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Abstract: Virus evolution is the change in the genetic structure of a viral population over time and
results in the emergence of new viral variants, strains, and species with novel biological properties,
including adaptation to new hosts. There are host, vector, environmental, and viral factors that
contribute to virus evolution. To achieve or fine tune compatibility and successfully establish
infection, viruses adapt to a particular host species or to a group of species. However, some viruses
are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity
through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and
selection pressures by host and vector factors, and random variants or those with a competitive
advantage are fixed in the population and mediate the emergence of new viral strains or species
with novel biological properties. This process creates a footprint in the virus genome evident as
the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that
function as determinants of host adaptation. Here, with respect to plant viruses, we review the
current understanding of the sources of variation, the effect of selection, and its role in virus evolution
and host adaptation.

Keywords: virus evolution; co-evolution; host adaptation; mutation; reassortment; recombination;
selection pressure; quasispecies

1. Introduction

As the global population approaches 9 billion people, current food production is
threatened by climate change and decreasing land availability, making food security an
increasing concern [1]. One approach to addressing these concerns is to reduce crop loss
caused by plant pathogens, including viruses. Plant viruses affect economically important
staple, cash, non-cash, and secondary-staple crops, resulting in over USD 30 billion in
crop loss annually [2,3]. Further, plant viruses make up almost 50% of the emerging and
reemerging infectious diseases [2,4]. There is a rise in virus outbreaks in part because
climate change increases the geographic areas where viruses and vectors overlap [5–7].
This problem is exacerbated by viruses spreading into new areas through global trade and
agricultural expansion [2,8].

Plant viruses are obligate parasites that use host processes and resources to replicate
and spread. They consist of single- or double-stranded DNA or RNA contained within a
virion. To enter the host, plant viruses need to bypass the cuticle and cell wall [9]. This
can take place either through a virus vector feeding on the plant or through mechanical
means. Successful infection only occurs when there is a compatible interaction between
a host and a virus [6,10]. Insects are the most numerous vectors, with aphids, whiteflies,
and leafhoppers being the most common [11]. However, mites, fungi, and nematodes are
important vectors for some viruses [11]. Plant viruses can also be spread through grafting,
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seed, and vegetative cuttings [6]. Once inside the cell, viruses uncoat, and their genetic
information, for positive strand RNA viruses is translated by the host machinery, leading
to virus replication and virion formation [9]. In a continuous cycle, infection begins at a
single-cell level, spreads cell to cell through the plasmodesmata, and eventually leads to
long distance movement throughout the host [12].

Plants defend against viruses through multiple mechanisms, including gene silenc-
ing [13], autophagy [14], and Resistance (R) genes [15]. R genes interact with pathogen
avirulence genes (avr) that activate host defenses, including programmed cell death [15].
Dominant and recessive R genes have been identified in wild relatives and introduced
through plant breeding into commercial cultivars of important crops such as tomato, soy-
bean, and potato [16–18]. However, new virus variants and species can quickly break host
resistance, especially when virus resistance is dependent on a single gene [19,20]. This
phenomenon occurs when in key areas of the virus genome, mutations accumulate that
provide a selective advantage [19–21].

The establishment of infection involves a compatible interaction between a virus and
a host in a favorable environment (Figure 1). During replication, viruses may recombine,
generate mutations, and, for RNA viruses, exist as a cloud of genetic variants (quasis-
pecies) [22–25]. There is natural genetic diversity in host plants and vectors and variation
in environmental conditions [20,26]. Accordingly, viruses are forced to interact with and
adapt to genetically diverse host and vector factors in diverse environments. Thus, host,
vector, and environmental factors, through genetic drift and selection, drive virus evo-
lution (Figure 1). Virus evolution is established as changes in the genomic structure of
a viral population, causing the emergence of new viral variants or species with novel
biological properties.
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Figure 1. A model of virus evolution driven by the interactions between a virus, host, and vec-
tor. These interactions, combined with genetic drift and selective pressure, generate new variants.
Contributing variables are indicated for viruses, vectors, and host plants.

This review provides a broad view of plant virus evolution and host adaptation
through the lenses of genetic variation and selection. It is focused on the contributions of
mutation, reassortment, and recombination to the generation of genetic diversity and on
selection constraints imposed by vectors, hosts, and environmental factors, as driving forces
for the emergence of new variants and new viral species with novel biological properties.
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Contributions of mutation, reassortment, and recombination to genetic variation and the
balancing effects on selection and bottlenecks on reducing genetic variation have been
reviewed [27].

1.1. Plant Virus Genome Organization

Plant viruses are a diverse group of species with a broad array of genome organiza-
tion and gene expression strategies classified into taxonomic families, each with several
genera and species. Whether measured by family, genus, or species, the number of RNA
viruses is greater than the number of DNA viruses, with most plant viruses being (+)
sense ssRNA viruses [28]. Virions might be enveloped or not enveloped, with diverse
morphologies, genome sizes, and organization [29]. These characteristics are most similar
between viruses in the same taxonomic family or genus but do vary across families. The
most common genome structure is a segmented genome (Figure 2). The families Potyviridae,
Closteroviridae, Tombusviridae, and Geminiviridae contain both monopartite and bipartite
species (Figure 2). Single-stranded genomes and segmented genomes have been linked to a
wider host range [30]. Segmented genomes have shown to support higher mutation rates,
particle stability, and genetic exchange through reassortment [31]. These genome structures
are the most common across plant viruses, suggesting there is an evolutionary benefit.
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1.2. Virus-Plant Co-Evolution

Plant viruses rely on host factors to replicate, move cell to cell, and travel systemi-
cally, but there is natural variation in those host factors [20,32]. Accordingly, plant viruses
co-evolve with their host [33,34] and establish a balance between genomic functional-
ity and the bottlenecks imposed by host genetic diversity, host compatibility, antiviral
defense, and the fitness cost to the virus associated with host–range expansion or host
specialization [10,30,35,36]. The coevolution of viruses with their hosts is tightly linked to
an arm race with the host defense system and the availability of host factors for pro-viral
functions in multilayered cooperation [35]. The arms race of coevolution includes multiple
layers of defense and counter-defense in which the hosts constantly evolve new means of
defense that viruses constantly evolve to evade or suppress [13]. In a clear indication of
cooperation, viruses co-op host genes for counter-defense, replication, and movement, and
host cells recruit viral genes for diverse roles [10,35].

Viruses evolve in a host-specific manner, accumulating mutations that can increase
or decrease fitness, virulence, or infectivity in a certain host [36–38]. Interestingly, not
all areas of the virus genome accumulate mutations at the same rate. Instead, mutations
preferentially accumulate in parts of the genome that are determinants of host adapta-
tion [20,39–41].
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When a virus is spread to a plant, infection can only occur if the interaction is compati-
ble. This can occur when a host lacks factors, such as R genes, that would otherwise prevent
infection from occurring. For example, mutating the BRI1-associated kinase 1 (BAK1)
results in increased virus susceptibility [42]. Compatibility can also be mediated by the
availability of susceptibility host factors essential for virus replication and by the balance
between antiviral defense and the suppression of the evasion of antiviral defense [13].
Mutations in host-susceptibility genes may break the interaction with a critical viral compo-
nent, reducing or eliminating virus replication or movement [43,44]. In addition, hosts can
accumulate mutations in genes that mediate antiviral defense. For example, the dominant-
resistance gene Ry(o)phu in Solanum tuberosum groups Phureja and Tuberosum provides
protection to potato virus Y (PVY) by blocking viral replication and movement [44]. Simi-
larly, melon accession PI 164323 is resistant to cucumber vein yellowing virus. However,
a single amino acid change in the VPg coding region restored compatibility and broke
resistance [45].

Often, viruses have a host range limited to a single taxonomic plant family and are not
able to infect across multiple plant families [30]. This is explained by fitness optimization
to a specific host (niche-filling model) [46]. However, infection across families and even
across kingdoms might occur [47], forcing viruses to face strong adaptive selection pressure
to maximize their fit to a new niche [46]. When viruses are exposed to genetically uniform
hosts, local adaptation occurs [48]. Viruses become specialized to certain hosts due to
adaptive tradeoffs where increased fitness in one host leads to decreased fitness in other
hosts due to either epistatic interactions or antagonistic pleiotropy [49–51]. When tobacco
etch potyvirus was sequentially passaged from Nicotiana tabacum into pepper, the virus
accumulated genetic changes that increased virulence and coat protein accumulation in
pepper at the cost of lesser virulence and accumulation in N. tabacum [33]. When not
well-adapted to a host, a virus is less able to hijack the host resources for replication and
movement [52]. Bridge hosts may allow the virus to accumulate mutations that support
host range expansion without adaptive tradeoffs [53]. Plum pox virus accumulated VPg
mutations as it moved from an N. clevelandii-adapted isolate to the bridge-host Arabidopsis
thaliana, which allowed partial adaptation to Chenopodium foetidum [53].

Host response can modulate infection, as illustrated by the proteomic comparison
between cucumber cultivars resistant to or susceptible to cucumber mosaic virus (CMV).
The results showed that the cultivars differentially express photosynthetic, development,
stress, and defense-related proteins during infection [54].

Host plants evolve and mutate, forcing viruses to adapt to genetically heterogenous
host populations. In plants, ARGONAUTE 2 (AGO2) is an important component of
antiviral gene silencing [55]. In A. thaliana, AGO2 shows a high degree of polymorphism
that correlates with changes in susceptibility to potato virus X (PVX) [56]. In ecotype
Colombia, AGO2 confers resistance to PVX, imposing selection pressure on the virus. In
contrast, in ecotype C24, AGO2 confers susceptibility to PVX, potentially imposing selection
pressure on the host [56]. Although AGO2 diversity is not the result of co-evolution with
viruses, this example illustrates diversity in a host gene, with antiviral activity imposing
selection pressure on a virus. While viruses can evolve and adapt rapidly, their hosts may
ultimately shape their longer-term evolution [46,57].

1.3. Virus-Vector Co-Evolution

Plant viruses are vectored from plant to plant by a wide variety of insects, nematodes,
mites, and fungi [58]. Viruses can be transmitted in a circulative or non-circulative manner
with non-persistent, semi-persistent, or persistent subcategories [59]. Virus and vector
interactions are highly specialized and under strong selection pressure, in part, as result of
co-evolution [11,60–62]. For geminiviruses, capsid phylogenies reflect the phylogeny of
their vectors rather than that their host plant species, supporting the model that specificity of
virus–vector interactions is more stringent than the specificity of virus–plant specificity [63].
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Plant viruses often have a narrow vector range: ~60% are vectored by a single
species [58]. Poor compatibility between vector and virus can result in the low incidence
or elimination of a virus [59]. In southern California, lettuce infectious yellows virus in-
cidence dropped significantly after biotype A of whitefly Bemisia tabaci was replaced by
biotype B, a poor vector for the virus [64]. Additionally, mutations in viral proteins that
interact with vector factors can eliminate or alter transmission, creating strong selection
pressure [65,66]. For example, a single amino acid in the coat protein of squash leaf curl
China virus is correlated with increased transmission by Bemisia tabaci Asia-1 compared
with Asia-II-1 [67].

Plant viruses can directly or indirectly alter vector behavior and physiology by induc-
ing transcriptional changes in metabolism-related genes in their vectors [68], which alters
virus transmission [69]. Viruses transmitted in a nonpersistent manner indirectly mediated
positive fitness effects on their vector through changes in the host plant [70]. Vector Aphis
gossypii feeds more frequently on virus-infected plants (single or mixed infections), and both
Frankliniella occidentalis and A. gossypii showed higher fitness after feeding on virus-infected
plants [70,71]. Tomato yellow leaf curl virus (TYLCV) directly affects Bemisia tabaci settling,
probing, and feeding behavior, leading to increased transmission efficiency and spread [72].
Tomato spotted wilt tospovirus infection alters host gene expression, resulting in higher
total free amino acid content, making it nutritionally advantageous and better suited for
thrips vector colonization [71]. Illustrating co-evolution, the specialist aphid Lipaphis erysimi
has greater population growth in turnip mosaic virus (TuMV)-infected plants compared
with noninfected plants. In contrast, the population growth of a generalist aphid vector
Myzus persicae was similar in TuMV-infected and healthy hosts [73]. However, some viruses
trick vectors into feeding on poor-quality hosts through volatile emissions [61].

1.4. The Environment and Virus Evolution

Environmental conditions directly impact virus infection, prevalence, evolution, and
host interactions. These include abiotic factors like temperature, water stress, CO2 levels,
ecology, community makeup, and population heterogeneity [5,26,74,75]. Viruses, hosts,
and vectors exist within a given ecosystem, which can impact the spread, disease risk, and
symptoms of virus infections. Accordingly, virus evolution is also impacted by ecological
factors such as host abundance and species richness, which are affected by climate change
and land use [74,76]. In some cases, a loss of biodiversity in host communities is corre-
lated with increased disease [75]. However, adding genetic diversity can amplify disease
incidence if hosts are susceptible or host density increases [77]. Additionally, human man-
agement and changes in land use result in a higher disease risk due to lowered biodiversity,
reduced host diversity, and increased host density [74,78]. In coordination, some virus
families are found most prevalently in cultivated areas [79].

While plant viruses are studied primarily in agricultural systems, they are highly
prevalent in wild plant populations and often lead to asymptomatic infections, creating
possible reservoirs that contribute to virus evolution [76]. Virus infection can be beneficial
rather than harmful to hosts experiencing cold damage [80] or drought [81], and environ-
mental conditions alone can shift viruses from being antagonistic to being mutualistic to the
host [82]. The environment is likely to be increasingly important for plant virus infections
as climate change continues to alter vector, host, and virus properties [5,7].

1.5. Variation, Bottlenecks, Genetic Drift, and Selection Pressure in Virus Populations

Viruses exist as a cloud of related sequences, called a quasispecies, rather than a single
consensus [23–25]. This genetic variation is the basis for the evolution and adaptation of
viruses to hosts, vectors, or their environment [83]. During normal replication, genetic
variation is generated through mutation, reassortment, and recombination (Figure 3). These
processes underlie the ability of plant viruses to generate and maintain genetic diversity,
key to circumventing and adapting to host and vector processes [83]. Mutations can occur
through substitutions, insertions, or deletions introduced during the replication by RNA-
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dependent RNA polymerases that lack proofreading activity [84]. Reassortment occurs
between segmented viruses where entire genetic segments are exchanged between related
viruses [85]. Recombination involves the transfer of genetic material between parental
genomes, often by template switching during genome replication, which leads to new
sequence combinations [86,87].
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initial infection, diverse genomes within the same host exist and may mutate, reassort, or recombine.
These variants are exposed to genetic drift and selection pressure by host and vector factors. Random
or competitive variants are passed on and may become fixed in the population and emerge as new
strains or species with novel biological properties.

Host and vector factors select for or against variants produced through mutation,
recombination, or reassortment [23,83]. Unfit variants are removed and variants with a
competitive advantage are fixed in the population (Figure 3). Characteristics of an RNA
virus population are determined by interactions between co-infecting viruses in mixed
infections, variants in a quasispecies, and selection acting on individual variants, leading to
population-level changes [24,25]. Illustrating this, quasispecies cloud sizes change during
host shifts, and quasispecies diversity varies across related viruses [88,89]. Accordingly,
quasispecies increase the probability a virus can adapt to new hosts, vectors, environments,
and challenges during infection [24].

Genetic drift is the change in the frequency of variants in a virus quasispecies due
to random chance [90]; some variants may disappear, while some initially rare variants
may become more frequent or fixed in the population [90,91]. Similar to selection, genetic
drift can decrease variation within a given population while simultaneously increasing
the genetic distance between viral populations. Unlike selection, genetic drift results in
variants moving onward in the population through random effects rather than a fitness
bonus [90–92].

Genetic bottlenecks are evolutionary events that cause a sharp reduction in the size
and genetic diversity of a virus population in a stochastic manner [90]. The fittest variants
may fail to be transmitted due to the small population size generated by these bottleneck
events [90]. In this way, bottleneck events counterbalance the genetic variation generated
by mutation, reassortment, and recombination [90]. For viruses, vector transmission, the
environment, and availability of susceptible hosts may impose genetic bottlenecks that
decrease virus genetic diversity [93]. For example, horizontal transmission by aphids
caused a significant bottleneck of an artificial population of CMV where variants were
consistently lost during transmission [93]. Additionally, bottleneck events occur as a virus
moves between hosts and systemically within a host [90,93,94]. These bottlenecks are often
extremely narrow, resulting in a small number of variants establishing a new population
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and potentially generating new strains [88,90]. This founder effect is a form of genetic drift
and results in a randomized group of virus sequences moving forward in the population.
Founder effects have the potential to eliminate advantageous variants or propagate less
advantageous variants [90]. Thus, selection and drift can have opposite effects on virus
evolution [91,94]. However, founder effects produced by genetic bottlenecks can result in
new species, making bottlenecks an important part of virus evolution [90]. Both processes
are important to consider, but distinguishing the effects of the two processes is difficult.
Regardless, the generation of variation and maintenance of a diverse quasispecies cloud
provides a larger genetic pool for evolutionary forces to act upon irrespective of the fitness
benefits or costs to any specific variant.

After selection or bottleneck events, variants become established in the population
and emerge as new virus strains or species with novel biological properties, such as
pathogenicity or host range expansion [24,35,89]. Therefore, the continuous emergence of
new species and strains with novel properties is, in part, explained by natural variation
generated through mutation, reassortment, and recombination.

1.6. Host Adaptation

Host adaptation is the development of higher fitness in a host, mediated by the
accumulation of genetic changes in key parts of the viral genome. New species, strains, or
genetic variants may be better suited to a particular host and thus be selected for in the
population [21,45,48]. Over time, the virus will evolve towards an optimal balance with the
host: replicating and moving without killing the host before transmission [63]. Similarly,
on the host side, tolerance can occur when virus and host fitness are balanced [95]. When
related viruses have differences in features such as host range, symptoms, or resistance,
one approach to studying viral determinants of host adaptation is to identify the changes
in the genome that mediate the contrasting differences. This approach first identifies the
novel property and then identifies the genetic changes. For example, a narrow host range
strain of CMV was identified, which suggests lack of variation in a viral determinant of the
host range [96]. Pathogenicity and host range were mapped to the 2b protein by swapping
the gene between different strains [96,97]. A consequence of this approach is that results
are often placed within the context of a particular virus in a specific spatial or temporal
environment [20].

2. Mutation

Mutations occur through nucleotide insertions, deletions, or substitutions in viral
genomes. Mutations initially result in small-scale changes in the genome sequence. How-
ever, accumulations of mutations result in large-scale changes, generating novel genomes
evident as new strains with novel properties. RNA viruses have a substitution rate of
10−6 to 10−4 substitutions per nucleotide per cell infection, compared with 10−8 to 10−6

substitutions per nucleotide per cell infection for DNA viruses [98]. That is, RNA viruses
mutate at a rate that is 100-fold faster than DNA viruses. This is explained by the low fi-
delity and lack of proofreading activity of RNA-dependent RNA polymerases that replicate
viral RNA genomes compared with DNA polymerases [84]. However, confounding factors
such as the transmission method and cell tropism can alter substitution rates [99,100].
Single-stranded genomes and viruses with small genomes also show higher mutation rates,
blurring the evolutionary advantages of RNA vs DNA viruses [98]. As a virus replicates,
unique mutations accumulate in each of the progeny genomes, creating genomes distinct
from the parent sequence [101]. Strong intracellular selection and competition occur as
these unique sequences replicate and move within the host [101].

Correct virus orthology is identified by nucleotide or amino acid similarity cut-
offs [102]. Within a species, mutations have been directly implicated in the generation
of new biological properties. For example, a single amino acid mutation allows plum
pox virus C and PVY to host jump [103,104]. A single mutation cannot result in a new
species [105]. In contrast, a single mutation may result in a new strain if it changes the
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biological properties of the virus [91,106]. Specific mutations have also allowed viruses
to break resistance in important crops such as soybean, melon, and pepper [19,107–109].
Further, mutations can alter symptoms in a virus-infected host [110,111], alter the function
of virus factors [112], or impact vector transmission [65]. Biologically, mutations in the
virus genome are necessary to accommodate the variation present in host proteins [56,113].
Indeed, the ability of a virus genome to tolerate mutations (mutational robustness) is consid-
ered an evolutionary advantage in enhancing the establishment of infection in genetically
diverse hosts and vectors [36,83].

Experimental mutational analyses can identify the relationships between specific
amino acids, protein function, and biological properties. Targeting these conserved amino
acids or general areas can result in loss of function, gain of function, or altered symp-
tomatology or virus orthography [110–112]. For example, a single amino acid mutation
in papaya ringspot virus identified using mutational analyses alters host specificity [114].
Another approach to studying the role of mutation in virus evolution is to identify variation
between strains that exhibit different characteristics [115]. However, a negative aspect of
this approach is that it is unlikely to identify single mutations that can be traced to a specific
biological role.

3. Reassortment

Reassortment, formally called pseudorecombination, occurs when two related viruses
co-infect a cell and entire RNA or DNA segments are swapped [116] (Figure 3). Reassort-
ment only occurs in viruses with a segmented genome [91]. Within plant virus families,
segmented genomes are the most common genome structure (Figure 2). Reassortment has
been documented in almost every plant virus family with a segmented genome and has
been responsible for the emergence of new strains with novel properties, including severe
symptoms, pathotype differentiation, and resistance breaking (Table 1).

Table 1. Representative effects of reassortment organized by plant virus family.

Family Genus Species Reassortment Effect Reference

Benyviridae Benyvirus Beet necrotic yellow vein virus Impact phylogenetic history [117]

Bromoviridae Bromovirus, Cucumovirus,
Ilarvirus, and Oleavirus 18 species Impact phylogenetic history [118]

Closteroviridae Crinivirus Tomato chlorosis virus Impact phylogenetic history [119]

Potyviridae Bymovirus Wheat yellow mosaic virus Pathotype differentiation [120]

Secoviridae Comovirus Bean pod mottle virus Severe symptoms [121]

Virgaviridae Pomovirus Potato mop-top virus Impact phylogenetic history [122]

Aspiviridae Ophiovirus Blueberry mosaic associated ophiovirus* Impact phylogenetic history [123]

Fimoviridae Emaravirus Pigeonpea sterility mosaic emaravirus 1* and
Pigeonpea sterility mosaic emaravirus 2* Impact phylogenetic history [124]

Phenuiviridae Tenuivirus Maize stripe virus Impact phylogenetic history [125]

Rhabdoviridae Dichorhavirus Orchid fleck dichorhavirus* New strain [126]

Tospoviridae Orthotospovirus Tomato spotted wilt orthotospovirus* Resistance-breaking [127]

Partitiviridae

Alphapartitivirus,
Betapartitivirus, Cryspovirus

Deltapartitivirus, and
Gammapartitivirus

12 species Impact phylogenetic history [128]

Reoviridae Fijivirus Rice black-streaked dwarf virus Impact phylogenetic history [129]

Nanoviridae Babuvirus Cardamom bushy dwarf virus Impact phylogenetic history [130]

Geminiviridae Begomovirus Tomato yellow leaf curl Mali virus and Cotton
leaf curl Gezira betasatellite Severe symptoms [131]

* Name is changed to reflect current ICTV taxonomy.

Mixed infections are more likely to occur when viruses and vector have overlapping
temporal and spatial ecological niches [132,133]. Transmission mode, virus species, virus
titer, host type, and original genetic variation of the virus population can impact the success
of these mixed infections [134]. Reassortment can result in viruses containing novel combi-
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nations of segments with contrasting phylogenetic and evolutionary history and is espe-
cially important for generating genetic diversity in segmented (-) ssRNA viruses [116,135].
The fact that segmented viruses consistently evolve within and across families suggests
that reassortment benefits viral fitness and evolution.

Segmented genomes may allow viruses to differentially express genes. During infec-
tion, virus segments gravitate towards the “setpoint genome formula” rather than being
translated at an equal ratio [116]. This ratio suggests that segmented genomes in part
evolved as a way to control the expression of viral proteins [136,137]. Further, this ratio
changes from host to host. This indicates that host factors may also play a role in the regula-
tion of the setpoint genome formula and that this process may be specifically advantageous
when expanding into new hosts [136,137].

Variants produced through reassortment are subject to selection, and variants with
a competitive advantage continue on in the population (Figure 3). Unfit variants are se-
lected out through exposure to host, vector, and viral factors during cell-to-cell movement,
systemic movement, and host colonization under bottleneck events [138,139]. Most reas-
sortments result in less-fit variants due to the separation of co-adapted genes [140,141].
While viral genomic stability and the loss of reassorted variants is the status quo [142–144],
variants that do survive in the population often are key for species differentiation and the
evolution of novel characteristics (Table 1).

Reassortment has led to the emergence of new viral strains with novel characteristics and
biological properties and to the formation of specific clades in the population [85,145–148].
Reassortant viruses might be genetically diverse enough to break resistance [85,127], cause
novel symptoms [149–151], alter host range [152,153], and evolve into new species.

Examining reassortment in wild viral populations illustrates whether variants are
emerging and remaining in the population. Measuring reassortment and recombination at
the same time in a population allows for the comparison of their frequencies with fewer
confounding factors (Table 2). Reassortment occurs at higher frequency than recombination
for Alfalfa mosaic virus, in Bunaviridae, and in Secoviridae (Table 2). Reassortment frequency
ranges from 3.33% to 55.17%, showing wide diversity across families, species, and likely
specific wild populations (Table 2).

Table 2. Reassortment and recombination frequencies in wild viral populations. Frequencies of
reassortment and recombination were calculated from papers studying both processes simultaneously
in wild virus populations. Frequency was determined by the number of reassorted or recombined
sequences identified divided by the total number of virus variants in the sampled population.

Family Species Reassortment Frequency Recombination Frequency Reference

Bromoviridae
Alfalfa mosaic virus 2/60 = 3.33% 1/60 = 1.67% [154]

Cucumber mosaic virus 4% 7% [142]

Tospoviridae
Tomato spotted wilt orthotospovirus * 3/13 = 23.08% 2/13 = 15.38% [155]

Impatiens necrotic spot orthotospovirus * 6/18 = 33.33% 0/18 = 0% [145]

Geminiviridae
Pepper golden mosaic virus 20/47 = 42.55% 27/47 = 57.45% [156]

Pepper huasteco yellow vein virus 11/42 = 26.19% 13/42= 31.00%

Nanoviridae Faba bean necrotic yellows virus 6/18 = 33.33% 13/18 = 72.22% [157]

Secoviridae
Broad bean wilt virus 1 6/37 = 16.22% 2/37 = 5.41% [158]

Broad bean wilt virus 2 16/29 = 55.17% 2/29 = 6.70% [159]

* Name is changed to reflect current ICTV taxonomy.

4. Recombination

Recombination is a critical source of genetic variation, contributing to the continual
evolution of viruses and to the emergence of new species [22]. It occurs both in DNA and
RNA viruses [22,160]. In RNA viruses, recombination occurs when the RNA polymerase
switches from an initial template (the donor) to a second template (the acceptor) during
RNA synthesis, resulting in the fusion of noncontiguous sections of RNAs and creating
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new combinations of RNA sequences [22,116]. Recombination occurs in RNA replication
compartments when both a donor and an acceptor RNA are recruited into the same
replication compartment [87]. Template switching occurs in all RNA virus types but is
less prevalent in double-stranded and negative-stranded RNA viruses [161]. Theoretically,
through recombination, and possibly involving viral or cellular RNA-dependent RNA
polymerases, viruses exchange genes with their hosts, and viral genes are often recruited
for cellular functions [35,162].

Recombination does not occur randomly across the genome. Instead, recombination
preferentially occurs at ‘hotspots’ within a virus genome [148]. It is possible that those
hotspots represent areas of the genome that are mutationally robust and have no deleterious
effects on the fitness of the novel progeny [83,163]. Most recombinants are less fit and will
be selected out of the population (Figure 3) [163].

Across plant virus families, recombination has been identified except in Endornaviridae,
Partitiviridae, Pseudoviridae, and Aspiviridae (Table 3). This is likely due to a low recombina-
tion rate in these virus families combined with a scarcity of research on the subject with
these viruses. However, for the other plant virus families, recombination is a significant
evolutionary force that shapes viral species and their features (Table 3). Unlike mutation
and reassortment, one recombination event can create variants that are widely divergent
from their parental sequences [164–166]. This can affect the evolutionary history of viruses
by generating new species or strains, thereby shaking up population genetics (Table 3).
Consistently, recombination results in viruses epidemiologically important because the
recombinants are new species, are resistance breaking, or impact the long-term evolutionary
history of the virus [22].

Table 3. Representative effects of recombination organized by plant virus family.

Family Genus Species Recombination Effect Reference

Alphaflexiviridae Potexvirus Pepino mosaic virus Impact phylogenetic history [167]

Benyviridae Benyvirus Rice stripe necrosis virus Impact phylogenetic history [168]

Betaflexiviridae Citrivirus Citrus leaf blotch virus-Rec New species [169]

Bromoviridae Cucumovirus Cucumber mosaic virus Impact phylogenetic history [170]

Closteroviridae Closterovirus Citrus tristeza virus-RB Resistance-breaking [171]

Potyviridae Potyvirus Sudan watermelon mosaic virus New species [172]

Secoviridae Nepovirus Grapevine fanleaf virus Impact phylogenetic history [173]

Solemoviridae Polerovirus Sugarcane yellow leaf virus New species [174]

Tombusviridae Tombusvirus Pelargonium necrotic spot virus New species [166]

Tymoviridae Tymovirus Dulcamara mottle virus New species [175]

Virgaviridae Tobamovirus Ribgrass mosaic virus
strain FSHS New strain [176]

Aspiviridae NA NA NA NA

Fimoviridae Emaravirus Pigeonpea sterility mosaic emaravirus 1 and
Pigeonpea sterility mosaic emaravirus 2 Impact phylogenetic history [124]

Phenuiviridae Tenuivirus Rice stripe tenuivirus * Impact phylogenetic history [177]

Rhabdoviridae Alphanucleorhabdovirus Eggplant mottled dwarf alphanucleorhabdovirus Impact phylogenetic history [178]

Tospoviridae Orthotospovirus Iris yellow spot orthotospovirus * Genotype separation [179]

Endornaviridae NA NA NA NA

Partitiviridae NA NA NA NA

Pseudoviridae NA NA NA NA

Reoviridae Fijivirus Southern rice black-streaked dwarf virus Impact phylogenetic history [180]

Nanoviridae Babuvirus Banana bunchy top virus Impact phylogenetic history [181]

Geminiviridae Begomovirus Tomato leaf curl Mahé virus New species [182]

Caulimoviridae Caulimovirus Cauliflower mosaic virus Impact phylogenetic history [183]

* Name is changed to reflect current ICTV taxonomy.
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Several new species have been identified that are recombinants of either related or
phylogenetically distant viruses. In the genus Begomovirus, tomato yellow leaf curl sardinia
virus, tomato yellow leaf curl Axarquia virus, sweet potato leaf curl Canary virus, tomato
leaf curl Mahé virus, and tomato leaf curl Yunnan virus are all new species created through
recombination [106,164,182].

Recombination frequently shapes the trajectory of a virus population over
time [173,179,184]. In Sudan, chickpea chlorotic dwarf virus showed extensive intra-
and inter-strain recombination that, in combination with later diversification, led to the
foundation of several strains [184]. Several diseases and epidemics have also been tied to
recombinants [185–187]. This is likely connected with the fact that recombinant viruses can
be resistance breaking [171,188]. For example, the spread and origin of Cassava mosaic
disease in East Africa has been tied to a recombination event between two cassava mosaic
geminiviruses, resulting in increased symptom severity [189]. Recombination can also al-
low a virus to infect a new host or to increase infectibility [105,165]. A recombination event
between lettuce chlorosis virus and bean yellow disorder virus resulted in the recombinant
lettuce chlorosis virus-SP that exhibited a shift in host range from lettuce, its original host,
to green beans, a new host [185]. However, some recombination events result in decreased
host range or infectibility, such as losing systemic infection [190]. This is consistent with
the findings that recombination frequency is host specific [191]. Along with new host
expansion, recombination can also change the symptoms or virulence of the virus [192,193].
These characteristics showcase the impact of recombination events that, while rare, can
severely impact crop safety.

Recombination in wild populations can result in the emergence of novel virus epi-
demics [86]. In studies measuring both recombination and reassortment, recombination
frequency was greater for CMV, Geminiviridae, and Nanoviridae (Table 2). Recombination
frequency ranged from 1.67% for AMV to 72.22% for faba bean necrotic yellows virus
(FBNYV). For FBNYV, an ancestral recombination event led to all isolates from Spain and
Tunisia being recombinants [157]. These observations show that viral population structure
can be altered by a single recombination event.

5. Genetically Stationary and Transient Viruses

A virus may move across the continuum between two conceptual genetically evolution-
ary stages, i.e. stationary (near equilibrium) and transient (far from equilibrium), changing
its status as it is exposed to genetically diverse or identical hosts and environments. Viruses
in a transient dynamic would be characterized by rapid genetic and phenotypic changes
driven by directional or diversifying selection as they adapt to new hosts, vectors or envi-
ronments. Naturally, these viruses are able to evolve and adapt better and faster to new
hosts, vectors, and environments [194]. In general, both potyviruses and orthotospoviruses
are constantly changing, and new variants or species are continually detected [42,43,83].
In contrast, viruses in stationary dynamics are characterized by viral populations near an
optimal fitness in relation to their current hosts, vectors, and environments and therefore
under strong purifying selection. The model is that stable viruses have a narrow host
range, and they evolve and adapt slowly to new hosts, vectors, and environments [194].
Stationary viruses, such as maize chlorotic mottle virus, are specialized to infect a narrow
range of hosts and vectors [195] and are likely to remain in the ecosystem as infection may
benefit or not severely impact both the plant and the virus. Intrinsic properties related to
virus genome structure [30], transmission [30], and quasispecies diversity [89] have been
correlated with host range. Similarly, this model suggests that genetically transient viruses
are mutationally robust and their populations are more likely to contain a variant able
to adapt to a variable set of possible hosts without a fitness cost. In contrast, genetically
stationary viruses have low mutational robustness and quasispecies diversity, making
them less likely to contain advantageous variants [23,36]. While the links between genetic
variability, host range, and mutational robustness are currently uncertain, the ability of a
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virus to adapt to diverse hosts and new environments and to gain novel biological features
is likely connected to this evolutionary continuum.

6. Discussion

Viruses evolve through a combination of genetic variation in the population, genetic
drift, and selection mediated by host, vector, and environmental factors (Figure 1). Be-
cause they replicate faster than their host can reproduce, viruses will continue to change,
escaping host immune responses while maintaining functionality in different hosts and vec-
tors [10,15]. Virus variants are produced naturally during the infection cycle through muta-
tion, reassortment, or recombination, showcasing the continuous adaptation of viruses [196].
Based on their fitness or through founder events, variants are selected out of or fixed into
viral genomes and virus population structure (Figure 3) [19,41]. Through this process,
resistance-breaking virus strains or species with new host ranges or presenting novel symp-
toms can emerge and lead to epidemics threatening global food security [127,187]. Tomato
brown rugose fruit virus (ToBRFV) emerged in 2015 after a recombination event between
the major parent, tobacco mosaic virus strain Ohio, and the minor parent, tomato mild
mottle virus [86]. Six amino acid substitutions in the movement protein of ToBRFV allowed
it to overcome the Tm-22 resistance gene, threatening global tomato production [197,198].

Virus taxonomy and species identification are important for virologists and the framing
of their research [28,199]. High-throughput sequencing has revolutionized the identification
of novel species in a wide range of hosts [74]. The known virome has subsequently
expanded, and the need for classification has grown in coordination [200–202]. Currently,
virus species are differentiated by sequence similarity cutoffs between related viruses [102].
However, reassortment and recombination often result in new virus species or strains with
proteins exhibiting distinct evolutionary histories (Tables 1 and 3) [105]. Reassortment
and recombination are fundamental contributors to the evolution and differentiation of
viruses and have high importance for the classification of new species and genera. When
identifying species and strains, the genetic variation between and within species, the
frequency of reassortment and recombination, and the phylogenetic history of viral proteins
should be taken into account [102,105]. The identification of new viruses can take place
in coordination with mutation, reassortment, and recombination analyses to identify the
evolutionary history of the sequence and provide possible explanations for novel biological
properties. Moving forward, more attention should be paid to investigating the sources of
variation rather than simply showing it is present.

Measuring reassortment and recombination in wild populations remains difficult.
However, occasional variants in wild populations emerge with significant economic and
evolutionary effects (Tables 1 and 3) [127]. Additionally, reassortment and recombina-
tion are commonly seen in phylogenetic and evolutionary studies of virus species over
time [85,184] that show that these processes are occurring and shaping the genetic struc-
tures of wild virus populations. Further, wild population studies are more likely to reflect
true recombination and reassortment frequencies because they incorporate all host, vector,
and viral interactions. To support this, studies often see very different frequency rates
between wild and experimental populations [203]. The frequency at which these events
occur, while statistically rare [142], still results in epidemiologically important viruses
and thus cannot be ignored. By examining wild population studies that measure both
reassortment and recombination in the same environment, we can better understand the
importance and frequency of these processes (Table 2). Further, wild and asymptomatic
populations can further expand our knowledge of how these processes occur and the
lasting impacts of these variants [24]. While reassortment and recombination show clear
variation across families, between DNA and RNA viruses, and within families, they are
still occurring within the natural population and thus should not be discredited as major
evolutionary processes.
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