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Background. Mannose-binding lectin (MBL) plays a key role in the activation of the lectin-complement pathway
of innate immunity, and its deficiency has been linked with several acute infections. However, its role in predisposing
to, or modulating disease severity in, Clostridium difficile infection (CDI) has not been investigated.

Methods. We prospectively recruited 308 CDI case patients and 145 control patients with antibiotic-associated
diarrhea (AAD). CDI outcome measures were disease severity, duration of symptoms, 30-day mortality, and 90-day
recurrence. Serum concentrations of MBL were determined using a commercial enzyme-linked immunosorbent
assay transferred to an electrochemiluminescence–based platform. MBL2 polymorphisms were typed using a com-
bination of pyrosequencing and TaqMan genotyping assays.

Results. The frequency of theMBL2 genetic variants was similar to that reported in other white populations. MBL
serum concentrations in CDI and AAD subjects were determined by MBL2 exonic variants B, C, and D and the hap-
lotypes (LYPB, LYQC, and HYPD). There was no difference in either MBL concentrations or genotypes between cases
and controls. MBL concentration, but not genotype, was a determinant of CDI recurrence (odds ratios, 3.18 [95% con-
fidence interval {CI}, 1.40–7.24] and 2.61 [95% CI, 1.35–5.04] at the <50 ng/mL and <100 ng/mL cutoff points, respec-
tively; P < .001). However, neither MBL concentration nor MBL2 genotype was linked with the other CDI outcomes.

Conclusions. Serum MBL concentration did not differentiate between CDI cases and AAD controls, but among
CDI cases, MBL concentration, but not genotype, was associated with CDI recurrence, indicating that MBL acts as a
modulator of disease, rather than a predisposing factor.
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The initiation and propagation of inflammatory cas-
cades is an essential housekeeping property of the

innate immune response during infections. Mannose-
binding lectin (MBL) activates the lectin-complement
pathway of innate immunity through binding to repet-
itive sugar arrays on microbial surfaces [1]. MBL is also
a potent regulator of inflammatory pathways: it can
modulate phagocyte interaction with mucosal organ-
isms at the site of infection [2], and interacts with
other components of the innate immune system such
as Toll-like receptors [3].

Low MBL concentrations have been associated with
increased susceptibility to infections in both animal
models and humans [4, 5], as well as with poor disease
prognosis [1]. The modulation of disease severity is
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partly thought to be through a complex, dose-dependent
influence on cytokine production [6]. Serum MBL concentra-
tions range from negligible to as high as 10 000 ng/mL [7–9];
this varies with ethnicity and with the screening method
adopted [10].

MBL secretion in humans is dependent on theMBL2 genetic
architecture [11, 12]. To date, 57 genetic variants have been
identified within the entire MBL2 gene (dbSNP, build 140,
NCBI), with only 6 of them known to affect secretion and/or
function of the encoded protein (Figure 1) [8, 13]. The mutated
alleles B, C, or D are collectively termed O and their correspon-
dent wild-type alleles are jointly referred to as variant A, with
the presence of any given O variant (in either the heterozygous
or homozygous state) resulting in MBL deficiency [8, 13]. The
existence of strong linkage disequilibrium (LD) between the
promoter and structural gene variants means that only 7 com-
mon haplotypes (out of a possible 64), which may affect serum
concentrations, have been described: HYPA, LYQA, LYPA,
LXPA, HYPD, LYPB, and LYQC [14, 15]. HYPD, LYPB, and
LYQC lead to the production of unstable ligands with shorter
half-lives that are easily degraded to lower oligomeric forms.
Studies that have evaluated both genetic mutations and serum
concentrations in white populations are summarized in Supple-
mentary Table 1.

Clostridium difficile is an opportunistic spore-forming bacte-
rium that can effectively colonize the intestinal tract following
antibiotic-driven dysbiosis. Clostridium difficile infection
(CDI) is the result of intense colonic inflammation caused by
the release of potent enterotoxins. Research into host biomark-
ers for CDI has focused on mediators of inflammation in the
gut, such as fecal interleukin 8 [16], lactoferrin [16], and cal-
protectin [17], and linked them with disease severity [16, 18].
More recently, both serum interleukin 23 and procalcitonin
have also been proposed as potential biomarkers for CDI se-
verity [19, 20]. However, the role of these biomarkers in the
stratification of problematic CDI patients remains unclear,
and thus remains an important area of research. Additionally,
several clinical prediction rules have been proposed for the eval-
uation of CDI outcomes [21–23], but none have gained wide-
spread clinical acceptance.

To date, there have been no studies on the role of either MBL
levels or MBL2 genetic variants with CDI, possibly because MBL
is not thought to bind to the surface of C. difficile [24]. However,
there is growing evidence for an association between MBL and
major modulators of inflammation, such as Toll-like receptors
and C-reactive protein (CRP), both of which have been associated
with CDI [25, 26]. Therefore, we sought to investigate the role of
MBL in a prospective cohort of CDI cases and inpatient controls.

Figure 1. Schematic representation of the majorMBL2 isoform and genetic polymorphisms. Polymorphisms responsible for the haplotypes that ultimately
determine mannose-binding lectin (MBL) expression levels are indicated by the red arrows. *In this study, rs10556764 (6-bp deletion) was used as a proxy
single-nucleotide polymorphism for rs7095891.
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METHODS

Cohort
A cohort of 453 inpatients was consecutively recruited from a
large hospital setting in Merseyside, United Kingdom. Patients
were eligible for inclusion if they had healthcare-associated di-
arrhea (defined as ≥3 liquid stools passed in the 24 hours pre-
ceding assessment), an onset after being in hospital for >48
hours, and recent exposure to either antimicrobials and/or pro-
ton pump inhibitors (PPIs). Using criteria previously described
[27], 308 patients with CDI (cases) and 145 control patients
with antibiotic-associated diarrhea (AAD) were classified
based on toxin enzyme-linked immunosorbent assay (ELISA)
test (TOX A/B II, Techlab, Blacksburg, Virginia), microbiological
culture, and clinical diagnosis made by independent clinicians.
Polymerase chain reaction (PCR) ribotyping and multiplex
PCR were performed to determine strains types and the toxigenic
nature of the isolates [28].

Blood and fecal specimens were collected from patients at
study entry, of whom 98% were white. Relevant information
on demographics, admission, and clinical history was collected
for each patient. Ethical approval was obtained from the Liver-
pool Research Ethics Committee (reference number 08/H1005/
32), and each patient provided written informed consent prior
to recruitment.

Definition of Outcomes
Cases and controls were defined as described above. The se-
verity of CDI symptoms was assessed at baseline by research
nurses using the guidelines proposed by Public Health England
[29], which we adjusted to incorporate a more stringent white
blood cell count cutoff of >20 × 109/L while also replacing acute
rising creatinine with an estimated glomerular filtration rate of
<30 mL/min/1.73 m2 at the time of diagnosis. Duration of
symptoms was recorded from the date of onset of symptoms
and then dichotomized into episodes lasting ≥10 or <10 days.
All-cause mortality was actively monitored for a period of 30
days from diagnosis, and recurrent CDI was defined as the de-
velopment of subsequent CDI episodes up to a period of 90 days
post-diagnosis of the initial episode. If the patient was dis-
charged from hospital prior to final follow-up, we attempted
in every case to obtain data from the hospital, general practi-
tioner, or patient (the latter by a telephone call).

Determination of MBL Serum Concentrations
A commercially available in vitro diagnostic ELISA kit (Sanquin
Blood Supply, Amsterdam, the Netherlands) was transferred
onto the Meso Scale Discovery electrochemiluminescence
(ECL)–based platform, undergoing appropriate optimization
prior to use. The MBL kit control was used across all plates to
determine interplate variability and a subsequent correction

factor used for each plate. Final minimum detection level
(lower limit of detection [LLOD]) and minimum quantification
level (lower limit of quantification [LLOQ]) were calculated by
taking the mean values across all plates. The mean LLOD and
LLOQ across all plates were 11.3 and 11.0 ng/mL, respectively,
with overall median values of 491.9 ng/mL among controls and
361.8 ng/mL in cases. Signal values ranged from only 50 to 500
ECL units, which denotes a compressed signal range inherent
with the assay. Because this may have potentially limited dis-
crimination of the quantitative values, data were subject to bi-
nary categorization based on 3 previously used deficiency
cutoffs: 50, 100, and 500 ng/mL [30–32].

Determination of MBL2 Variants
A total of 9 variants lying in the promoter and exon 1 were
typed (Figure 1) by either pyrosequencing (PyroMark Q96 cus-
tom assays, Qiagen; rs36014597, rs7084554, rs1800451,
rs1800450, rs5030737, and rs10556764) or TaqMan SNP geno-
typing (Applied Biosystems; rs7096206, rs11003125, and
rs11003123). The variants rs1800451 (C), rs1800450 (B),
rs5030737 (D), rs7096206 (X/Y), and rs11003125 (H/L) were
used for haplotype determination, and rs10556764, a 6-bp
Ins/Del in complete LD with rs7095891 (P/Q), was used as
a proxy. Another recognized tagging marker for P/Q
(rs11003123) was independently typed to evaluate the accuracy
of the pyrosequencing assays.

Table 1. Demographics of Patients With Clostridium difficile
Infection and Antibiotic-Associated Diarrhea

Patient’s Characteristics
CDI Cases
(n = 308)

AAD Controls
(n = 145)

Female sex 177/308 (57) 81/142 (57)
Age, y, mean (SD) 70.1 (16.4) 65.0 (17.6)

BMI, kg/m2, mean (SD) 24.6 (6.8) 26.9 (6.9)

Presence of immunosuppression 52/307 (17) 35/144 (24)
Presence of renal comorbidity 157/307 (51) 82/144 (57)

Presence of diabetes 58/307 (19) 39/144 (27)

Charlson comorbidity score,
median (IQR)

1.0 (0.0–2.0) 1.0 (0.0–2.0)

Time delay (testing/recruitment),
median (IQR)

3.0 (2.0–4.0) 2.0 (2.0–3.0)

Clinical parameters
Duration of symptoms ≥10 d 175/290 (60)a 32/134 (24)

All-cause mortality within 30 d 26/305 (9) 5/142 (4)

All-cause mortality within 1 y 95/271 (35)b 25/141 (18)
Disease severity at baseline 127/308 (41) . . .

Recurrence within 90 d 83/220 (38) . . .

Data are presented as No. (%) unless otherwise specified. Differences
between case and control groups were found to be statistically significant:
a P < .0001; b P < .001.

Abbreviations: AAD, antibiotic-associated diarrhea; BMI, body mass index;
CDI, Clostridium difficile infection; IQR, interquartile range; SD, standard
deviation.
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Pyrosequencing
PCR optimization was conducted using 20 ng of genomic DNA
and temperature gradients following standard guidelines. Opti-
mized products were run on a PyroMark Q96 ID following the
recommended assay protocol. Repeat samples and blanks were
included for quality control purposes, and data were analyzed
using PyroMark Q96 software (version 2.5.8).

TaqMan Genotyping
Reactions consisted of 20 ng genomic DNA, 1× TaqMan SNP
genotyping assays, run on an Applied Biosystems HT 7900
Fast Real-time PCR system (Applied Biosystems) using stan-
dard cycling conditions. Repeat samples and blanks were incor-
porated for quality control purposes, and results analyzed using
SDS software (version 2.2).

Statistical Analysis
Median MBL serum concentrations were compared for individ-
ual SNPs and haplotypes by the Mann–Whitney U test, then
subjected to stratification based upon previously used 2-marker
grouping profiles termed high- (YA/YA and XA/YA), interme-
diate- (XA/XA and YA/YO), and low-expressing (XA/YO & YO/
YO) genotypes [32, 33].

The effect of bothMBL2 genetics (based on stratified expres-
sion genotypes) and serum MBL concentrations (based upon
deficiency cutoffs) were individually taken forward for case-
control comparison and subgroup analysis of cases. For the lat-
ter, this included logistic regression for the following outcome
measures: (1) severity of disease, (2) duration of symptoms ≥10
days, (3) 90-day recurrence, and (4) 30-day mortality. Covari-
ates including demographic variables, the presence of PCR
ribotype 027/NAP/BI1, and potential confounders (immuno-
suppressive therapy, renal disease, and diabetes; score on Charl-
son comorbidity index; and time delay between sample testing
positive and recruitment) were individually assessed. Severity of
disease was assessed both as a CDI outcome and as a baseline
predictor for the other outcomemeasures. Statistically significant

covariates were added to the final regression model to produce
adjusted P values, odds ratios (ORs), and 95% confidence inter-
vals (CIs). All analyses were carried out using SPSS (version 20).

Power calculations were simulated using nQuery Advisor +
nTerim (version 2.0). This showed that the power a posteriori
was ≥99% for the majority of analyses. However, for analysis
of 30-day mortality and disease severity at baseline, power
was lower (67% and 75%, respectively; Supplementary Table 2).

RESULTS

Patient Demographics
CDI cases and AAD controls were demographically comparable
(Table 1). However, mortality at 1 year (35% vs 18%; P < .001)
and duration of diarrhea symptoms (≥10 days 60% vs 24%;
P < .0001) were significantly greater among CDI cases. In rela-
tion to medication history, 9% (28/308) and 1% (2/145) of CDI
cases and AAD controls had prior exposure to PPIs but not an-
tibiotics within 90 days of the development of CDI, respectively,
with 58% (180/308) and 54% (79/145) exposed to both an an-
tibiotic and a PPI. Of CDI cases, 41% (127/308) had severe dis-
ease and 38% (83/220) experienced recurrence within 90 days.
Twenty-eight CDI cases, who had not experienced any recur-
rence of symptoms but died within the 90-day follow-up period,
could not be included in our analysis of recurrence.

Relationship of Genotype With Serum MBL Concentrations
Of the 9 variants typed in the CDI cases and AAD controls, 3
were excluded: 1 SNP (rs7084554) deviated from Hardy-
Weinberg equilibrium (<0.001); rs11003123 was deemed redun-
dant due to complete LD with the Ins/Del polymorphism
(rs10556764); and rs36014597 was also in complete LD with
both rs10556764 and rs11003123. Of the 6 polymorphisms ana-
lyzed, the genotyping success rate was ≥95%. Their minor allele
frequencies were in line with those reported in the literature (Sup-
plementary Table 3). For both groups, 7 common haplotypes
were derived from the 6 polymorphisms (Supplementary

Table 2. Mannose-Binding Lectin (MBL) Serum Concentrations Across MBL2 Haplotypes in Patients With Clostridium difficile Infection
and Antibiotic-Associated Diarrhea

Haplotype HYPA LYPA LYQA LXPA HYPD LYPB LYQC

Presence of haplotype

No. (% frequency) 213 (29) 44 (6) 143 (19) 170 (23) 55 (7) 108 (15) 11 (1)
Median, ng/mL (range) 612 (17–3981) 587 (0–2500) 529 (0–3981) 428 (0–2968) 157 (0–815) 73 (0–637) 48 (0–492)

Absence of haplotype

No. (% frequency) 198 (9) 367 (17) 268 (13) 241 (11) 356 (17) 303 (14) 400 (19)
Median: absence, ng/mL (range) 171 (0–2374) 388 (0–3981) 324 (0–2968) 377 (0–3981) 484 (0–3981) 568 (0–3981) 420 (0–3981)

P valuea <.001 .04 <.001 .34 <.001 <.001 .001

a P values were calculated using a Mann–Whitney test comparing mannose-binding lectin serum concentrations against the presence/absence of each individual
haplotype.
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Figure 1), which is consistent with other previous studies in white
populations (Table 2) [9, 34].

Presence of the mutant allele for all individual MBL2 variants
had a significant influence on serum MBL concentration across
all patients, except for the X allele encoded by rs7096206 (P = .30;
Supplementary Table 3). All the assembledMBL2 haplotypes also
significantly impacted on serum concentrations, except for hap-
lotype LXPA where there was no difference compared with the
overall median value (P = .34; Table 2). Genotypic and haplotypic
analyses demonstrated that the presence of a variant allele for any
of the 3 exonic variants (rs1800451, rs1800450, and rs5030737)
were the major contributing factors for lower MBL concentra-
tions (Table 2 and Supplementary Table 3).

Patients with high-expressing genotypes had a median serum
MBL concentration of 714 ng/mL, compared with 190 ng/mL

with intermediate-expressing genotypes, and 32 ng/mL with
low-expressing genotypes (P < .001; Table 3; Figure 2A). The
contribution of the X allele, seemingly insignificant when eval-
uated on an individual basis (Supplementary Table 3), became
apparent with a gradual decrease when compared with the
equivalent genotypes containing the Y allele in the rank
order: XA/YA < YA/YA, XA/XA < XA/YA, and XA/YO < YA/
YO (Table 3; Figure 2B).

MBL Deficiency Cutoff Points in Relation to Haplotype Groups
In total 59 (13%), 93 (21%), and 258 (58%) patients had serum
MBL concentrations below 50, 100, and 500 ng/mL, respectively.
When these data were compared with the “expressing” genotype
groups, 78% (42/54) and 68% (59/87) of those with concentra-
tions <50 ng/mL and <100 ng/mL, respectively, were low expres-
sors, compared with 28% (66/236) of those with a concentration
<500 ng/mL (Supplementary Table 4). The corresponding figures
for high expressors were 4% (2/54), 6% (5/87), and 30% (70/236),
respectively. Similarly, 96% (52/54) and 93% (81/87) of those
with concentrations <50 ng/mL and <100 ng/mL, respectively,
carried the deficient (O) haplotypes, compared with 65% (153/
236) of those with a concentration <500 ng/mL (Supplementary
Table 4). Based on the results above, only the 50 and 100 ng/mL
cutoffs were taken forward for further analysis, which is consis-
tent with previous literature [30, 31].

Comparison of MBL Levels Versus CDI Disease Outcomes
Serum MBL concentrations are shown in Supplementary
Table 5. Analysis using both <50 ng/mL and <100 ng/mL as

Table 3. Median Serum Mannose-Binding Lectin Concentrations
Across Previously Defined Expression Genotype Groupsa

MBL Expression
Group Genotype No.

Median,
ng/mL

Combined
Median, ng/mL

High YA/YA 124 854 714
XA/YA 113 561

Intermediate XA/XA 16 270 190

YA/YO 91 175
Low XA/YO 41 32 32

YO/YO 26 31

Abbreviation: MBL, mannose-binding lectin.
a Expression groups defined according to Eisen et al [32].

Figure 2. Median serum mannose-binding lectin (MBL) concentrations in relation to 3-tier grouping based on proposed expression profiles (A) and in-
dividual genotypic groups within proposed expression profiles (B). Median serum MBL concentrations were determined across previously defined expression
profiles: high (YA/YA and XA/YA), intermediate (XA/XA and YA/YA), and low (XA/YO and YO/YO). Median levels were also determined for the 6 individual
genotypic groups across all expression profiles. Abbreviation: MBL, mannose-binding lectin.
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cutoff points to signify deficiency identified no significant dif-
ferences between CDI cases and AAD controls (P = .79 and
P = .09, respectively) (Table 4). Evaluation of the clinical out-
comes in CDI cases showed a significant association with CDI
recurrence (P < .01 for both; Table 4) with ORs of 3.18 and 2.61
at the <50 ng/mL and <100 ng/mL cutoff points, respectively.
No association was identified with any of the other outcomes
including prolonged symptoms, 30-day mortality, and disease
severity at baseline (Table 4). Despite the strong correlation ob-
served between genotypes/haplotypes and serum MBL concen-
trations in this cohort, no significant associations were
identified between high-, intermediate-, and low-expressing ge-
notypes and CDI disease outcomes (Supplementary Table 6).

There was an inverse correlation between MBL and CRP
serum concentrations (R2 = −0.16, P = .001; Supplementary
Figure 2). No significant correlation was identified with white
cell count (R2 =−0.04, P = .44).

DISCUSSION

Studies evaluating the role of MBL in infectious and immune dis-
eases have focused on either genotype, phenotype, or occasionally
on both parameters. The latter approach is preferred as it

can show discordance between genotype and phenotype. This
study is one of the larger disease-related studies concurrently in-
vestigating both genotypic/haplotypic variants and serum con-
centrations in a white population (Supplementary Table 1) and
is the first to demonstrate an association between serum MBL
concentrations, but not genotype, and recurrence of CDI within
90 days using two distinct cutoff values for MBL deficiency.

The mechanistic basis of the association is unclear. With other
bacterial and viral infections, MBL is thought to be capable of
binding to the cell surfaces of invasive pathogens, thereby stimu-
lating a downstream immune response. However, this does not
seem to be the case with C. difficile, where binding of MBL has
been shown to be low [24]. This suggests that MBL deficiency
does not per se predispose to CDI and is consistent with the ob-
served lack of difference in circulating concentrations of MBL be-
tween CDI cases and AAD controls. MBL has other functions
including modulation of inflammation and clearance of apopto-
tic cells [35]. The former may be relevant to CDI, where MBL
may be acting as a modulator of the disease. Consistent with
this, clinical manifestations of MBL deficiency appear to be of
more relevance either in infants when the immune system is
still maturing or in susceptible groups when there is an associated
immunodeficiency [36], such as in hospitalized elderly patients

Table 4. Analysis of Clostridium difficile Infection Disease Outcomes Versus Serum Mannose-Binding Lectin Concentration Based on
Deficiency Cutoffs of 50 and 100 ng/mL

Concentration Cases (n = 308) Controls (n = 145) P Value OR (95% CI)

<50 ng/mL 41 (13%) 18 (12%) .79a 1.09 (.58–2.06)

<100 ng/mL 70 (23%) 23 (16%) .09b 1.61 (.93–2.79)

Death (n = 26) Survival (n = 276)

<50 ng/mL 3 (12%) 37 (13%) .78c 1.22 (.31–4.82)
<100 ng/mL 5 (19%) 64 (23%) .84c 0.88 (.27–2.89)

≥10 d (n = 174) <10 d (n = 113)

<50 ng/mL 27 (16%) 10 (9%) .10d 1.89 (.88–4.08)

<100 ng/mL 42 (24%) 22 (20%) .35d 1.32 (.74–2.35)

Recurrence (n = 81) Nonrecurrence (n = 136)

<50 ng/mL 18 (22%) 13 (10%) <.01e 3.18 (1.40–7.24)

<100 ng/mL 29 (36%) 24 (18%) <.01e 2.61 (1.35–5.04)

Severe (n = 125) Nonsevere (n = 180)

<50 ng/mL 16 (13%) 25 (14%) .78d 0.91 (.46–1.79)
<100 ng/mL 29 (23%) 41 (23%) .93d 1.02 (.60–1.76)

Data regarding duration of symptoms and disease recurrence was unavailable for 18 and 60 of our cases, respectively. For disease recurrence, an additional 28
patients had died within the follow-up period prior to experiencing any recurrent symptoms and therefore could not be included in the analysis. Serum mannose
binding lectin level was unavailable for an additional 3 individuals who were therefore excluded from analysis across all outcomes.

P values and ORs were calculated using univariate logistic regression and adjusted for the presence of significant covariates.

Abbreviations: CI, confidence interval; OR, odds ratio.
a Age, body mass index (BMI), time delay between testing positive and recruitment, and the presence of diabetes.
b Age, BMI, time delay between testing positive and recruitment, and the presence of diabetes and immunosuppressive therapy.
c Age, BMI, score on Charlson comorbidity index, and disease severity at baseline.
d No covariates were found to be significant and therefore P value remains unadjusted.
e Age.
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or following major clinical interventions. However, these are hy-
potheses that need further investigation.

Although MBL concentrations remain relatively constant in
individuals due to genetic determinants, MBL is known to be a
relatively modest acute phase reactant [37]. This is in sharp con-
trast to other acute phase proteins such as CRP whose concentra-
tions can increase sharply by 10- to 1000-fold during acute
inflammation [38]. Elevated CRP concentrations have previously
been shown to be associated with various CDI outcomes includ-
ing disease severity and recurrence [25, 39]. Consistent with this,
lowMBL concentrations have been associated with an increase in
the level of CRP [40], and with our findings of the association
with CDI recurrence and inverse correlation with CRP. In keep-
ing with the immunomodulatory effect of MBL, it is known that
low concentrations lead to increased secretion of the proinflam-
matory cytokines interleukin 6, interleukin 1β, and tumor necro-
sis factor α [40, 41], all of which have also been shown to be
elevated in response to CDI [42, 43].

The genetic architecture of the MBL2 gene is complex (Fig-
ure 1), with the existence of numerous common functional poly-
morphisms and haplotypes (Figure 1; Tables 2 and ;3; and
Supplementary Table 3). MBL2 haplotype frequencies and the
corresponding impact on serum MBL concentrations were in
line with those previously reported [9, 13] (Table 2). This was
also evident after stratification of MBL haplotypes based on pre-
viously defined expression genotypes [32, 33], with carriers of
low-expressing genotypes showing much lower serumMBL con-
centrations than both intermediate- and high-expressing geno-
types (32 ng/mL vs 190 ng/mL and 714 ng/mL, respectively;
Table 3). Despite the strong association observed between
MBL2 genotypes and serum MBL concentrations, and the asso-
ciation between MBL concentrations and CDI recurrence, there
was no association between MBL genotype and CDI outcomes.
Other studies have also identified associations with protein levels,
but not with genotype (Supplementary Table 1), highlighting the
need to evaluate both MBL genotype and phenotype in infection
and other immune conditions. The lack of association between
MBL genotype and disease outcome may be due to the incom-
plete genetic penetrance ofMBL genetic variation on phenotype.
In this study, only 78% and 68% of the low-expressing genotypes
accounted for deficient serum levels using the cutoff values of
<50 ng/mL and <100 ng/mL, respectively (Supplementary
Table 4). Genetic heterogeneity due to functionally related
genes such as L-ficolin, MASP2, and surfactant proteins may
also play a role, but this needs further investigation.

Our study sought to adhere to a stringent methodology
through the use of a relatively large cohort size and extensive
quality control, but it is not without its limitations. Although
there is less chance of MBL concentrations being confounded by
infection-related events compared with other response markers,
one of the clear drawbacks of this work is the lack of longitudinal

measurements, which is now being addressed in a new prospec-
tive study. The effect of proteins functionally related to MBL and
other markers of inflammation and the relative roles they play in
disease modulation need further investigation. Previous studies
have used various definitions for MBL deficiency, with common-
ly used cutoffs ranging from 50 ng/mL [30] to 500 ng/mL [32]. It
is thus difficult to compare results across different study groups
given the heterogeneity of platforms, profile of cohorts, and stan-
dards adopted for the measurement of MBL. Discrepancies be-
tween studies could be due to low sample sizes, poor assay
performance, and differences in techniques adopted by laborato-
ries. We have tried to overcome some of these limitations by eval-
uating a number of cutoff levels, but there is a need for
international consensus and harmonization in this area.

In conclusion, our data suggest that low serum MBL concen-
trations may act as a predictor of CDI recurrence. Further work
is needed to validate these findings in an independent cohort of
patients and to evaluate the mechanistic basis of this associa-
tion. This area of research would also be advanced through con-
sensus on definitions of deficiency, standardization of methods
employed for measurement of serum concentrations, and fur-
ther evaluation of the genotype–phenotype relationships.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.

Notes

Acknowledgments. We thank patients for taking part in the study, and
all clinicians and other healthcare professionals who helped with the
recruitment.
Author contributions. A. S., F. M., and M. P. wrote the article. F. M. and

M. P. conducted the study design and M. L. recruited the patients. M. L.,
A. S., and F. M. collected clinical, admission, and follow-up information.
A. S., F. M., P. R., and T. L. performed the laboratory work. R. K., A. S.,
and F. M. performed the statistical analysis. M. P., N. J. B., and
M. B. J. B. led the clinical and microbiological aspects of the study. All au-
thors critically reviewed the manuscript and approved the final version of
the article, including the authorship list.
Financial support. This work was funded by the National Institute for

Health Research (NIHR) Biomedical Research Centre in microbial diseases
in Liverpool, and by the Medical Research Council (MR/K000551/1). We
would also like to thank the NIHR for PhD student funding for Andrew
Swale (BRF-2011-028). M. P. is an NIHR Senior Investigator.
Potential conflicts of interest. All authors: No reported conflicts.
All authors have submitted the ICMJE Form for Disclosure of Potential

Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References

1. Turner MW. The role of mannose-binding lectin in health and disease.
Mol Immunol 2003; 40:423–9.

Mannose-Binding Lectin and Clostridium difficile Infection • CID 2014:59 (15 November) • 1435

http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu666/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu666/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu666/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu666/-/DC1
http://cid.oxfordjournals.org/lookup/suppl/doi:10.1093/cid/ciu666/-/DC1
http://cid.oxfordjournals.org
http://cid.oxfordjournals.org


2. Super M, Thiel S, Lu J, Levinsky RJ, Turner MW. Association of low
levels of mannan-binding protein with a common defect of opsonisa-
tion. Lancet 1989; 2:1236–9.

3. Wang M, Chen Y, Zhang Y, Zhang L, Lu X, Chen Z. Mannan-binding
lectin directly interacts with Toll-like receptor 4 and suppresses lipo-
polysaccharide-induced inflammatory cytokine secretion from THP-1
cells. Cell Mol Immunol 2011; 8:265–75.

4. Møller-Kristensen M, Ip WK, Shi L, et al. Deficiency of mannose-
binding lectin greatly increases susceptibility to postburn infection
with Pseudomonas aeruginosa. J Immunol 2006; 176:1769–75.

5. Shi L, Takahashi K, Dundee J, et al. Mannose-binding lectin-deficient
mice are susceptible to infection with Staphylococcus aureus. J Exp
Med 2004; 199:1379–90.

6. Jack DL, Klein NJ, Turner MW. Mannose-binding lectin: targeting the
microbial world for complement attack and opsonophagocytosis. Im-
munol Rev 2001; 180:86–99.

7. Osthoff M, Trendelenburg M. Impact of mannose-binding lectin defi-
ciency on radiocontrast-induced renal dysfunction. Biomed Res Int
2013; 2013:962695.

8. Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P. Different molec-
ular events result in low protein levels of mannan-binding lectin in pop-
ulations from southeast Africa and South America. J Immunol 1998;
161:3169–75.

9. Steffensen R, Thiel S, Varming K, Jersild C, Jensenius JC. Detection
of structural gene mutations and promoter polymorphisms in the
mannan-binding lectin (MBL) gene by polymerase chain reaction
with sequence-specific primers. J Immunol Methods 2000; 241:33–42.

10. Harrison E, Singh A, Morris J, et al. Mannose-binding lectin genotype
and serum levels in patients with chronic and allergic pulmonary asper-
gillosis. Int J Immunogenet 2012; 39:224–32.

11. Guo N, Mogues T, Weremowicz S, Morton CC, Sastry KN. The human
ortholog of rhesus mannose-binding protein-A gene is an expressed pseu-
dogene that localizes to chromosome 10. Mamm Genome 1998; 9:246–9.

12. Sastry R, Wang JS, Brown DC, Ezekowitz RA, Tauber AI, Sastry KN.
Characterization of murine mannose-binding protein genes Mbl1 and
Mbl2 reveals features common to other collectin genes. MammGenome
1995; 6:103–10.

13. Madsen HO, Garred P, Thiel S, et al. Interplay between promoter and
structural gene variants control basal serum level of mannan-binding
protein. J Immunol 1995; 155:3013–20.

14. Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO. Mannose-binding
lectin and its genetic variants. Genes Immun 2006; 7:85–94.

15. Bernig T, Taylor JG, Foster CB, Staats B, Yeager M, Chanock SJ. Se-
quence analysis of the mannose-binding lectin (MBL2) gene reveals a
high degree of heterozygosity with evidence of selection. Genes
Immun 2004; 5:461–76.

16. El Feghaly RE, Stauber JL, Deych E, Gonzalez C, Tarr PI, Haslam DB.
Markers of intestinal inflammation, not bacterial burden, correlate with
clinical outcomes in Clostridium difficile infection. Clin Infect Dis 2013;
56:1713–21.

17. Shastri YM, Bergis D, Povse N, et al. Prospective multicenter study eval-
uating fecal calprotectin in adult acute bacterial diarrhea. Am J Med
2008; 121:1099–106.

18. Rao K, Erb-Downward JR, Walk ST, et al. The systemic inflammatory
response to Clostridium difficile infection. PLoS One 2014; 9:e92578.

19. Buonomo EL, Madan R, Pramoonjago P, Li L, Okusa MD, Petri WA.
Role of interleukin 23 signaling in Clostridium difficile colitis. J Infect
Dis 2013; 208:917–20.

20. Rao K, Walk ST, Micic D, et al. Procalcitonin levels associate with
severity of Clostridium difficile infection. PLoS One 2013; 8:e58265.

21. Hu MY, Katchar K, Kyne L, et al. Prospective derivation and validation
of a clinical prediction rule for recurrent Clostridium difficile infection.
Gastroenterology 2009; 136:1206–14.

22. Hensgens MP, Dekkers OM, Goorhuis A, LeCessie S, Kuijper EJ. Pre-
dicting a complicated course of Clostridium difficile infection at the bed-
side. Clin Microbiol Infect 2014; 20:O301–8.

23. Butt E, Foster JA, Keedwell E, et al. Derivation and validation of a simple,
accurate and robust prediction rule for risk of mortality in patients with
Clostridium difficile infection. BMC Infect Dis 2013; 13:316.

24. Townsend R, Read RC, Turner MW, Klein NJ, Jack DL. Differential rec-
ognition of obligate anaerobic bacteria by human mannose-binding lec-
tin. Clin Exp Immunol 2001; 124:223–8.

25. Eyre DW, Walker AS, Wyllie D, et al. Predictors of first recurrence of
Clostridium difficile infection: implications for initial management.
Clin Infect Dis 2012; 55(suppl 2):S77–87.

26. Ryan A, Lynch M, Smith SM, et al. A role for TLR4 in Clostridium dif-
ficile infection and the recognition of surface layer proteins. PLoS Path-
og 2011; 7:e1002076.

27. Miyajima F, Swale A, Zhang JE, et al. Is the interleukin 8 promoter poly-
morphism rs4073/-251T >A associated with Clostridium difficile infec-
tion? Clin Infect Dis 2014; 58:e148–51.

28. Miyajima F, Roberts P, Swale A, et al. Characterisation and carriage
ratio of Clostridium difficile strains isolated from a community-
dwelling elderly population in the United Kingdom. PLoS One
2011; 6:e22804.

29. Public Health England. Updated guidance on the management and
treatment of Clostridium difficile infection, 2013. Available at: http://
www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317138914904. Ac-
cessed 1 August 2014.

30. Gröndahl-Yli-Hannuksela K, Viander M, Mertsola J, He Q. Increased
risk of pertussis in adult patients with mannose-binding lectin defi-
ciency. APMIS 2013; 121:311–5.

31. Seibold F, Konrad A, Flogerzi B, et al. Genetic variants of the mannan-
binding lectin are associated with immune reactivity to mannans in
Crohn’s disease. Gastroenterology 2004; 127:1076–84.

32. Eisen DP, Dean MM, Boermeester MA, et al. Low serum mannose-
binding lectin level increases the risk of death due to pneumococcal in-
fection. Clin Infect Dis 2008; 47:510–6.

33. Chalmers JD, McHugh BJ, Doherty C, et al. Mannose-binding lectin de-
ficiency and disease severity in non-cystic fibrosis bronchiectasis: a pro-
spective study. Lancet Respir Med 2013; 1:224–32.

34. Adamek M, Heyder J, Heinold A, Fiedler G, Opelz G, Tran TH. Char-
acterization of mannose-binding lectin (MBL) variants by allele-specific
sequencing of MBL2 and determination of serum MBL protein levels.
Tissue Antigens 2013; 82:410–5.

35. Dommett RM, Klein N, Turner MW. Mannose-binding lectin in innate
immunity: past, present and future. Tissue Antigens 2006; 68:193–209.

36. Koch A, Melbye M, Sørensen P, et al. Acute respiratory tract infections
and mannose-binding lectin insufficiency during early childhood.
JAMA 2001; 285:1316–21.

37. Dean MM, Minchinton RM, Heatley S, Eisen DP. Mannose binding lec-
tin acute phase activity in patients with severe infection. J Clin Immunol
2005; 25:346–52.

38. Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding
lectin and innate immunity. Immunol Rev 2009; 230:9–21.

39. Khanafer N, Touré A, Chambrier C, et al. Predictors of Clostridium
difficile infection severity in patients hospitalised in medical intensive
care. World J Gastroenterol 2013; 19:8034–41.

40. Garred P, Pressler T, Lanng S, et al. Mannose-binding lectin (MBL)
therapy in an MBL-deficient patient with severe cystic fibrosis lung dis-
ease. Pediatr Pulmonol 2002; 33:201–7.

41. Jack DL, Read RC, Tenner AJ, Frosch M, Turner MW, Klein NJ. Man-
nose-binding lectin regulates the inflammatory response of human pro-
fessional phagocytes to Neisseria meningitidis serogroup B. J Infect Dis
2001; 184:1152–62.

42. Hirota SA, Iablokov V, Tulk SE, et al. Intrarectal instillation of Clostrid-
ium difficile toxin A triggers colonic inflammation and tissue damage:
development of a novel and efficient mouse model of Clostridium diffi-
cile toxin exposure. Infect Immun 2012; 80:4474–84.

43. Vohra P, Poxton IR. Induction of cytokines in a macrophage cell line by
proteins of Clostridium difficile. FEMS Immunol Med Microbiol 2012;
65:96–104.

1436 • CID 2014:59 (15 November) • Swale et al

http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317138914904
http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317138914904
http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317138914904


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


