throughput sequencing
data, there is a mixture of signals (fragment pairs from real
chromatin interactions, termed as true pairs) and noise (fragment
pairs from random ligation, termed as false pairs). Distinguishing
the true interaction pairs from the random noise is not a simple
task, and complicated computational tools are needed (He et al.,
2016). Up to now, there are several published tools, and ChIA-
PET Tool (Li et al., 2010), ChiaSig (Paulsen et al., 2014), Mango
(Phanstiel et al., 2015), ChIA-PET2 (Li et al., 2016), and ChIAPoP
(Huang et al., 2019) are the representative ones.

The ChIA-PET Tool is the first software package for the
automatic processing of ChIA-PET sequence data, which uses
hypergeometric distribution (HG) as the statistical method and
accounts for the sequencing depth bias. It fails to correct the
major source of bias (He et al., 2015; Phanstiel et al., 2015),
such as the genomic distance between the interacting regions.
ChiaSig (Paulsen et al., 2014) advanced the ChIA-PET Tool by
incorporating genomic distance between interacting anchors. It
uses non-central HG distribution for modeling the frequency of
chromatin interactions, and the model considers the non-specific
ligations that exist because of genomic distance proximity. As a
limitation, ChiaSig has a high false-negative rate (He et al., 2015),
it executes the final step in ChIA-PET Tool data analysis, and
users are expected to write their programs (Phanstiel et al., 2015).
Similar to ChiaSig, Mango (Phanstiel et al., 2015) is designed for
correcting the primary source of biases from genomic proximity
using the binomial model. As a limitation, Mango does not
model the interactions between different chromosomes. Besides,
it is too conservative at the significant loop calling step, just
reporting a small number of interactions, which led to a high
false-negative rate (Li et al., 2016). ChIA-PET2 (Li et al., 2016)
is a complete analysis pipeline that uses a Bayesian mixture
model to process both bridge and half-linker ChIA-PET data
from raw sequencing reads to significant chromatin loop calls.
As a limitation, it gives slightly different results for the same
input (Huang et al., 2019). ChIAPoP (Huang et al., 2019)
was proposed using zero truncated Poisson distribution for
accounting for the genomic distance and sequence biases. It
is designed for short-read ChIA-PET datasets only. ChIAPoP
considers intra- and interchromosomal interaction as a separate
model. Recently, ChIA-PIPE (Lee et al., 2020) was proposed
by integrating the special functions related to the experiment
types, data processing, and structural interpretation. ChIA-PIPE
used ChiaSig (Paulsen et al., 2014) to calculate the statistical
significance of interactions.

All the above existing tools considered only the genomic
distance or anchor depth as biases. But in different studies,
the GC content and mappability score are listed as systematic
sources of biases (Yaffe and Tanay, 2011; Hu et al., 2012; Imakaev
et al., 2012). Hence, the existing tools failed to address it.
Besides, from the existing tools, except for ChIA-PET Tool V3
(Li et al., 2019), ChIA-PET2 (Li et al., 2016), and ChIA-PIPE
(Lee et al., 2020), others are designed exclusively for short-read
ChIA-PET data analysis.

Here, we present a new statistical method called chromatin
interaction analysis using mixture model (ChIAMM) to

distinguish signals from noise in ChIA-PET data. It considers the
genomic distance between anchors, sequence depth, GC content,
and mappability as systematic sources of bias. The model was
tested on both RNAPII and CTCF ChIA-PET data from human
K562 and MCF7 and RNAPII and H3K9me2 ChIA-PET data
from rice MH63. The performance of the proposed method was
evaluated with the aggregate peak analysis (APA) plot, CTCF
coverage of anchors, and CTCF motif orientation analysis. The
results showed that the new method performed better with the
most top existing tools.

MATERIALS AND METHODS

Public Datasets Used
In this study, MCF7 and K562 RNAPII data in Li et al. (2012),
MCF7 and K562 CTCF data in GEO with accession numbers
GSM970215 and GSM970216, respectively, and MH63 RNAPII
and H3K9me2 data in Zhao et al. (2019) were processed. For
the CTCF enrichment and motif orientation analyses, the CTCF
peak regions from ENCODE ChIP-Seq datasets ENCFF990LUT
and ENCFF720OXG for MCF7, and ENCFF559HEE and
ENCFF681OMH for K562 datasets were used.

Systematic Biases Considered in the
Study
In this study, we used genomic distance, GC content,
mappability, and enrichment as systematic biases of the
ChIA-PET experiment. We used ChIA-PET Tool version 3
(V3) (Li et al., 2019) as the primary processing pipeline to
find the anchor sites, genomic distance, interaction frequency,
type of interaction, marginal count, and self-ligation PETs.
It is known that regions close together along the genomic
sequence will have a higher chance of forming random contacts.
Thus, it is essential to integrate the genomic distance into the
model (Paulsen et al., 2014), and we primarily considered the
genomic distance as a bias. The second bias is the GC content,
defined as the percentage of cytosine (C) and guanine (G) bases
in a given region. In different studies, GC content has been
reported as a systematic bias in next-generation sequencing
(NGS) applications (Yaffe and Tanay, 2011; Hu et al., 2012),
and the GC content of each anchor is calculated using bedtools
nuc (Quinlan and Hall, 2010) function. The third bias is the
mappability score, which is defined as the mappability of all
possible k-mers in a given anchor site. The mappability track
is downloaded from the UCSC Genome Browser website
(Derrien et al., 2012), and the overlap of the mappability
track with anchors was performed using bedtools. The last
systematic bias is the local enrichment in a given region. It is well
known that the anchors with more enrichment have a higher
probability of forming interligation PETs by random chance.
Different studies have considered enrichment as systematic
bias in their analysis (Li et al., 2010, 2016; Paulsen et al.,
2014; He et al., 2015; Niu and Lin, 2015; Phanstiel et al., 2015;
Huang et al., 2019). In this study, we measured the anchor
enrichment using the number of self-ligation PETs found by
ChIA-PET Tool (V3).
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Statistical Mixture Model
In many situations, like the ChIA-PET experiment, due to the
complex nature of the observed data, using single parametric
distribution is insufficient for inference. Here, we used a mixture
model. It offers a solution to this problem by assuming that
the frequency of chromatin interactions can be represented
by a weighted sum of distributions, with each distribution
representing a proportion contribution to the data.

We used a mixture model for modeling the
interaction frequency of the ChIA-PET experiment. Let
Y =

{
yi, i = 1, 2, . . . . . . ., n

}
represent the interaction

frequencies for each observed anchor pair i from n unique
anchor pairs (say, anchor Ai and Bi). The interaction frequency,
yi, has a two-component mixture distribution, i.e., signal and
noise. The mixture model integrates signal and noise interaction
frequency as follows:

yi ∼
1∑

j=0

Wjip
(
.|λji

)
i = 1, 2, ........, n

where Wji is the mixing probability (i.e., W0i and W1i represent
the probability of pair i being a false pair and true pair,
respectively), and W0i +W1i = 1.

It is well known that Poisson distribution is the most popular
distribution for modeling NGS count data, and in the above
model, p (.|λ) is the

(
k− 1

)
truncated Poisson distribution. The

model considers the interaction frequency, yi ≥ k (where k is a
cut-off point). The cut-off point is used to decide a pair that is
kept in the analysis. Most of the time, it is determined by the
researcher. In this study, the cut-off value is ≥ 2, the same as in
(Fullwood et al., 2009).

The probability mass function for Poisson distribution is
written as:

p
(
Y = y|λ

)
=

e−λ λy

y!

and the probability mass function for k− 1 truncated Poisson
distribution is written as follow:

p
(
Y = y|y ≥ k,λ

)
=

λy

y!
{
eλ −

[
1+ λ+ λ2

2! + · · · +
λk−1

(k−1)!

]}
for y = k, k+ 1, . . . .

Therefore, for k ≥ 2, p
(
Y = y|λ

)
is written as:

p
(
Y = y|y > 1, λ

)
=

λy

y!
[
eλ − (1+ λ)

] for y = 2, 3, . . . . . . .

In simplified form, we can express it using the cumulative
distribution function (CDF) as follows:

p
(
Y = y|y > 1,λ

)
=

p
(
y|λ
)

1− F (1)

For pair of i, 1 ≤ i ≤ n, p
(
Y = y|λ

)
will be p

(
.|λ0i

)
and

p
(
.|λ1i

)
, which model the interaction frequency conditional on

it being noise and signal, respectively, and F (1) = F(y ≤ 1)

represents the probability that the random variable takes a value
≤1. Besides, from the biological perspectives, the signals have
more intensity than the noises (Rousseau et al., 2011), and thus,
we put the requirements λ0i < λ1i.

From the listed biases, genomic distance has no explicit rule to
measure in interchromosomal interaction data. Hence, we model
the intra- and interchromosomal interaction data separately
and have different rate parameters (λ) and biases (xi) as well.
The rate parameters of intra- (λ) and inter chromosomal

(
λ′
)

interactions are connected with the biases using the link function.
The listed biases in this study are GC percentage

(
xgci and xi

′gc
)

,

mappability
(
xmap
i and xi

′map
)

and enrichment
(
xenri and xi

′enr
)

for intra- and interchromosomal interaction, respectively. We
considered the genomic distance only for intrachromosomal
interactions. In the intrachromosomal analysis, we considered all
the biases, but in the interchromosomal interaction analysis, we
will remove out the distance from the statistical model.

The link functions of intra- and interchromosomal interaction
are written as follows, respectively:

log (λ0i) = β0 + β1 log
(
xenri

)
+ β2 log

(
xgci
)
+ β3 log

(
xmap
i

)
+β4 log

(
xdisi

)

log
(
λ′0i
)
= β ′0 + β

′
1 log

(
x′ienr

)
+ β ′2 log

(
x′igc

)
+ β ′3 log

(
x′imap)

In Bayesian inference, the prior distribution is a crucial part,
representing the information about an uncertain parameter. The
priors and model description of inter- and intrachromosomal
interactions are similar. We used the prime symbol (′) for
parameters in the interchromosomal interaction model. To
simplify the next discussion, we will use the intrachromosomal
interaction model parameters as an example.

A normal distribution is a natural prior choice for βj.
Therefore, the coefficients of the Poisson regression model,
βj, j = 1, 2, 3, 4 have normal prior with mean zero and
reasonable variance to enable large enough deviations, βj ∼
N(0, 32) (Carlin and Louis, 2008; Gelman et al., 2013; Halla-
aho, 2015), and we declared λ1i = C + λ0i to show that the
frequency of signal is greater than the noise, where C is a
positive number that follows zero truncated normal distribution
with reasonable variance, C ∼ N(0, 32). In (Halla-aho, 2015),
different Ci were considered, but the estimated Ci has very
small variance. Therefore, the researcher recommended others
to use the same C for next work. This help us in the side of
reducing computational time. The statistical approach considers
the correlation between common anchor pairs (Niu and Lin,
2015). The dependency incorporated in the weights of the
mixture model, i.e., the weight changes from common to pair-
specific values, W1i ∼ Beta(mci, mc), where mci and mc is the
marginal count of the i-th paired anchors and the mean of
marginal count, respectively.

When we compute the marginal count, we considered
the interaction frequency yi two times; hence, we subtracted
one yi, i.e.,

mci = mcAi + mcBi − yi
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where mcAi and mcBi are the marginal count of anchor Ai and
Bi, respectively, and yi is the interaction count between anchors
(Figure 1), and mc is the average of marginal counts and

calculate as mc = 1
n

n∑
i=1

mci.

Finally, we define the new latent variable Zi, i = 1, . . . , n
that indicates the category of interaction groups, i.e., whether the
interaction frequency is in the signal or noise group:

Zi =
{

1, the pair i is a signal
0, the pair i is a noise

The indicator variable has two outcomes (0 and 1), and it
follows the Bernoulli distribution, Zi ∼ Bernoulli(W1i), for i =
1, 2, . . . , n, and it is concluded that pair i is signal pair
whenever P(Zi = 1|Y) is bigger than a cut-off value, 0.5
(Niu and Lin, 2015).

Aggregate Peak Analysis
Aggregate peak analysis is the standard and recommended plot
that measures the aggregate enrichment of putative peaks in a
contact matrix. It plots the sum of a series of submatrices around
the interaction anchors derived from the contact matrix. The
matrix is created by summing together all submatrices around
each putative individual peak. The resulting APA plot displays the
total number of contacts that lie within the entire putative peak
set at the center of the matrix. It is recommended to use peak to
lower left (P2LL) value to compare the interactions from different
methods. We generate an APA plot with 5-kb resolution contact
matrices for significant chromatin interactions. The BEDPE files
from the ChIA-PET data were used to build interaction matrices.

RESULTS

Chromatin interaction analysis using mixture model used a
mixture model to distinguish signals from noise in the ChIA-
PET experiment using the Bayesian approach. To evaluate and
compare the performance of ChIAMM with the top existing
methods, we used four short and two long-read ChIA-PET
datasets. The short reads are RNAPII- and CTCF-associated
datasets from human K562 and MCF7 cells, and the long
reads are RNAPII- and H3K9me2-associated datasets from rice

Minghui 63 (MH63). We used human genome hg19 for K562 and
MCF7 datasets and RS1 reference genome for rice datasets.

Convergence Diagnostics and Posterior
Prediction
We used Stan statistical package (rstan) and checked the
convergence of the algorithm with the trace plot and Rhat. The
rstan package allows us to conveniently fit different models and
access the outputs, including posterior inferences. In Bayesian
inference, MCMC algorithms will draw a sample from the target
posterior distribution after it has converged to equilibrium.
However, there is no guarantee about whether it is converged
or is close enough to the posterior distribution. Therefore, we
have to check its convergence using a trace plot and Rhat. It is
well known that trace plots are an essential tool for assessing the
mixing of a chain. Trace plot is a time series plot of the Markov
chains that shows the evolution of parameter vector over the
iterations of one or many Markov chains. The Rhat produces the
convergence diagnostic that compares the between- and within-
chain estimates for model parameters. It is recommended to
run at least four chains by default and use the sample if Rhat
is <1.05 (Stan Development Team, 2016). The trace plot of
intra- (βj, λ0i, W1i, and C) and inter- (βj, λ′0i, W′1i, and C′)
chromosomal interaction model parameters were checked. As we
specified in the methodology, the parameters λ0i, W1i, λ′0i ,
and W′1i are pair specific. The convergence was checked on
the random taken values. Here, as an example, we tested
the convergence diagnostic and posterior prediction on MH63
RNAPII datasets. Supplementary Figure 1 and Supplementary
Table 1 show the trace plot and Rhat value of the model
parameters in the given datasets. The Rhat value of all parameters
is 1, and chains are mixed well. Therefore, these results proved to
us the convergence of the MCMC algorithm.

Posterior prediction is used to assess the fit between a model
and the data. The fitted model has been validated using posterior
predictive checks (PPCs) through simulating data from the
model using parameters drawn from the posterior. The posterior
prediction analysis was checked using a graphical prior and PPC
plot. The PPC plot gives the graphical display that compares the
observed data to the simulated data from the posterior predictive
distribution. In Supplementary Figure 2, the dark line shows the
distribution of the observed outcomes, and the lighter line shows

FIGURE 1 | Illustration of interaction frequency in the ChIAMM model. Ai and Bi represent anchor regions with marginal PET counts mcAi and mcBi respectively, and
yi is the number of inter-ligation PETs between specified anchors Ai and Bi .
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the first 100 kernel density estimate from the posterior predictive
distribution in the MH63 RNAPII dataset. From the plot, the
simulated data is overlapped with the actual data, or we assured
that the fitted model recovered the data.

Comparing the Interactions of
Short-Read Data From Different Methods
In this study, the ChIAMM found significant interactions using
the value of W1i (the probability of pair i being a true pair). The
significant interactions from HG, ChiaSig, Mango, ChIA-PET2,
and ChIAPoP are found using the ChIA-PET Tool (V3), ChiaSig,
Mango, ChIA-PET2, and ChIAPoP pipelines, respectively. In all
methods, we used the same cut-off of interaction frequency ≥ 3.
ChIAMM detected 1,465 and 3,679 potential pairs in MCF7 and
K562 RNAPII datasets, respectively. These significant pairs are
more than those identified by ChiaSig (828 in MCF7 and 1,828 in
K562) and Mango (1,385 in MCF7 and 1,676 in K562). For CTCF-
associated datasets, ChIAMM detected 719 and 2,085 significant
pairs in the MCF7 and K562 datasets, respectively, which are
more than those identified by ChiaSig (434 in MCF7 and 923
in K562). In contrast, some methods reported more interaction
pairs than ChIAMM (Figure 2).

Supplementary Figure 3 shows the overlapped results
between ChIAMM and other existing tools. As an example,
in the MCF7 RNAPII dataset, we found higher overlapped
interactions with HG (1,465), ChiaSig (1,334), and ChIAPoP
(1,113). Similarly, in the K562 CTCF dataset, it shows higher
overlapped interactions with HG (2,084), ChIAPoP (1,852), and
ChiaSig (1,886). Besides, we found 257, 381, 387, and 1,047
overlapped significant interaction pairs among the six tools in
MCF7 RNAPII, K562 RNAPII, MCF7 CTCF, and K562 CTCF
datasets, respectively.

Aggregate Peak Analysis of the Interactions Between
Different Methods
We used the APA plots to compare interactions from ChIAMM
and other existing methods. To generate APA plots, we built

interaction matrices from BEDPE files, and the interaction counts
were summed for all pairs of loci in 5-kb bins (Servant et al.,
2015). Then, the APA score can quantify the level of a different
set of interactions. In the APA plot, it is recommended to use
P2LL value for comparison. P2LL is calculated as the ratio
of the central pixel to the mean of the pixels in the lower-
left corner of the interaction matrices. Higher scores indicate
higher enrichment of interaction, and it is always good to
find methods with higher P2LL value (Rao et al., 2014). For a
fair comparison, in all methods, we considered the significant
chromatin interactions with ≥ 3 supportive PETs. Then, we
found the overlapped and unique significant interactions between
ChIAMM and other existing tools.

For each dataset, we plotted five pairs of APA plot for
overlapped interactions and four pairs of APA plot for unique
interactions (no unique interactions found between ChIAMM
and HG). In all datasets, in the overlapped interactions, ChIAMM
has shown higher P2LL values with other tools. As expected,
ChIAMM shows similar P2LL values with HG and ChiaSig tools
(Figure 3 and Supplementary Figure 4). Besides, for unique
interactions, ChIAMM has shown better pair ranking with other
existing methods, with some exceptions, except Mango in K562
RNAPII, Mango in MCF7 and K562 in CTCF, ChiaSig in K562
RNAPII, and ChIAPoP in MCF7 CTCF ChIA-PET datasets
(Figure 4 and Supplementary Figure 5).

Comparison of CTCF Enrichment for Overlapped and
Unique Interactions
In different studies, CTCF is a ubiquitously expressed and
essential protein, and the DNA interactions are directly
related to this protein (Ohlsson et al., 2010). For comparing
enrichment of proteins in anchors, we used different CTCF
peak files, i.e., the CTCF-peak regions from ENCODE ChIP-
Seq datasets ENCFF720OXG and ENCFF990LUT for MCF7,
and ENCFF681OMH and ENCFF559HEE for K562 cell line.
For the CTCF coverage computation, we considered the
overlapped and unique interactions between ChIAMM and other

FIGURE 2 | Detected significant interactions in different tools in RNAPII and CTCF data sets. The red and blue vertical bars represent the significant interactions
detected in K562 and MCF7 data sets.
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FIGURE 3 | Aggregate peak analysis (APA) plots for overlapped significant
interactions between ChIAMM and existing methods in the K562 CTCF
ChIA-PET data set. Each row in the plot represents the comparison of
interactions between ChIAMM and one other method.

existing methods with chromatin interaction frequency ≥ 3.
A comparison of CTCF enrichment means how many anchors
are covered with the peak file. For both overlapped and unique
interactions, we found the anchors that covered with the CTCF

FIGURE 4 | Aggregate peak analysis (APA) plots for significant unique
interactions between ChIAMM and existing method in the K562 CTCF
ChIA-PET data set. Each row in the plot represents the comparison of
interactions between ChIAMM and one other method.

peak file. Supplementary Figure 6 shows the percentage of CTCF
enriched and non-enriched anchors of the overlapped and unique
interactions between ChIAMM and other methods in CTCF
associated datasets. In these figures, ChIAMM shows equal CTCF
enrichment with HG and ChiaSig in the overlapped interactions
and shows a minimal difference with others. To ensure that
this difference is statistically significant or not, we computed
the Fisher’s exact test. According to the p-value, in all datasets,
the proportion difference of enriched anchors is statistically
insignificant, except for ChIAPoP in the overlapped interactions.
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Comparison of CTCF Motif Orientation for
Overlapped and Unique Interactions
It is well known that CTCF is an essential architectural protein
to mediate long-range interactions. Different studies have shown
that CTCF motif orientations at chromatin loop anchor regions
are expected to have more convergent orientation than in other
orientations (Zhang et al., 2018). Here, we compared the CTCF
motif orientation of significant interactions (intrachromosomal)
of ChIAMM with the existing tools. If the interaction is a
real signal, it is expected to have convergent orientations more
often than in other orientations. For the motif orientation
analysis, a webserver https://ccg.epfl.ch/pwmscan/ was used
for scanning the reference genome (hg19), and the predicted
CTCF motif was filtered and kept only the overlap result with
CTCF peak regions. The CTCF peak files are the same as
that we used in the previous CTCF enrichment comparison.
Then, we found the overlapped result between the filtered
predicted CTCF motif and significant chromatin interactions
that we found using different tools. After that, we counted
the number of significant pairs with convergent and other
motif orientations. Figure 5 and Supplementary Figure 7
show the CTCF motif orientation analyses results for the
overlapped and unique interactions in K562 and MCF7 CTCF
datasets. The red color represents convergent motif orientation,
and the blue color represents the other motif orientation.
Fisher’s exact p-values are given at the top of each bar. The
p-value shows the test of a proportion of convergent motif
orientation between ChIAMM and other existing methods.
For each dataset, we performed five and four pairs (no
unique interaction between ChIAMM and HG) of CTCF motif
orientation analysis for overlapped and unique interactions
between ChIAMM and existing methods, respectively. From
these plots, in all datasets, ChIAMM showed equal motif
orientation with ChiaSig (only in overlapped interactions) and
HG. Statistically, the proportional difference in convergent
orientation between methods was tested. Based on the p-value,
in the overlapped interactions, the proportion of ChIAMM

motif orientation is not significantly different from other
existing approaches, except ChIAPoP. Likewise, in the unique
interactions, it is statistically insignificant from others, except for
Mango and ChIA-PET2.

Comparing the Interactions of
Long-Read Data From Different Methods
From the existing tools, only ChIA-PET Tool V3 and ChIA-PET2
can analyze long-read ChIA-PET data. Hence, we examined
the result of ChIAMM with these two existing tools using
the H3K9me2 and RNAPII datasets from rice MH63 variety.
We used RS1 as the reference genome. In all methods, for a
fair comparison, we considered the interaction frequency ≥ 3.
Similar to the short-read ChIA-PET datasets, we validated the
interactions using the APA plot.

Chromatin interaction analysis using mixture model and
other existing tools found the different amounts of significant
chromatin interactions. Supplementary Figure 8 shows the
detected interactions in each tool; besides, it also shows the
overlap interactions between ChIAMM and existing tools. HG
found maximum significant chromatin interactions (63,745
and 6,242); ChIAMM found the next largest interactions
(23,966 and 12,448); and ChIA-PET2 detected the smallest
significant chromatin interactions (5,143 and 6,183) in MH63
RNAPII and H3K9me2 datasets, respectively. ChIAMM found
maximum overlapped interactions with HG (23,821 and
2,903). The three tools found 2,744 and 969 overlapped
significant chromatin interactions in MH63 RNAPII and MH63
H3K9me2 datasets.

Aggregate Peak Analysis of the Interactions Between
Different Methods
To compare and evaluate ChIAMM in long-read ChIA-PET
datasets, we generated the APA plot. Still, for the sake of fair
comparison, we considered the chromatin interaction frequency
≥ 3. We plotted the APA plots for overlapped and unique
significant interactions between ChIAMM and other existing

FIGURE 5 | CTCF motif orientation analyses in the K562 CTCF ChIA-PET data set between overlapped and unique interactions in ChIAMM and existing tools. The
Fisher’s exact p-values are given at each the top of the figure.
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FIGURE 6 | Aggregate peak analysis (APA) plots for overlapped and unique significant interactions between ChIAMM and existing method in rice MH63 H3K9me2
ChIA-PET data set. Each row in the plot represents the comparison of interactions between ChIAMM and one other method.

tools. We plotted two pairs of APA plot for overlapped
and unique interactions. Figure 6 and Supplementary
Figure 9 show the APA plot for overlapped and unique
interactions. In unique interactions, ChIAMM has shown
higher P2LL values in both datasets. Besides, in the overlapped
interactions, ChIAMM shows similar P2LL values with HG
and lower P2LL values with ChIA-PET2 in H3K9me2 and
RNAPII MH63 datasets.

DISCUSSION AND CONCLUSION

Chromatin interaction analysis by paired-end tag sequencing
is a genome-wide, high-throughput, and high-resolution
method to detect chromatin interactions associated with a
specific protein of interest. Here, we described a new statistical
approach called ChIAMM that corrects for non-specific
interactions as a function of genomic distance, enrichment, GC
content, and mappability score. It is designed for both short-
and long-read ChIA-PET datasets. Using the RNAPII- and
CTCF-associated data from human K562 and MCF7 cell and
RNAPII- and H3K9me2-associated data from rice Minghui 63
(MH63), we demonstrated that our approach is better with the
most effective top existing tools.

In various studies, enrichment, genomic distance, GC content,
and mappability score were listed as systematic sources of
bias. All the preexisting ChIA-PET tools considered only the
genomic distance or enrichment as systematic biases. Therefore,
all tools failed to address the possible biases in their study.
Some are designed exclusively for short-read and only for
intrachromosomal interaction ChIA-PET datasets. In this study,

we filled all the above gaps using the Poisson regression
model. We considered the genomic distance, enrichment, GC
content, and mappability score in the model, and we noticed
its effect on the interaction frequency. Supplementary Table 1
shows the estimated Poisson regression coefficients of biases
in the MH63 RNAPII dataset. Each bias coefficient has a
different sign and magnitude that tells the relationship type
(positive or negative) and the degree of its effect, respectively.
Enrichment and GC content, and mappability and genomic
distance have a positive and negative effect, respectively. Besides,
in the intrachromosomal interaction dataset, mappability and
enrichment, and in the interchromosomal dataset, the GC
content show a higher effect on loop detection.

Furthermore, some tools like Mango examined
only intrachromosomal interaction. They removed all
interchromosomal interactions in their model because they
thought that interchromosomal interactions are the source of
biases; besides, they could not find a technique that measures
the genomic distance on different chromosomes. In this
study, we dealt with these challenges via modeling inter- and
intrachromosomal interaction data separately. This technique
considered all four biases in the intrachromosomal interaction
model and the three biases (we left out the genomic distance) in
the interchromosomal interactions model. Using this technique,
we salvaged essential significant interchromosomal interactions
data rather than removal. Thus, this technique is a novel idea
to consider interchromosomal interaction data into the study
instead of total eradication.

Supplementary Table S2 shows the significant intra- and
interchromosomal interaction (≥ 3) in various tools. Except
for Mango and ChiaSig, other tools detected different amounts
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of significant interchromosomal interactions. Comparatively,
ChIAPoP found the largest interchromosomal interactions;
ChIAMM found 24, 28, 24, and 11 significant interchromosomal
interactions from MCF7 RNAPII, K562 RNAPII, MCF7 CTCF,
and K562 CTCF datasets, respectively. Therefore, discarding all
interchromosomal data from the model is not a proper technique.
It is considered as removed potential chromatin interaction
from the analysis.

We compared ChIAMM results with the other five top existing
tools using APA plot, CTCF coverage of anchors, and CTCF
motif orientation. In the APA plot, we showed the performance
of ChIAMM using overlapped and unique interaction frequency
data. In all datasets, ChIAMM showed the highest enrichment
of interaction with other existing methods, except Mango, an
exceptionally conservative method, and it reports very few
chromatin interactions. In the overlapped interactions, ChIAMM
showed equal P2LL values with HG and ChiaSig, as expected,
because ChIAMM and ChiaSig used ChIA-PET Tool as a primary
processing pipeline, and this is also true for CTCF coverage
and CTCF motif orientation analysis results. In CTCF coverage
and motif orientation analysis, the new approach showed equal
CTCF coverage and motif orientation with HG and ChiaSig in
the overlapped interactions and relatively minimal differences
with others. However, in almost all comparisons, the difference
is statistically insignificant.

We compared the running time of ChIAMM with other
preexisting methods. As an example, we analyzed the MCF7
CTCF ChIA-PET with threads, 12; RAM, 64 GB; cluster
operating system, CentOS 6.6; central processing unit, Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50 GHz. ChIAMM took
48.1 min and showed better performance. ChIA-PET Tool,
ChiaSig, Mango, ChIA-PET2, and ChIAPoP took 17, 37,
36, 31, and 23 h, respectively. Overall, ChIAMM is the
outperformed novel, fastest, and user-friendly tool than the most
existing methods.
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