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Abstract Goal-directed behaviors involve distributed brain networks. The small size of the

mouse brain makes it amenable to manipulations of neural activity dispersed across brain areas,

but existing optogenetic methods serially test a few brain regions at a time, which slows

comprehensive mapping of distributed networks. Laborious operant conditioning training required

for most experimental paradigms exacerbates this bottleneck. We present an autonomous

workflow to survey the involvement of brain regions at scale during operant behaviors in mice.

Naive mice living in a home-cage system learned voluntary head-fixation (>1 hr/day) and performed

difficult decision-making tasks, including contingency reversals, for 2 months without human

supervision. We incorporated an optogenetic approach to manipulate activity in deep brain regions

through intact skull during home-cage behavior. To demonstrate the utility of this approach, we

tested dozens of mice in parallel unsupervised optogenetic experiments, revealing multiple regions

in cortex, striatum, and superior colliculus involved in tactile decision-making.

Introduction
Goal-directed behavior is orchestrated by activity distributed across multiple brain regions. A start-

ing point for understanding how distributed activity mediates a single behavior is to identify activity

that causally contributes to the behavior. For example during perceptual decisions, activities that

correlate with sensation, choice, and movement are distributed across distinct brain areas (Gold and

Shadlen, 2001; Hernández et al., 2010; Guo et al., 2014a; Siegel et al., 2015; Sippy et al., 2015;

Brody and Hanks, 2016; Svoboda and Li, 2018; Allen et al., 2019; Crochet et al., 2019;

Mayrhofer et al., 2019; Pinto et al., 2019; Steinmetz et al., 2019; Li and Mrsic-Flogel, 2020).

Delineating which activity casually contributes to decision-making requires spatially and temporally

precise manipulation of specific activity that is widely dispersed across the brain.

The mouse is particularly suitable for comprehensive analysis of neural activity due to the small

size of the brain. Modern optogenetic methods can manipulate activity in specific brain regions with

excellent temporal resolution (Deisseroth, 2015; Wiegert et al., 2017; Li et al., 2019), but optoge-

netic experiments currently can only probe a limited number of brain regions in single studies. In

standard optogenetic experiments, mice are trained in operant behavior and optogenetic testing is

carried out in daily sessions to manipulate individual brain regions. This process is serial and slow,

prohibiting comprehensive surveys of many brain regions during complex behaviors.

One bottleneck results from manual operant conditioning training, which is required in most

experimental paradigms. For example, training mice in decision-making tasks requires significant

human involvement in evaluating mice performance and modifying task parameters to gradually

shape behavior toward high performance (Guo et al., 2014b; Burgess et al., 2017; Aguillon-

Rodriguez et al., 2020). This process is laborious and requires human expertise. Such expertise is

difficult to transfer across experimenters and across labs. The low throughput also rises significant

barriers for explorations of more complex decision-making tasks, due to the significant time and

effort required to explore many task parameter variations. The other bottleneck is due to the serial

nature of optogenetic testing. In particular, existing optogenetic methods probe deep brain regions
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using optical fibers, which target one brain region at a time, are labor-intensive to implant, and

require manual tethering of light source to the fiber implant. An experimental framework to swiftly

survey the behavioral involvement of many brain regions at scale would significantly speed up map-

ping of brain networks contributing to decision-making or other goal-directed behaviors.

Automated experiment can potentially overcome these bottlenecks. Automated systems can train

rodents in behavioral tasks by changing task parameters based on performance free of human super-

vision, thus enabling parallel and high-throughput experiments (Kampff et al., 2010; Erlich et al.,

2011; Poddar et al., 2013; Scott et al., 2013; Murphy et al., 2016; Aoki et al., 2017; Bollu et al.,

2019; Erskine et al., 2019; Qiao et al., 2019; Aguillon-Rodriguez et al., 2020; Bernhard et al.,

2020; Murphy et al., 2020). Moreover, automated training provides standardization that frees the

training process from idiosyncratic human interventions and documents the entire training process.

Automated training has been extended to train rodents in home-cages (Poddar et al., 2013;

Aoki et al., 2017; Silasi et al., 2018; Bollu et al., 2019; Erskine et al., 2019; Qiao et al., 2019;

Bernhard et al., 2020; Murphy et al., 2020), opening the possibility of prolonged behavioral train-

ing that permits more difficult decision-making tasks. In some cases, automated systems can also be

incorporated into a large environment to probe effects of social and environmental factors on cogni-

tive behaviors (Freund et al., 2013; Castelhano-Carlos et al., 2014; Torquet et al., 2018).

However, significant aspects of home-cage training still need to be improved and validated to

enable high-throughput experiments. First, it remains to be determined whether mice can robustly

learn challenging decision-making tasks under home-cage operant conditioning. Existing home-cage

trainings are limited to relatively simple behavioral tasks and modest training durations. Second, it

remains to be determined whether behaviors resulting from home-cage training resemble human-

supervised training and whether they engage the same brain areas. For example, cortical regions

contributing to perceptual decisions can vary across tasks and training conditions (Chowdhury and

DeAngelis, 2008; Licata et al., 2017; Liu and Pack, 2017; Gilad et al., 2018; Hong et al., 2018).

Finally, home-cage training has not been integrated with unsupervised optogenetic testing. Automa-

tion could potentially enable comprehensive optogenetic experiments targeting many brain regions

during complex behaviors.

Here, we introduce a fully autonomous workflow that combines home-cage behavioral training

and optogenetic testing. We introduce a low-cost standalone home-cage system that allows robust

training in difficult decision-making tasks. Completely naive mice self-engaged in prolonged volun-

tary head-fixation (>1 hr/day) and underwent continuous training and testing for 2 months without

human supervision. In the context of automated home-cage behavior, we integrated a fiber-free

optogenetic method to manipulate cortical and subcortical regions through an intact clear skull.

Electrophysiological recordings show that photostimulation could potently modulate neural activity

in deep brain structures such as the striatum and midbrain. We collected an extensive benchmark

dataset (113 mice, 1.92 million trials) training mice in a tactile decision task with a short-term mem-

ory component to show that mice in automated training learned the task using similar behavioral

strategies as mice in manual training. Optogenetic loss-of-function experiments show that the

learned behavior engaged the same cortical regions. The hardware design files, software, and task

training protocols for the home-cage system are made publicly available along with extensive docu-

mentations for other researchers to implement similar automated training for other operant

behaviors.

Our automated home-cage system significantly lowers the barrier for training mice in difficult

decision-making tasks. To demonstrate this utility, we show that mice could robustly learn contin-

gency reversals in which they flexibly reported tactile decisions using directional licking, a behavior

that was previously difficult to attain in manual training. In addition, our workflow is particularly suit-

able for mapping cortico-basal-ganglia loops involved in goal-directed behaviors. The striatum, its

cortical inputs, and downstream output nuclei are topographically organized (Hintiryan et al., 2016;

Hunnicutt et al., 2016; Hooks et al., 2018; Peters et al., 2019; Lee et al., 2020). However, a sys-

tematic survey of different striatal domains’ involvement in specific behaviors has not been achieved.

We demonstrate the utility of our workflow in high-throughput optogenetic mapping, revealing mul-

tiple subregions in the striatum and downstream superior colliculus critical for tactile-guided licking

decisions. Our workflow opens the door to rapidly survey distributed brain networks driving goal-

directed behaviors.
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Results

Workflow overview for autonomous behavior and optogenetic
experiments
Our goal is to develop an automated workflow to swiftly probe the involvement of many brain

regions in a single perceptual decision task. To accomplish this, we target specific brain regions for

optogenetic manipulation in individual cohorts of mice. Mice undergo standardized behavioral train-

ing in perceptual decision tasks. After training, the targeted brain regions are perturbed during spe-

cific behavioral epochs to examine their involvement in the behavior (Figure 1A). Across different

cohorts of mice, different brain regions are tested. Two bottlenecks addressed in this workflow are

manual behavioral training and manual optogenetic testing (Figure 1B).

To overcome these bottlenecks, we designed a robust home-cage system for mice to voluntarily

engage in head-fixation that was amenable to operant conditioning and optogenetic testing

(Figure 1C). A behavioral test chamber was built onto the mouse home-cage and ran autonomously

without human supervision. Mice accessed the test chamber through a headport and engaged in

behavioral tasks (Video 1). Automated computer algorithms trained naive mice to perform head-fix-

ation and decision-making tasks. In the context of unsupervised behavioral testing, we integrated an

optogenetic method to manipulate activity in specific brain regions. The entire process ran autono-

mously 24/7 for 2 months or longer (Figure 1A–B).

To build the behavioral test chamber, we designed a 3D-printed ‘L’-shaped board which could be

attached to standard mouse cages (Figure 1C). An opening (20 mm wide) in the center formed a

headport. Mice with headbar implants enter the headport in head-restrained configuration from the

home-cage (Figure 1D). A motorized lickport in front of the headport dispensed water reward. The

lickport was actuated by two linear motors, moving the lickport toward or away from the mouse.

The stimulus for the decision-making task was a mechanical pole on the right side of the headport.

The pole was moved vertically by a piston to stimulate the whiskers at different locations to instruct

a tactile decision (see tactile decision task below). The location of the pole relative to the mouse was

controlled by another motor. Inside the home-cage, mice accessed the headport on an elevated

platform (Figure 1C, inset). The platform was embedded with a micro load cell. The weight of the

mouse could be read out from the load sensor, which eliminated daily human interventions to mea-

sure mouse body weight.

To make the system run standalone, microcontrollers (Arduino) were used to control the whole

system (Materials and methods, Figure 1—figure supplement 1A). A master microcontroller con-

trolled the progression of head-fixation training and task training. The task difficulty was gradually

increased to facilitate learning. A second microcontroller was triggered by the master controller and

it ran finite-state machines that controlled individual behavioral trials with high temporal precision

(0.1 ms). The master controller was equipped with a SD card that stored mouse-specific metadata,

task parameters, and behavioral data. Each mouse had its unique SD card and could use it to run on

any home-cage system. Optionally, the system could be connected to a PC to display behavioral

performance and monitor training progression in real-time (Figure 1—figure supplement 1B). The

entire system was fit into a self-contained enclosure (Figure 1D, 56 � 25 � 23 cm). Multiple systems

could be packed onto a standard rack in a small space to enable parallel testing (Figure 1—figure

supplement 1C).

To screen for brain regions involved in behavior, we adapted a fiber-free optogenetic strategy

that non-invasively manipulated activity in specific brain regions though an intact skull. For each

mouse, we virally expressed red-shifted opsins in a targeted brain region. Mice were prepared with

a clear skull implant that provided optical access to the brain (Guo et al., 2014a). During head-fixed

behavior, 630 nm light emitted from above the headport to broadly illuminate the targeted brain

region and photostimulate the locally expressed opsins (Video 2). Red light can penetrate deep in

neural tissue (Tromberg et al., 2000; Liu et al., 2015; Wiegert et al., 2017; Li et al., 2019) and

thus can non-invasively manipulate deep brain regions (Lin et al., 2013; Chuong et al., 2014;

Klapoetke et al., 2014).

The integrated workflow thus overcame the bottlenecks of manual behavioral training and manual

optogenetic testing (Figure 1A–B). Completely naive mice learned to perform tactile decision-mak-

ing and underwent optogenetic testing in their home-cage without human supervision. A large num-

ber of brain regions can be tested in parallel across different cohorts of mice.
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Voluntary head-fixation in home-cage
We adapted a head-fixation mechanism that was previously designed for head immobilizations in

rats (Scott et al., 2013). Two pneumatic pistons pressed against a custom titanium headbar to

immobilize the head. The headbar (Figure 2A) was processed with two kinematic depressions that

were fit to the cone shaped tips of the pneumatic pistons, which mechanically brought the headbar

to the same position upon head-fixation. This head-fixation mechanism was integrated into the

headport that accessed the behavioral test chamber (Figure 1C). Figure 2B shows the sequence of

a head-fixation and release cycle. Head-fixation was triggered by mouse entry into the headport.

The two wings of the headport have widened tracks to guide headbar entry. The tracks funneled to

Figure 1. Workflow for autonomous behavior and optogenetic experiments and design of home-cage system. (A) Workflow for autonomous behavioral

and optogenetic experiments. In each group of mice, optogenetic opsins are expressed in a specific brain region. Naive mice undergo autonomous

behavioral training and optogenetic testing in their home-cage. Multiple groups of mice are tested in parallel to examine multiple brain regions. Data

is stored on SD cards for analysis. Histology is performed at the end of the workflow to register the targeted brain regions to an atlas. Green bounding

box highlights the portion of the workflow that is unsupervised by experimenters. (B) Workflow for automated behavioral training and optogenetic

testing. After recovery from surgery, mice are housed in the home-cage system 24/7. Automated computer algorithms train mice to perform voluntary

head-fixation, decision-making task, and carry out optogenetic testing. The progression in the workflow is based on behavioral performance. Green

bounding box corresponds to the bounding box in (A). (C) Design of the home-cage system. The main component is a behavioral test chamber which

can be accessed through a headport from the home-cage. Inset shows the view of the headport from inside the home-cage. Mice access the headport

on a load-sensing platform. See Figure 1—figure supplement 1 and Materialsand methods for details. (D) Photographs of the home-cage system.

Top: side view of the system. The system is standalone with controllers (Arduinos) and actuators packed into a self-contained enclosure. Bottom, the

front and back view of a mouse accessing the headport and performing the tactile decision task.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of the home-cage system.
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a narrow spacing with shapes complementary to

the headbar. Mice thus always entered the head-

port to reach the same head-restrained configu-

ration. Upon entry, the headbar triggered two

mechanical switches on both sides of the head-

port which activated the pneumatic pistons. At

the end of the head-fixation, the pneumatic pis-

tons were retracted, and the mouse was free to

pull out from the headport. The release either

came after a predefined duration for each head-

fixation (up to 1 min, ‘time-up release’) or could

be triggered by the mouse (‘self-release’)

(Video 1).

Self-release was detected by a load-sensing

platform (Figures 2C and 1C insert). Continuous

readings from a micro load cell reported weight

on the platform and could be used to measure

the mouse’s daily body weight (Figure 2C)

(adapted from Noorshams et al., 2017). During

head-fixation, the weight on the platform

decreased as a part of the weight was taken off

by the headbar clamp (Figure 2D). The fluctua-

tions in weight readings reflected mouse body

movements. During struggles that typically indi-

cated the mouse’s efforts to get free from head-fixation, the weight readings produced either large

negative or positive values that were far outside the normal range. A threshold was set to detect

these struggle events and trigger self-release (Figure 2D). This threshold was adaptive: it gradually

increased if struggle events were frequent or decreased if infrequent (Materials and methods).

We developed an operant conditioning algorithm to acclimate naive mice to voluntarily perform

head-fixations in their home-cage (Figure 2E). Initially, the lickport was positioned close to the head-

port with the lickspouts inside the home-cage. Mice easily accessed the lickport and obtained water

rewards upon licking. The rewarded lickspout

alternated between the left and right lickspouts

(three times each) to encourage licking on both.

Gradually, the lickport retracted away from the

home-cage (3 mm after every 20 rewarded licks)

and mice were lured into the headport

(Figure 2F). The lickport retraction stopped

when mice entered deep into the headport to

reliably trigger the head-fixation switches (Mate-

rials and methods). If no licks were detected for

12 hr, the program would re-extend the lickport

closer to the home-cage to lure mice in again

(Figure 2F top). During this phase of the train-

ing, the pneumatic pistons for head-fixation

were not activated by the switches (Figure 2E–

F, ‘learn headport entry’). This was important to

let mice first acclimate to the headport entry.

Once lickport retraction was completed, the

pneumatic pistons were turned on (Figure 2E–F,

‘learn head-fixation’). Head-fixation training

started with soft clamp (low pistons pressure,

1.78 bar) and short duration (time-up release, 3

s). During head-fixation, mice could lick the

lickspouts to obtain water reward. Gradually, the

fixation duration was increased (2 s after every

Video 1. A mouse performing voluntary head-fixation,

tactile decision task, and self-release in home-cage. A

mouse voluntarily pokes into the headport and gets

head-fixed. Once head-fixed, a trial is initiated. A pole

drops into the whisker field at specific locations for 1.3

s then retracts (‘sample’). After another 1.3 s (‘delay’),

an auditory go cue is played, and the mouse licks the

left or right lickspouts to report choice (‘response’). The

mouse is released after 60 s of head-fixation (‘time-up

release’). The mouse also self-releases by pressing

against the floor (‘self-release’).

https://elifesciences.org/articles/66112#video1

Video 2. Optogenetic photostimulation during task

performance in home-cage. In a subset of trials, 630

nm light is turned on during either the sample or delay

epoch. Photostimulation is through a clear skull implant

to activate red-shifted opsins expressed in specific

brain regions. During unsupervised optogenetic

testing, the light source is positioned over the targeted

brain region. In addition, a 630 nm masking flashing is

given in every trial to prevent the mouse from

distinguishing the trials with photostimulation. The

masking flash is turned off in this example video for

demonstration purposes.

https://elifesciences.org/articles/66112#video2
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Figure 2. Voluntary head-fixation in home-cage. (A) Left, schematic drawing of the custom headbar. Right, photograph of a headbar implant. (B)

Schematic drawings of a head-fixation and release sequence. Headbar enters a widened track on both sides of the headport that guides the headbar

into a narrow spacing at the end. Two mechanical switches located on either side of the headport trigger pneumatic pistons to clamp the headbar.

Head-fixations are released by retracting the pneumatic pistons. (C) Left, photograph of the load-sensing platform with top plate removed and load cell

Figure 2 continued on next page
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20 time-up releases). After the fixation duration reached 10 s, the pressure of the clamp also

increased (hard clamp, 2.78 bar). Head-fixation training concluded after the fixation duration

reached 30 s (Figure 2E). The fixation duration was further increased to 1 min at the late stage of

task learning (Figure 2F, see task training below).

Under this protocol, mice quickly acclimated to the head-fixation (Figure 2G). Most mice (37/39)

learned to self-engage in voluntary head-fixation and reached 30 s fixation duration in 7 ± 4.8 days

(mean ± SD across mice). The total fixation duration per day increased monotonically over the first

10 days and plateaued at 69 ± 32.4 min per day (Figure 2G, 130 ± 56 fixations/day, mean ± SD). The

self-release mechanism was critical for learning voluntary head-fixation. Without the self-release

mechanism, the headport became aversive to mice after one unsuccess attempt to get free from

head-fixation. Consequently, mice failed to learn voluntary head-fixation (Figure 2H). Highly trained

mice continued to utilize self-release on 20.7 ± 14% of the head-fixations (Figure 2J). Most (67%)

head-fixations occurred during the dark cycles (Figure 2F and K). Multiple head-fixations typically

occurred in bouts, with majority of head-fixations occurring within a second apart (Figure 2L). The

headbar position across multiple head-fixations was highly reliable (Figure 2I and Figure 2—figure

supplement 1, |displacements| in medial-lateral, rostral-caudal, and ventral-dorsal dimensions, 6.4 ±

12, 8.8 ± 15 and 12.1 ± 14.7 mm, mean ± SD; Materials and methods).

Thus, mice can readily learn to perform repeated voluntary head-fixations for water reward. The

extended duration of head-fixation makes behavioral task training possible.

Autonomous training in a tactile decision task
We next integrated an algorithm to autonomously train mice in a tactile decision task with a short-

term memory component (Guo et al., 2014b; Guo et al., 2014a; Figure 3A). During each head-fixa-

tion, mice were tested in a succession of trials. Each trial started with a sample epoch (1.3 s), in which

mice were presented with a pole at one of two locations (anterior or posterior). The pole was always

presented to the right whiskers. Mice were trained to discriminate pole location using their whiskers

and report object location using directional licking (anterior location! lick left, posterior location!

lick right). The sample epoch terminated when the pole moved out of reach, and mice were trained

to withhold licking while remembering the choice during a delay epoch (1.3 s). At the end of the

delay epoch, an auditory ‘go’ cue (100 ms) signaled the beginning of the response epoch and mice

initiated licking to get water reward (Figure 3B). Incorrect responses led to a timeout. Premature

licks before the ‘go’ cue were rare in trained mice and led to a brief timeout (‘early lick’, Materials

and methods). Each trial was followed by an inter-trial-interval (2.5 s), after which the next trial

began, until the head-fixation is released (Video 1).

Figure 2 continued

exposed. Right, example readings from the load cell (20 samples/s) in a 24-hr period. Shaded areas, dark cycles. Absence of samples indicates the

mouse is off the platform. The histogram shows all readings from the 24-hr period. The peak can be used to estimate the mouse’s body weight. (D)

Example readings from the load cell during four consecutive head-fixations (green shades). Head-fixations typically reduce weight on the platform.

Readings crossing a threshold (blue dashed line) result in self-release (blue arrows). Otherwise, the mouse is released after a predefined fixation

duration (time-up release, green arrows). Fixation duration is 30 s in this example. (E) Flow chart of the head-fixation training protocol. See Materials

and methods for details. (F) Data from an example mouse undergoing head-fixation training. Top, data from the first 4 days. The plots show lickport

position (top, large value indicates further away from the home-cage, see inset), switch trigger events (middle), and head-fixation events (bottom). For

head-fixation events, each tick indicates one fixation, with the height indicating fixation duration. The color indicates time-up release (green) and self-

release (blue). Shaded areas, dark cycles. Time spent in learning headport entry and learning head-fixation are colored as in (E). Bottom: head-fixation

data from the same mouse over 29 days. (G) Head-fixation duration over 40 days. Gray lines, individual mice; black line, mean. Bar plot shows average

fixation duration throughout the entire head-fixation training. Error bar, standard deviation. Circles, individual mice. (H) Same as (G) but for mice

without the self-release mechanism. (I) Displacement of the headbar implant across different head-fixations along medial-lateral, rostral-caudal, and

dorsal-ventral directions. (J) Fraction of head-fixations in which mice trigger self-release. Gray line, individual mice; black line, mean. Bar plot shows

average fraction throughout the entire head-fixation training. Error bar, standard deviation. Circles, individual mice. (K) Frequency of head-fixation

across dark and light cycles. Bars show average across all mice. Error bars, standard deviations. (L) Time interval between head-fixations. Data from all

mice are pooled.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Displacement of headbar implant across multiple head-fixations.
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Figure 3. Tactile decision task in home-cage. (A) Task structure. Mice discriminate the location of a pole (anterior

or posterior) during a sample epoch (1.3 s) and report the location using directional licking (left or right) after a

delay epoch (1.3 s). An auditory go cue (0.1 s) signals the beginning of the response epoch. (B) Example

behavioral data in 100 consecutive trials. Dots show individual licks. Blue, lick right; red, lick left. Circles indicate

the first lick after the go cue (choice). In trials with early licks before the ‘go’ cue, choice licks occur late due to the

Figure 3 continued on next page
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To facilitate learning, the automated algorithm divided task training into three phases

(Figure 3C). The first phase started after mice learned to maintain head-fixation for 30 s (Figure 2E).

In this phase (Figure 3C, ‘learn directional licking’), lick left or lick right trials were presented consec-

utively and mice had to obtain three trials correct before the program switched trial type. This

forced mice to lick both lickspouts. Once mice reliably switched lick direction across trial types, the

program advanced to the second phase, in which the two trial types were presented randomly

(Figure 3C, ‘learn discrimination’). This required mice to discriminate object location to produce cor-

rect choice responses. During these early phases of training (‘learn directional licking’ and ‘learn dis-

crimination’), mice were free to lick at any time during the trial, but only the first lick after the ’go’

cue were registered as choice (Figure 3B). When performance reached 75% correct, the final phase

of the training enforced a delay epoch in which licking before the ‘go’ cue triggered a brief timeout

(Figure 3C, ‘learn delay’, Materials and methods). The duration of the delay epoch was initially short

(0.3 s), but it gradually increased to 1.3 s. Task training concluded when performance was stably

above 70% correct. After task training concluded, the head-fixation duration was further increased

from 30 s to 1 min before the start of optogenetic testing. This allowed more trials in each head-

fixation.

We found that two factors were critical for successful home-cage training. First, mice must be

acclimated to the task stimuli while learning voluntary head-fixation (Figure 2E), well before task

training. During head-fixation training, the tactile stimulus and the auditory ‘go’ cue were presented

upon each headport entry, even though the information was not required for successful performance

(Figure 2E, Materials and methods). Second, mice often developed idiosyncratic biases by licking

one lickspout more frequently, or sometimes continuously licking one lickspout without switching to

the other. To counter these behavioral patterns, several ‘auto-assist’ programs were needed

throughout task training (Figure 3C). The auto-assist programs evaluated mice performance and

assisted the mice whenever certain behavioral patterns were detected (Materials and methods). Spe-

cifically, if a mouse licked one lickspout more frequently, the program moved the preferred lickspout

further away from the mouse. When a mouse made consecutive errors for one trial type, the pro-

gram presented that trial type more frequently or gave a free water reward on the correct lickspout.

These measures countered biases and encouraged mice to switch lick direction across trial types.

Most mice (32/37, 87%) successfully learned the tactile decision task in automated home-cage

training. Figure 3D shows the performance of an example mouse. Performance gradually improved

during training. During introduction of the delay epoch, performance fluctuated as longer delays

were progressively added (Figure 3D, red lines). Performance eventually increased and was stable

over long periods of testing. Meanwhile, the number of early licks decreased. The learning speed

was variable across individual mice (Figure 3E). Mice performed 547 ± 205 trials (mean ± SD) per

Figure 3 continued

timeouts (Materials and methods). (C) Flow chart of the task training protocol. See Materials and methods for

details. Auto-assist programs (green box) evaluate mice performance continuously and assist mice whenever

certain behavioral biases are detected. (D) Data from an example mouse undergoing task training in home-cage.

Top, behavioral performance. Shaded areas indicate different phases of the training as in (C). During the delay

epoch training, the red dash lines indicate delay duration increases. Bottom, fraction of trials in which the mouse

licked before the go cue. After mice complete the task training protocol, experimenters examine the mice

performance and initiate optogenetic testing protocol (indicated by the orange arrow in this example). (E)

Behavioral performance of all mice in home-cage training (n = 32). Black dash line, criterion performance, 70%

correct. (F) In a subset of mice (n = 4), the right whiskers were trimmed after home-cage training. Behavioral

performance dropped to chance level (50%, black dash line) and did not recover. (G) Behavioral performance of all

mice in manual training (n = 64). (H) Percentage of mice successfully trained in home-cage vs. manual training.

Training is deemed successful if the mouse reached 70% correct criterion performance. (I) Number of trials

performed per day in home-cage versus manual training. Bar plot shows mean and standard deviation across

mice. Circles, individual mice. ***, p<0.001, two-tailed t-test. (J) Left, number of days to reach 70% correct criterion

performance. Right, number of trials to reach 70% correct criterion performance. *, p<0.05; n.s., p>0.05, two-tailed

t-test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Behavioral performance of home-cage trained mice after transferring to an
electrophysiology setup.
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day in home-cage training and reached 70% correct in 19.3 ± 7.2 days (equivalent to 8588 ± 3453 tri-

als). To confirm that mice solved the tactile decision task using their whiskers, we trimmed the

whiskers in a subset of mice. Performance dropped to chance level after whisker trimming

(Figure 3F). To examine whether home-cage training was robust to setup transfers, several mice

were transferred to an electrophysiology setup after reaching criterion performance. Performance

initially dropped, but it quickly recovered over 7 days (Figure 3—figure supplement 1). Thus, auto-

mated home-cage training could be used to support head-fixed electrophysiology or imaging

experiments.

We compared the home-cage training to manual training supervised by experimenters. We

trained a separate group of mice (n = 70) in daily sessions using conventional methods (Guo et al.,

2014b). Mice were manually head-fixed and underwent daily training sessions (1–2 hr). The manual

training followed a similar protocol as the home-cage training (Materials and methods). Learning

speed and success rate were similar to the home-cage training (Figure 3G–H, 64/70 mice reached

criterion performance vs. 32/37 in home-cage training; p=0.42, Chi-square test). Mice performed

fewer number of trials per day in manual training (Figure 3I, 547 ± 205 vs. 377 ± 30 trials, automated

vs. manual training, mean ± SD, p<0.001, two-tailed t-test). Consequently, manual training took

more days to achieve performance criteria (Figure 3J, 19.3 ± 7.2 vs. 27.1 ± 16.3 days, p<0.05, two-

tailed t-test), as mice took similar number of trials to reach criterion performance (Figures 3J and 8,

588 ± 3453 vs. 10,210 ± 5918 trials, p=0.39, two-tailed t-test).

These results show that mice could learn challenging perceptual decision tasks under head-fixa-

tion through unsupervised training in home-cage settings. Automated home-cage training has simi-

lar success rate and speed as manual training.

A model-based comparison of task learning in automated and manual
training
The home-cage system standardized the training across mice and continuously tracked mice behav-

ior across the entire acquisition of the tactile decision task, thus providing an opportunity to examine

task learning free of human interventions. We examined mice’s behavioral strategies during task

learning by modeling the choice behavior at various stages of training using logistic regression

(Materials and methods). The model predicted mice’s choice (lick left or lick right) from the tactile

stimulus, stimulus history, choice history, reward history, a win-stay-lose-switch strategy (choice x

reward in the previous trial), and a constant bias (Figure 4A).

The model was able to predict mice’s behavioral choice across different stages of training

(Figure 4B–C). Interestingly, the model could predict choice well before the behavioral performance

was above chance (Figure 4B–C). This suggests that mice used behavioral strategies other than the

tactile stimulus to guide choice during the early phase of training. To determine which model regres-

sor was driving choice, we built partial models that excluded individual regressors and compared

their prediction accuracy to the full model (Figure 4B,p value indicates significantly worse prediction

than the full model based on cross validated performance, bootstrap, Materials and methods).

Model selection showed that two regressors most strongly contributed to choice prediction, but

these regressors contributed at different stages of training (Figure 4B–C). During the early phase of

training, choice history from the last trial had a significant contribution, suggesting that mice tended

to repeat their choice regardless of the tactile stimulus. During the late phase of training, the contri-

bution of choice history diminished, and the contribution of the tactile stimulus increased, which sug-

gests that mice learned to use the tactile stimulus to guide choice (Figure 4B bottom, 4C). A model

that only considered choice history and tactile stimulus was sufficient to account the choice predic-

tion performance of the full model (Figure 4C).

This pattern of behavioral strategy was consistently observed in home-cage training (Figure 4D

top). A similar pattern of behavioral strategy was also observed in manual training (Figure 4D bot-

tom). Overall, similar percentages of mice in home-cage and manual training used the tactile stimu-

lus, choice history, and reward history to solve the task during learning (Figure 4E). These results

suggest that naive mice initially adapted a behavioral strategy of repeating their past actions, and

then abandoned this strategy as they learned the sensorimotor contingency. These results show that

mice in home-cage training used similar behavioral strategies to learn the tactile decision task as

mice in manual training. This provides further validation data that shows automated training can

replace conventional manual training.
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Contingency reversal learning
The automated home-cage system permits prolonged task training, which opened the possibility of

training mice in challenging behavioral tasks that were previously difficult to attain. To test this util-

ity, we trained mice in contingency reversals in which they had to flexibly report the tactile decision

using lick left or lick right (Figure 5A).

Figure 4. Model-based comparison of task learning in home-cage and manual training. (A) A logistic regression model to predict choice. Weighted

sum of the tactile stimulus, stimulus history, choice history, reward history, a win-stay-lose-switch strategy (choice x reward in the last trial), and a

constant bias is passed through a logistic function to predict choice in the current trial. (B) Behavioral data and model prediction from an example

mouse in home-cage training. Trials are binned (bin size, 500 trials; step size, 100 trials). Top, behavioral performance. Middle, prediction performance

of the full model and two partial models excluding either the current stimulus (S0, blue) or 1-back choice (A1, red). Model performance is calculated as

the fraction of choice predicted (Materials and methods; chance level is 50%). Shaded area indicates SEM. Bottom, the significance of individual

regressors. Circle size corresponds to p values. The significance of a regressor is evaluated by comparing the prediction of the full model to a partial

model with the regressor of interest excluded. p Values are based on bootstrap (Materials and methods). (C) Average model prediction across all mice

in home-cage training. Black line, prediction of the full model. Blue, performance of a partial model excluding both the current stimulus S0 and stimulus

history S1-5. Red, performance of a partial model excluding choice history A1-5. Green, performance of a partial model with only the current stimulus S0,

choice history A1, and a constant bias term b0. Dashed line, the performance of the full model predicting shuffled behavioral data (Materials and

methods). Shaded area indicates SEM across mice. Chance, 50%. (D) Percentage of mice showing significant contribution from each regressor at

different stages of learning. Significance is defined as p<0.05. Top, mice in home-cage training (n = 32); Bottom, mice in manual training (n = 64). (E)

Percentage of mice relying on different regressors during task learning. A mouse is deemed to rely on a regressor if it shows significant contribution to

choice prediction in at least five consecutive time bins during training (1000 trials). Regressors shown are the current stimulus (S0), 1-back and 2-back

stimulus history (S1-2), 1-back, 2-back and 3-back choice history (A1-3), and 1-back reward history (R1). Error bars show SEM across mice (bootstrap). Dash

line and shaded area show the mean and SEM across all other regressors. All other regressors show small contributions and they are pooled.

Regressors from both home-cage and manual training are also pooled.
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Mice first learned the standard tactile decision task (without a delay) in which they reported ante-

rior pole location by licking left and posterior pole location by licking right. After mice attained high

levels of performance (>80% correct for 100 trials), the sensorimotor contingency was reversed in

which anterior pole location corresponded to lick right and posterior pole location corresponded to

lick left. Mice did not receive any cues about the reversal other than reward feedbacks: correct

responses led to water rewards; incorrect responses led to timeouts. Immediately after the reversal,

behavioral performance dropped to below chance (Figure 5B). Performance steadily recovered and

was eventually stably above 70% correct.

To examine whether mice could robustly switch sensorimotor contingency, we repeatedly

reversed the contingency after mice reached criterion performance. Mice consistently acquired new

contingencies and did so in similar number of trials (Figure 5B–C). However, the reversal learning

speed varied substantially across mice (Figure 5B). The initial task acquisition speed (i.e. the number

of trials to reach criterion performance from the start of head-fixation training) was correlated with

the reversal learning speed (i.e. the number of trials to reach criterion performance after contingency

reversal) (Figure 5D). Thus, mice could be screened for fast learners based on the initial task acquisi-

tion speed.

These data, together with the robust training in the tactile decision task with short-term memory

(Figure 3), demonstrate the utility of prolonged home-cage training in teaching mice difficult deci-

sion-making tasks.

Home-cage testing reveals behavioral signatures of motivation
In home-cage experiments, mice behavior was motivated by water rewards. Mice received all their

daily water by engaging in the task. We examined mice’s water consumption and body weight dur-

ing home-cage training. When water restricted mice were introduced into the home-cage system, all

mice obtained a large number of rewards on day 1 (Figures 6A–B, 600 rewards on average, 1.8 mL

of water). This was likely due to the ease of accessing the lickport (see Voluntary head-fixation in

Figure 5. Contingency reversal learning in home-cage. (A) Mice discriminate the location of a pole (anterior or posterior) and report the location using

directional licking (left or right) without a delay epoch. The task switches between standard sensorimotor contingency and reversed contingency once

mice reach criterion performance. Criterion performance, >80% for 100 trials. (B) Behavioral performance data from two example mice. Bin size, 50

trials. Blue line, contingency reversals. Dashed line, 70% correct. (C) The number of trials to acquire new contingencies over multiple contingency

reversals. The number of trials to reach criterion performance is normalized to the first contingency reversal. Individual lines show individual mice. (D)

The number of trials needed to learn the tactile decision task vs. the average number of trials to reach criterion performance in contingency reversal

learning. Task learning is from the start of head-fixation training to reaching criterion performance. Individual dots show individual mice. Line, linear

regression. Two mice from (C) were excluded because they previously learned a different behavioral task.
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Figure 6. Contingency reversal learning in home-cage. (A) Mouse weight as a function of time. Body weights were

estimated from the load-sensing platform in home-cage (see Figure 2C). Weights are normalized to the initial

weights on day 1. Black line and shades, mean ± standard deviation across mice. Green lines, in a subset of mice,

body weights were also measured outside of the home-cage on a weight scale. (B) Number of rewards and water

consumed per day. Line and shades, mean ± standard deviation across mice. (C) Number of head-fixations per

day as a function of normalized body weights. Each symbol corresponds to one day. Different colors show

different mice. (D) Task performance as a function of normalized body weights. Multiple factors can affect task

performance, including motivation and task learning. Here, the data are taken from days after the mice have

reached criterion performance. (E) Average IFI durations following correct and error trials. Individual lines show

individual mice. Bars show averages across mice. ***p<0.001, paired two-tailed t-test. (F) Average IFI durations

during contingency reversal learning. Trials are taken from periods right before contingency reversals, immediately

following reversals, and before the next reversals. Individual lines show individual mice. Bars show averages across

mice. *p<0.05, paired two-tailed t-test. (G) Prediction of choice by logistic regression on trials following long vs.

short inter-fixation-intervals. The logistic regression model was fit using trials in their natural sequential order

(regardless of the inter-fixation-intervals). The model was then used to predict choice on independent trials. Trials

were then sorted by the preceding inter-fixation-intervals. Prediction performance was calculated separately for

trials following short or long inter-fixation-intervals. Individual lines show individual mice. Bars show averages

across mice. n.s. p>0.05, paired two-tailed t-test. (H).
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home-cage, Figure 2E). As the lickport was retracted into the headport (away from the home-cage),

reward rate dropped significantly on subsequent days. Water consumption and body weight gradu-

ally increased after the initial dip as mice acclimated to the head-fixation (Figure 6A–B). At steady

state, a mouse typically consumed ~1 mL of water daily in the home-cage while maintaining stable

body weight. This amount of water consumption was similar to mice engaged in daily manual experi-

ments (Guo et al., 2014b). The number of head-fixations per day was correlated with body weight

(Figure 6C). Since body weight reflected prior water consumption, this indicates different levels of

motivation due to thirst, which drove engagement in the task. In highly trained mice, task perfor-

mance was stable despite the body weight change (Figure 6D).

We inferred mice’s motivation to engage in the task by examining the time intervals between

head-fixations (‘inter-fixation-interval’). We sorted the inter-fixation-intervals by the outcome of the

last trial in the previous head-fixation. The inter-fixation-interval after an error (which led to no

reward) was significantly longer than following a correct trial (Figure 6E). This indicates a loss of

motivation after an error, perhaps due to the loss of an expected reward. Consistent with this inter-

pretation, we also found a significant increase in inter-fixation-intervals shortly after a sensorimotor

contingency reversal (Figure 6F). This coincided with a drop in task performance due to the rule

change (Figure 5B). As performance recovered, inter-fixation-intervals also decreased (Figure 6F).

Despite the motivational change, mice maintained the same strategy in their choice behavior. To

examine this, we used the logistic regression model to predict choice on trials following short vs.

long inter-fixation-intervals (Figure 6G). If behavioral strategy changed across motivational state

(reflected in short vs. long inter-fixation-intervals), the predictive power of the model would differ

between these conditions. However, we did not find a significant difference in the model prediction

performance. The result was similar in early and late stages of task learning (Figure 6G), even

though mice used distinct strategies during these periods (Figure 4). These results suggest consis-

tent strategies in the choice behavior.

Together, these results show behavioral signatures of motivation in self-initiated behavior in

home-cage, which could be potentially exploited in studies of goal-directed behavior.

Unsupervised home-cage optogenetic experiment
We integrated optical components into the behavioral test chamber (Figure 1C) to perform optoge-

netic manipulations during home-cage behavior. We used red light (630 nm) to photostimulate tar-

geted brain regions through a clear skull implant (Figure 7A, Materials and methods) (Guo et al.,

2014a). Red light is less subject to hemoglobin absorption (Svoboda and Block, 1994;

Tromberg et al., 2000) and can penetrate neural tissues in vivo with less attenuation compared to

blue or green light while producing less heating (Liu et al., 2015; Stujenske et al., 2015;

Wiegert et al., 2017). A light source was mounted above the headport to broadly illuminate the tar-

geted brain region (Figure 1C). To manipulate activity specifically in the targeted brain regions, we

locally expressed red-shifted opsins, ChrimsonR (Klapoetke et al., 2014), or ChRmine

(Marshel et al., 2019). This approach did not require optical fiber implants. Thus, it eliminated the

need to manually couple a light source to the mouse and enabled continuous optogenetic testing

without human interventions. Importantly, head-fixation provided stable access to the brain for

repeatable optical stimulations.

We first tested this optogenetic strategy in the barrel cortex (vS1) for a well-documented chan-

nelrhodopsin-assisted photoinhibition method (Cardin et al., 2009; Olsen et al., 2012; Li et al.,

2019). We injected small volumes (200 nL) of cre-dependent AAV viruses carrying either ChrimsonR

or ChRmine in GAD2-IRES-cre mice (Taniguchi et al., 2011) to excite GABAergic neurons and inhibit

nearby pyramidal neurons. Virus injection localized the opsin expression (Figure 7A, diameter of

expression, 0.79–1.18 mm). We characterized this photoinhibition using silicon probe recordings in

awake non-behaving mice under the same illumination conditions as in the home-cage (Figure 7B).

Units with narrow spikes were putative fast spiking (FS) neurons (Cardin et al., 2009; Olsen et al.,

2012; Guo et al., 2014a; Resulaj et al., 2018; Li et al., 2019) and a subset of the FS neurons were

activated by light (Figure 7C–D, 7/14 with significantly elevated spike rate at 2.8 mW/mm2, p<0.01,

two-tailed t-test, photostimulation vs. baseline epoch). Neurons with wide spikes were likely mostly

pyramidal neurons and majority of these neurons were silenced in a dose-dependent manner

(Figure 7C–D, 114/157 with significantly depressed spike rate at 2.8 mW/mm2). Photoinhibition
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Figure 7. Photoinhibition of cortical regions and comparisons of home-cage optogenetic experiments with manual optogenetic experiments. (A) Left,

an optogenetic approach to silence activity in specific brain regions and electrophysiology characterization in the barrel cortex (vS1). Right top, an

example clear skull implant. Right bottom, a coronal section showing ChrimsonR expression in vS1. The coronal section is aligned to the Allen Refence

Brain (Materials and methods). (B) Silicon probe recording in vS1 during photostimulation. Multi-unit activity from three example channels showing

photoexcitation (first row) and photoinhibition (second and third rows). Red lines, photostimulation. (C) Effects of photostimulation on cell types defined

by spike waveform. Dots, individual neurons. Circled dots, neurons with significant spike rate change, p<0.05, two-tailed t-test. Spike rate of each

neuron during photostimulation is normalized to its baseline (‘relative firing rate’, Materials and methods). Neurons with narrow spike waveforms are

putative fast-spiking (FS) interneurons (gray). Neurons with wide spike waveforms are putative pyramidal neurons (black). (D) Relative firing rate of

putative pyramidal neurons (black) and interneurons (gray) as a function of photostimulation intensity. Error bars show SEM across neurons. (E)

Workflow schematics. (F) Photoinhibition of the left vS1. Left, a 3D rendered brain showing virus injection location. Middle, a coronal section showing

virus expression in the left vS1. Right, behavioral performance change relative to the control trials during photoinhibition in the sample and delay

epoch. Performance for lick left (red) and lick right trials (blue) are computed separately. Thin lines, individual mice; thick lines, mean. *p<0.025;

Figure 7 continued on next page
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silenced >70% of the spikes in putative pyramidal neurons at the virus injection site over a wide

range of laser powers (Figure 7D, 0.3–8.2 mW/mm2).

We next tested the feasibility of unsupervised home-cage optogenetic experiments. Cortical

regions involved in decision-making can vary across behavioral strategies and training conditions

(Chowdhury and DeAngelis, 2008; Liu and Pack, 2017; Gilad et al., 2018). We examined whether

behaviors resulting from automated home-cage training engaged the same cortical regions as man-

ual training. We photoinhibited activity in two cortical regions known to be involved in tactile deci-

sion-making. We targeted the left vS1, contralateral to the side of the tactile stimulus, where

photoinhibition was expected to impair tactile sensation (O’Connor et al., 2013;

Sachidhanandam et al., 2013; Guo et al., 2014a). In addition, we targeted anterior lateral motor

cortex (ALM), where unilateral photoinhibition was expected to bias choice to the ipsilateral direc-

tion (Guo et al., 2014a; Li et al., 2015). After mice reached high levels of performance in home-

cage training, photostimulation was deployed in a subset of trials during either the sample or delay

epoch (Figure 7E).

Photoinhibition of the left vS1 reduced behavioral performance primarily during the sample

epoch (Figure 7F). The performance deficit was limited to lick right trials, which corresponded to

the posterior pole position where the pole strongly contacted the whiskers. This pattern of behav-

ioral effect is consistent with a deficit in pole detection (O’Connor et al., 2013;

Sachidhanandam et al., 2013; Guo et al., 2014a). Photoinhibition of ALM produced an ipsilateral

bias, primarily during the delay epoch (Figure 7G–H). Photoinhibition of the left ALM biased upcom-

ing licking to the left, resulting in lower performance in lick right trials and slightly higher perfor-

mance in lick left trials. An opposite bias was induced by photoinhibiting the right ALM. These

patterns of behavioral deficit were similar to those observed in previous studies (Guo et al., 2014a;

Li et al., 2015) and the effect size was comparable (Figure 7—figure supplement 1). As a negative

control, photostimulation produced no effect when only GFP viruses were injected into ALM (Fig-

ure 7—figure supplement 2A).

Home-cage optogenetic experiments lasted 12 days on average (SD, 4.5 days). Mice showed little

adaptation to photostimulation. Later days of the home-cage optogenetic experiments elicited simi-

lar effect sizes as the early days (Figure 7J). To directly compare the behavioral effects from home-

cage testing to those induced in manual experiments, we subsequently tested a subset of mice (n =

6) in conventional optogenetic experiments. In daily supervised sessions, the mice were manually

head-fixed and tested for photoinhibition on a different setup (Materials and methods). vS1 photoin-

hibition in manual experiments elicited the same pattern of behavioral deficit as those induced in

home-cage testing (Figure 7I and K). The magnitude of behavior performance deficit was similar

across a wide range of light doses (Figure 7—figure supplement 2B). Similar results were also

obtained for ALM photoinhibition (Figure 7K).

Figure 7 continued

**p<0.01; ***p<0.001, significant performance change compared to the control trials (bootstrap, Materials and methods). (G) Same as (F) but for

photoinhibition of the left ALM. (H) Same as (F) but for photoinhibition of the right ALM. (I) Behavioral performance change relative to the control trials

during photoinhibition in home-cage optogenetic experiments (top row) and manual optogenetic experiments (bottom row). See the full dose

response in Figure 7—figure supplement 2. (J) Comparison of performance change during the first vs. second half of optogenetic testing. Data from

all mice and experiments (left vS1 photoinhibition, three mice; left ALM photoinhibition, one mouse; right ALM photoinhibition, two mice). Lines

connect data from multiple photostimulation intensities for individual mice. For each brain region, only the condition in which photoinhibition induced

the largest behavioral effect is included. Left vS1, data from the lick right trials, sample epoch photoinhibition. Left ALM, data from the lick right trials,

delay epoch photoinhibition. Right ALM, data from the lick left trials, delay epoch photoinhibition. Linear regression, slope: 0.8; range: 0.5–1.1 (95%

confidential interval). There is no difference between the first and second half of the home-cage optogenetic experiments (p=0.78, paired t-test).

Home-cage optogenetic experiments span 12 ± 4.5 days, mean ± SD. (K) Comparison of performance change in home-cage versus manual optogenetic

experiments. Linear regression, slope: 0.97; range: 0.73–1.22 (95% confidential interval). There is no difference between home-cage and manual

experiments (p=0.36, paired t-test).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Comparisons of effect size with previous studies.

Figure supplement 2. Behavioral performance change dose-response curve during optogenetics.
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These characterization data show that the optogenetic approach can potently manipulate cortical

activity and unsupervised home-cage optogenetic experiments can be used to screen for cortical

regions involved in behavior.

Survey of subcortical regions involved in tactile decision-making
We next tested the optogenetic strategy in manipulating activity of deep brain regions. We focused

on the action-selection networks that include the striatum and downstream superior colliculus (SC).

Previous studies in rodents suggest both the striatum and SC play roles in perceptual decision-mak-

ing based on olfactory, auditory, or visual cues (Felsen and Mainen, 2008; Felsen and Mainen,

2012; Stubblefield et al., 2013; Znamenskiy and Zador, 2013; Duan et al., 2015; Kopec et al.,

2015; Sippy et al., 2015; Yartsev et al., 2018; Duan et al., 2019; Lee et al., 2020). However, the

previous studies examined different subregions of the striatum and SC in different perceptual deci-

sion behaviors, making comparisons across studies difficult. We therefore compared striatal and SC

subregions’ involvement in the tactile decision behavior.

We injected cre-dependent ChRmine viruses into the left striatum of GAD2-IRES-cre mice to per-

turb GABAergic neurons non-specifically in the targeted region. We first tested if photostimulation

through an intact clear skull could manipulate activity deep in the brain. We performed silicon probe

recordings around an injection site 2.2 mm below the brain surface (Figure 8A–B). Most striatal neu-

rons near the injection site were significantly excited or inhibited by photostimulation through the

clear skull (Figure 8C). The mixture of excitation and inhibition was expected since the ChRmine

viruses targeted GABAergic neurons non-specifically (Taniguchi et al., 2011), and the GABAergic

striatal projection neurons and interneurons locally inhibit each other (Burke et al., 2017). For neu-

rons modulated by light (p<0.01, two-tailed t-test), the changes in spike rate monotonically

increased as a function of laser power (Figure 8D). Significant spike rate changes were observed

even at low laser powers (3 mW or 1.75 mW/mm2 on the brain surface). The effect was spatially

localized to the injection site (Figure 8E). These data show that the optogenetic method can

potently manipulate striatal activity.

We next tested if the striatal optogenetic manipulation was sufficient to bias behavior. We tar-

geted three subregions of the striatum previously implicated in different types of decision-making

behaviors, including a subregion of the anterior dorsal striatum (Yartsev et al., 2018), a subregion

of the dorsolateral striatum (Sippy et al., 2015), and a subregion of the posterior dorsal striatum

(Znamenskiy and Zador, 2013; Figure 8F–H and Figure 8—figure supplement 1A–C). Among

them, the dorsolateral striatal subregion received inputs from both ALM (Hooks et al., 2018) and

the barrel cortex (Sippy et al., 2015). The anterior striatum received inputs from only ALM and the

posterior dorsal striatum did not receive inputs from either cortical regions (Hooks et al., 2018). We

targeted the left striatum, ipsilateral to the left barrel cortex and contralateral to the tactile stimulus.

Moreover, we targeted the striatal regions unilaterally to examine their roles in directional licking.

Perturbation of the three striatal subregions differentially affected task performance (Figure 8F–H

and Figure 7—figure supplement 2C–E). The performance deficits induced by perturbing the ante-

rior and posterior striatum were minimal and limited to the delay epoch (Figure 8F and H; Fig-

ure 7—figure supplement 2C and E). In contrast, perturbing the dorsolateral striatum produced

large performance deficit in both the sample and delay epochs, but not the response epoch

(Figure 8G and Figure 7—figure supplement 2D). These patterns of behavioral deficit suggest that

the dorsolateral stratum was required for tactile-guided licking decisions (Sippy et al., 2015).

Additionally, we examined SC downstream of the basal ganglia. We targeted a lateral region of

SC previously implicated in the control of licking movement (Rossi et al., 2016; Lee et al., 2020;

Figure 8I and Figure 8—figure supplement 1D). Activity in the lateral SC is thought to drive contra-

lateral licking (Lee et al., 2020). We injected cre-dependent ChrimsonR (or ChRmine) viruses into

the left SC in GAD2-IRES-cre mice and activated SC GABAergic neurons to photoinhibit SC output

(Duan et al., 2019). Silicon probe recordings show that photostimulation modulated activity in the

targeted SC region even at moderate laser powers (Figure 8J–K). SC neurons activated by light

were presumably GABAergic neurons and they inhibited other SC neurons (Figure 8L). Silencing the

left SC biased upcoming licking to the left, resulting in performance decrease specifically in lick right

trials (Figure 8M). The effect was elicited by photoinhibition during the delay epoch, but not during

the sample epoch (Figure 8M). The bias was light-dose dependent and was significant at moderate

laser power (Figure 7—figure supplement 2F). These behavioral effects qualitatively mirrored those
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Figure 8. Photostimulation of subcortical regions in home-cage optogenetic experiment. (A) A coronal section showing virus expression in the striatum

(red) and silicon probe recording track (green). (B) Silicon probe recording in the striatum during photostimulation. Multi-unit activity from two example

channels near the virus injection site (top) and one example channel below the injection site. Red lines, photostimulation. (C) Effects of photostimulation

across depths. Dots correspond to individual neurons. Circled dots indicate neurons with significant spike rate change, p<0.05, two-tailed t-test. Spike

rate of each neuron during photostimulation is normalized to its baseline (‘relative firing rate’, Materials and methods). Shaded area indicates the virus

expression region estimated from histology. (D) Relative firing rate of all significantly excited and inhibited neurons as a function of photostimulation

intensity. Error bars show SEM across neurons. (E) Fraction of neurons significantly excited (red) and inhibited (blue) by photostimulation, p<0.05, two-

tailed t-test. Left, neurons from near the virus injection site. Right, neurons from below the virus injection site. (F) Left, a 3D rendered brain showing the

striatum (blue) and the injection location in the anterior dorsal striatum (yellow). Middle, a coronal section showing example virus expression. The

coronal section is aligned to the Allen Reference Brain (Materials and methods). Right, behavioral performance change relative to the control trials

during photostimulation in the sample, delay, or response epoch. Blue, lick left trials; red, lick right trials. Thin lines, individual mice; thick lines, mean.

**p<0.01, ***p<0.001, significant performance change compared to the control trials (bootstrap, Materials and methods). (G) Same as (F) but for

photostimulation in the dorsolateral striatum. (H) Same as (F) but for photostimulation in the posterior dorsal striatum. (I–L) Same as (A–D) but for

photoinhibition in the left superior colliculus. (M) Same as (E) but for photoinhibition in the left superior colliculus. (N) The 3D rendered brain shows the

Figure 8 continued on next page
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induced by photoinhibiting the left ALM (Figure 7G). This suggests that both ALM and SC are

involved in the tactile decision task during the delay epoch.

These experiments show that the automated workflow could be used to rapidly survey distributed

brain networks involved in behavior, including deep brain regions (Figure 8N).

Discussion

Fully autonomous home-cage mouse behavioral and optogenetic
experiments
We present a fully autonomous workflow for high-throughput mouse behavioral and optogenetic

experiments (Figure 1). Mice engaged in voluntary head-fixation in an autonomous home-cage sys-

tem that was amenable to operant conditioning (Figure 2). We developed algorithms that trained

completely naive mice to perform tactile decision-making without human supervision (Figure 3). We

integrated a fiber-free optogenetic method to manipulate activity in specific brain regions during

home-cage behavior. We characterized the optogenetic approach using electrophysiology and loss-

of-function experiments (Figure 7). Finally, we show that the workflow can be used to rapidly survey

subregions of the striatum and downstream superior colliculus involved in decision-making

(Figure 8).

Our approach presents three key advances. First, we introduce a low-cost, open source, and

robust home-cage system that allows continuous task training (>1 hr per day) for 2 months without

human supervision. Our system significantly boosts the yield and duration of home-cage training to

rival and slightly surpass that of manual training (Supplementary file 1). This lowers the barrier for

training mice in difficult operant conditioning tasks. We show that mice in home-cage training

robustly learned a tactile decision task with short-term memory, and they robustly learned contin-

gency reversals in which they flexibly reported decisions using directional licking (Figure 5). These

tasks are previously difficult to train and require human expertise. Manual behavioral training is often

not well documented. The automation and standardization afforded by the home-cage system

increase the ease of transferring behavioral paradigms across labs.

Second, we provide the first benchmark dataset that shows fully automated experiments could

supersede manual experiments. We show that automated training has similar success rate and speed

as manual training (Figure 3). A logistic regression model of the choice behavior shows that mice in

home-cage training learned the task using similar strategies as in human-supervised training (Fig-

ure 4). The behaviors resulting from home-cage training engaged the same cortical regions as man-

ual training (Figure 7; O’Connor et al., 2013; Sachidhanandam et al., 2013; Guo et al., 2014a;

Li et al., 2015). In addition, we directly demonstrate the capacity for high-throughput experiments

by testing dozens of mice at a time in parallel.

Finally, our workflow is the first to combine home-cage training and unsupervised optogenetic

testing. We provide a fiber-free method to manipulate deep brain regions and provide characteriza-

tion data to show that the method can potently modulate neural activity and bias behavior (Fig-

ure 8). Voluntary head-fixation and photostimulation through an intact skull bypasses the need to

manually tether the mice to a light source and it facilitates continuous optogenetic testing across

days without human interventions. In the fully automated workflow, only one injection and headbar

implant surgery is needed to prepare a mouse and little supervision is needed thereafter. Parallel

testing allows a large number of mice and brain regions to be tested in a single behavior. The

approach will enable rapid surveys of distributed brain networks underlying operant behaviors in

mice.

Our workflow is particularly suitable for mapping cortico-basal-ganglia loops involved in operant

behaviors that require extended training. The striatum is topographically organized (Hintiryan et al.,

Figure 8 continued

striatum and superior colliculus (blue) and the centers of virus expression in individual mice used in this study (dots). See individual mouse data in

Figure 8—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Virus injection sites in the striatum and superior colliculus.
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2016; Hunnicutt et al., 2016; Hooks et al., 2018; Peters et al., 2019; Lee et al., 2020). The stria-

tum in the mouse brain is ~21.5 mm3 in size (Allen reference brain, Wang et al., 2020). Optogenetic

experiments using optical fibers manipulate activity near the fiber tip (approximately 1 mm3). Previ-

ous studies examined different subregions of the striatum in different perceptual decision behaviors,

making comparisons across studies difficult. A systematic survey of different striatal domains’

involvement in specific behaviors is currently difficult. In our workflow, individual striatal subregions

(~1 mm3, Figure 8) could be rapidly screened through parallel testing. At moderate throughput (15

mice/2 months), a screen that tiles the entire striatum could be completed in under 12 months with

little human effort. To illustrate its feasibility, we tested three subregions in the striatum previously

implicated in different types of perceptual decision behaviors (Znamenskiy and Zador, 2013;

Sippy et al., 2015; Yartsev et al., 2018). The results show that our approach could reliably differen-

tiate striatal regions that biased tactile decision-making from those that did not (Figure 8F–H).

By eliminating human intervention, automated training also allows quantitative assaying of task

learning (Figure 4). Home-cage testing also exposes behavioral signatures of motivation in self-initi-

ated behavior (Figure 6). These observations suggest additional opportunities for inquires of goal-

directed behaviors in the context of home-cage testing.

Relation to previous automated behavioral experiments
Several recent studies have developed automated systems to train rodents in decision-making and

motor control tasks (Erlich et al., 2011; Poddar et al., 2013; Aoki et al., 2017; Silasi et al., 2018;

Bollu et al., 2019; Erskine et al., 2019; Qiao et al., 2019; Reinert et al., 2019; Bernhard et al.,

2020). Automated systems have also been incorporated into large environments to probe social and

environmental factors on cognitive behaviors (Freund et al., 2013; Castelhano-Carlos et al., 2014;

Torquet et al., 2018). For operant behaviors, automated testing has been combined with imaging

(Scott et al., 2013; Murphy et al., 2016; Murphy et al., 2020), lesion (Kawai et al., 2015), video-

based behavioral analysis (Qiao et al., 2019), and optogenetics (Bollu et al., 2019). Some of these

systems also implement automated head-fixation (Kampff et al., 2010; Scott et al., 2013;

Murphy et al., 2016; Aoki et al., 2017; Murphy et al., 2020). However, most previous systems still

require manual interventions to couple the neurophysiology or manipulation apparatus to the ani-

mals before each session (Aoki et al., 2017; Bollu et al., 2019), but see Scott et al., 2013;

Murphy et al., 2020. Moreover, previous home-cage training with head-fixation is limited to rela-

tively simple behavioral tasks and short training durations (Aoki et al., 2017; Murphy et al., 2020;

Supplementary file 1). In our workflow, mice can engage in prolonged head-fixation (>1 hour/day

for 2 months) that permits extended training (tens of thousands of trials) in difficult behavioral tasks

and continuous optogenetic testing in home-cage. Stable head-fixation also makes our workflow

compatible with widefield imaging, and potentially two-photon imaging.

Our general approach and workflow are not restrictive to any specific behavioral system. We inte-

grate and validate several design elements from previous studies. For example, our system has a lay-

out design similar to Murphy et al., 2016; Silasi et al., 2018, where the headport is integrated into

the home-cage for easy access. Our head-fixation mechanism is modeled after Scott and Tank

(Scott et al., 2013). We employ a load cell to measure mice’s body weight, based on

Noorshams et al., 2017. In turn, our automated training protocols (Figures 2–3) can be readily

used for other behavioral tasks. Importantly, we find that the self-release mechanism is critical for

mice to learn voluntary head-fixation (Figure 2H). Without it, mice will start to struggle beyond a

certain duration, and if failed to get free, mice will stop engaging in head-fixation subsequently. In

addition, we find that auto-assistance to the mice is critical for successful task learning (Figure 3C).

These guidelines will likely generalize to other automated training.

Other design choices not explored here may further improve the efficiency of automated training.

Mice in our study are singly housed. Other studies testing group housed mice suggest a potential

for higher yield in trial count (Murphy et al., 2016; Reinert et al., 2019). One factor that may nega-

tively affect yield in group housed mice is social hierarchy. Dominant mouse may occupy the head-

port most of the time, which could reduce training time for other co-housed mice (Murphy et al.,

2016). This problem can be alleviated by building behavioral test chambers that are separated from

the home-cage (Castelhano-Carlos et al., 2014; Aoki et al., 2017; Torquet et al., 2018;

Qiao et al., 2019). Access to the test chamber can then be managed using intelligent protocols
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based on RFID tags of individual mice (Lewejohann et al., 2009; Bolaños et al., 2017;

Erskine et al., 2019).

Probing brain regions involved in perceptual decision-making
Our optogenetic experiments suggest that a subregion of the dorsolateral striatum and a lateral

region of the superior colliculus (SC) are required for tactile-guided licking decisions (Figure 7N).

These regions overlap with regions in the striatum and SC previously implicated in licking motor con-

trol (Rossi et al., 2016; Lee et al., 2020). In particular, the subregion of the dorsolateral striatum tar-

geted here (Figure 8—figure supplement 1B) is slightly dorsal to but has substantial overlap with a

ventrolateral region of the striatum that receives strong ALM input (Hooks et al., 2018; Lee et al.,

2020). Stimulation of the ventrolateral striatal region can evoke contralateral licking (Lee et al.,

2020). It is worth noting that the subregion of the dorsolateral striatum targeted here also receives

some ALM input, but it additionally receives input from the barrel cortex (Sippy et al., 2015;

Hooks et al., 2018) and perturbation of this region impairs tactile-guided licking decisions

(Figure 8G, sample epoch) (Sippy et al., 2015). However, our data cannot yet resolve whether the

behavioral effects observed here was due to perturbations of part of the ventrolateral striatal region.

Perturbations of the anterior and posterior striatum produced small but significant effects

(Figure 8F and G). The effect was only observed during the delay epoch and only at the highest

laser power (Figure 7—figure supplement 2). The effect could result from overlaps of the perturbed

regions with the dorsolateral striatum. A more systematic mapping around these striatal regions is

needed to determine whether a discrete subregion of the striatum contributes to licking decisions.

Our high-throughput workflow is ideally suited for such survey studies.

One limitation of the current workflow is the interpretation of deficit effect size induced by photo-

stimulation. In previous studies, we have shown that photoinhibition of ALM results in chance level

performance (Li et al., 2016; Gao et al., 2018). In this study, mice performance was above chance

during photoinhibition of ALM (Figure 7—figure supplement 1A). This difference in effect size likely

resulted from incomplete silencing of ALM. The photostimulus intensity used here was less than

those used in previous studies (Figure 7—figure supplement 1). In addition, a single virus injection

was not sufficient to cover the entire ALM (1 mm2 in diameter) (Chen et al., 2017). Thus a partial

behavioral effect could be due to incomplete silencing of a brain region, or partial involvement of

the brain region in the task.

Given this limitation, manipulations alone cannot yet elucidate the function of a brain region in

behavior. The workflow presented here can be used as a discovery platform to quickly identify

regions of interest for more detailed neurophysiology analysis. Our proof-of-concept experiments

show that our automated workflow can be a useful tool to facilitate discovery of distributed multi-

regional networks driving complex behaviors, and it paves the way for more targeted neurophysiol-

ogy analysis.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background (Mouse)

Gad2-IRES-Cre The Jackson Laboratory JAX: 010802
(RRID:IMSR_JAX:014548)

Cre targeted at the
Gad2 locus

Strain, strain
background (Mouse)

PV-IRES-Cre The Jackson Laboratory JAX: 008069
(RRID:IMSR_JAX:008069)

Cre targeted at the
Pvalb locus

Strain, strain
background (Mouse)

VGAT-ChR2-EYFP The Jackson Laboratory JAX: 014548
(RRID:IMSR_JAX:014548)

ChR2 targeted at the
Slc32a1 locus

Strain, strain
background (Mouse)

Ai32(RC-hR2(H134R)/EYFP) The Jackson Laboratory JAX: 012569
(RRID:IMSR_JAX:012569)

ChR2 targeted at the
Gt(ROSA)26Sor locus

Recombinant
DNA reagent

AAV9-hSyn-FLEX-Chrimson
R-tdTomato

UNC Viral Core N/A

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

AAV8-Ef1a-DIO-ChRmine-
mScarlet-WPRE

Stanford Viral Core GVVC-AAV-188

Recombinant
DNA reagent

AAV-pCAG-FLEX-EGFP-WPRE Addgene 51502
(RRID:Addgene_51502)

Software, algorithm MATLAB Mathworks https://www.mathworks.com

Other Design files, software, and
documentations for the
automated home-cage system.

This paper -
Github repository

https://github.com/
NuoLiLabBCM/Autocage

The Github repository contains
the hardware design files and
software for the construction
of automated home-cage system,
along with documentations and
protocols for automated head-fixation
training and task training.

Hardware and code availability
All hardware design files and software for the construction of automated home-cage system are

made available, along with documentations and protocols for automated head-fixation training and

task training (https://github.com/NuoLiLabBCM/Autocage). Behavioral data and code used are also

available in the Github repository.

Mice
This study is based on data from 140 mice (both males and females, 2–6 months old). 50 GAD2-

IRES-Cre (Cre targeted at the Gad2 locus, Jackson Laboratory, JAX 010802) and PV-IRES-Cre (Cre

targeted at the Pvalb locus, JAX 008069) mice were used for automated home-cage training and

optogenetic experiments targeting the barrel cortex, ALM, striatum and superior colliculus. eight

mice were used for contingency reversal learning experiment. Another three GAD2-IRES-Cre mice

were used for control optogenetic experiments in which GFP viruses were injected into ALM. An

additional four mice were trained in home-cage without self-release mechanism. Another five GAD2-

IRES-Cre mice were used for electrophysiology to characterize the effects of optogenetic manipula-

tion in the barrel cortex (two mice), striatum (two mice), and superior colliculus (one mouse). Seventy

mice, including GAD2-IRES-Cre, VGAT-ChR2-eYFP (ChR2 targeted at the Slc32a1 locus, JAX

014548), Ai32 (ChR2 targeted at the Gt(ROSA)26Sor locus, Rosa26-LSL-ChR2-eYFP, JAX 012569),

and wild-type mice, were used for supervised manual training.

All procedures were performed in accordance with protocols approved by the Institutional Animal

Care and Use Committees at Baylor College of Medicine (protocol AN7012). Mice were housed in a

12:12 reverse light:dark cycle. On days not tested, mice received 0.5–1 ml of water. In home-cage

experiments, mice were singly housed in the automated home-cage 24/7 and received unrestricted

access to the lickport and water rewards by engaging in the task. Body weights were monitored

daily. Mice experiencing loss of body weight or failed to engage in voluntary head-fixation for pro-

longed time period were removed from the study (2/61 mice). In manual training, mice were tested

in daily sessions during the dark phase. Experimental sessions lasted 1–2 hr, during which mice

received all their water (0.3 to 2 ml). On days not tested, mice received 0.5–1 mL of water. In all

cases, if mice did not maintain a stable body weight, they received supplementary water (Guo et al.,

2014b).

Headbar implant surgery and virus injection
All surgical procedures were carried out aseptically under 1–2% isoflurane anesthesia. Buprenor-

phine Sustained Release (1 mg/kg) and Meloxicam Sustained Release (4 mg/kg) were used for pre-

and post-operative analgesia. After the surgery, mice were allowed to recover for at least 3 days

with free access to water before water restriction.

Mice were prepared with a clear-skull implant and a custom headpost (Figure 7A; Guo et al.,

2014a). In brief, the scalp and periosteum over the dorsal surface of the skull were removed. A layer

of cyanoacrylate adhesive (Krazy Glue, Elmer’s Products) was directly applied to the intact skull. A

custom-made headpost (Figure 2A) was placed on the skull (approximately over the cerebellum)
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and cemented in place with clear dental acrylic (1223CLR, Lang Dental). A thin layer of clear dental

acrylic was applied over the cyanoacrylate adhesive covering the entire exposed skull.

In GAD2-IRES-Cre and PV-IRES-Cre mice prepared for optogenetic experiments, a small craniot-

omy (~0.5 mm diameter) was made to inject viruses through a pulled glass pipette (20–30 mm tip

diameter). For photoinhibition of cortical regions, we injected 200 nL of AAV9-hSyn-FLEX-Chrim-

sonR-tdTomato (UNC viral core, titer 5.7 � 1012 vg/ml) (Klapoetke et al., 2014) in PV-IRES-Cre or

GAD2-IRES-Cre mice (Figure 7). The injection coordinates were as follows: the left or right ALM,

anterior 2.5 mm from bregma, lateral 1.5 mm, depth 0.4 and 0.8 mm; the left somatosensory cortex,

posterior 1.5 mm from bregma, lateral 3.5 mm, depth 0.4 and 0.8 mm. For injections in the somato-

sensory cortex, we injected viruses in three adjacent sites (~0.5 mm apart) to cover the whole barrel

cortex. For photoinhibition of the lateral superior colliculus, we injected 200 nL of AAV8-Ef1a-DIO-

ChRmine-mScarlet-WPRE (Stanford viral core [Marshel et al., 2019], titer 3.3 � 1013 vg/ml) or

AAV9-hSyn-FLEX-ChrimsonR-tdTomato in GAD2-IRES-Cre mice at posterior 3.5 mm from bregma,

lateral 1.5 mm, depth 2.4 and 2.6 mm. For photostimulation of the striatal regions, we injected 100

nL of AAV8-Ef1a-DIO-ChRmine-mScarlet-WPRE in the left anterior dorsal striatum (anterior 1.3 mm

from bregma, lateral 1.8 mm, depth 2.2 mm), or the left dorsolateral striatum (anterior 0.6 mm from

bregma, lateral 2.4 mm, depth 2.2 mm), or the left posterior dorsal striatum (posterior 0.4 mm from

bregma, lateral 2.0 mm, depth 2.1 mm) of GAD2-IRES-Cre mice. For control experiments, we

injected 100 nL AAV-pCAG-FLEX-EGFP-WPRE (AddGene, 51502) into the left ALM of 2 GAD2-Cre

mice.

Autonomous home-cage system hardware
Behavioral test chamber
The core of the autonomous home-cage system was a behavioral test chamber attached to the

mouse home-cage. An ‘L’-shape board (180 � 100 � 72 mm) housed all components of the behav-

ioral test chamber as shown in Figure 1C. The board was designed using CAD software (Fusion 360,

Autodesk) and 3D-printed with Nylon material. The board has a headport (~20 � 20 mm) in the cen-

ter that accessed the home-cage. The board was attached to a standard mouse cage (290 � 180 �

120 mm) using two screws. A 25 � 25 mm pass-through was made on wall of the mouse cage to

connect with the headport.

The two sides of the headport were fitted with widened tracks that guided a custom headbar

(26.5 mm long, 3.2 mm wide) into a narrow spacing where the headbar could be clamped

(Figure 2B). Two snap action switches (D429-R1ML-G2, Mouser) were mounted on both sides of the

headport. The first 3 mm of the switch tips were bent 90 degrees to fit into the slots of the headport

to detect headbar entries (Figure 2B). Two air pistons (6604K11, McMaster), with tips processed

into a cone shape, were fixed into two holes above the headport. The pistons were pneumatically

driven and controlled by an analog pressure regulator (557773, Festo).

A lickport with two lickspouts (5 mm apart) was placed in front of the headport. The lickport was

actuated by two orthogonally fixed miniature linear motors (L12-50-100-12-I and L12-30-50-12-I,

Actuonix), one moving the lickport forward and backward (i.e. toward or away from the headport)

and the other in the left and right directions. Each of the lickspout was electrically coupled to a cus-

tom circuit board that detected licks via completion of an electrical circuit upon licking contacts

(Slotnick, 2009; Guo et al., 2014a). Water rewards were dispensed by two solenoid valves

(LHDA1233215H, Lee Co.).

The sensory stimulus for the tactile decision task was a mechanical pole (1.5 mm diameter) on the

right side of the headport. The pole was motorized by a linear motor (L12-30-50-12-I, Actuonix) and

presented at different location to stimulate the whiskers. The motorized pole was attached to an air

piston (6498K999, McMaster), driven by a 3/2-way solenoid valve (196847, Festo), which moved the

pole vertically into the reach of the whiskers. The entire pole mechanism was mounted on a holder

on the behavioral test chamber board. The auditory ‘go’ cue in the tactile decision task was provided

by a piezo buzzer (3.5 kHz, cpe163, Mouser) placed in front of the headport.

A custom 3D-printed platform was placed inside the home-cage in front of the headport

(Figure 1C). The stage was embedded with a load cell (Figure 2C, CZL639HD, Phidgets) to record

mouse body weight. The load-sensing stage was also used to detect struggles during head-fixations

and trigger self-release (Figure 2D). The surface of the stage was coated with aluminum foil to
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produce electrical contact between the mouse and the electric lickspouts upon licking. The alumi-

num foil is connected to the lick detection circuit board.

An optical fiber (M79L005, Thorlabs), coupled to a red laser (633 nm, MRL-III-633–50, Ultralaser)

or a LED (625 nm, M625F2, Thorlabs), was mounted above the headport. The fiber was approxi-

mately 12 mm above the clear skull implant during head-fixations. In cases where higher light power

was needed, the optical fiber was placed closer to the mouse and aimed at the photostimulation

site. To prevent mice from distinguishing photostimulation trials from control trials using visual cues,

a masking flash (10 Hz) was delivered using a 627 nm LED (SP-01-R5, LexonStar) mounted in front of

the headport.

Controllers
Three Arduino microcontrollers (A000062, Mouser) operated the home-cage system (Figure 1—fig-

ure supplement 1A). A ‘master’ controller stored the protocols for head-fixation training

(Figure 2E), task training (Figure 3C), and optogenetic experiments (see Autonomous training pro-

tocols). The master controller autonomously advanced these protocols based on mouse behavioral

performance. In addition, the master controller controlled the head-fixation logics, the lickport

motors, and the motor that positioned the pole (i.e. tactile stimulus). For head-fixations, the control-

ler read switch triggers through a digital input/output (DIO) port and controlled the pressure regula-

tor that actuated the pneumatic pistons via a digital-to-analog converter (DAC) port. For the self-

release mechanism, the output from the load cell was amplified (HX711, SparkFun) and read by the

master controller through a DIO port (sampled at 20 Hz). To position the lickport and the pole, the

master controller interfaced with the motors through DIO ports.

A second ‘task’ controller controlled individual behavioral trials using finite state machines with

high temporal resolution (0.1 ms, adapted from the open-source Bpod project https://github.com/

sanworks/Bpod_StateMachine_Firmware; Sanders, 2018). The task controller was triggered by the

master controller. Before each trial, the master controller generated a finite state machine and sent

the state matrix to the task controller to execute. The task controller actuated the air piston that pre-

sented the pole and the solenoid valves that delivered reward through solid state relays (DMO063,

Mouser). The task controller also actuated the piezo buzzer for the ‘go’ cue via a pulse width modu-

lation (PWM) port. The task controller read licking events (TTL high logic) from the lick detection cir-

cuit board.

Finally, a third ‘wave’ controller was used to generate custom waveforms to drive the optogenetic

components, including the masking flash LED (through an LED driver, SS25S075, SparkFun) and a

red laser (through a high-precision DAC, MCP4725, Adafruit). The ‘wave’ controller received meta

information from the master controller that specified the output waveform (e.g. amplitude) before

each trial, but the output was triggered by the task controller during specific task epochs.

The home-cage system operated standalone. The master controller was equipped with a data

logging shield (ID1141, Adafruit) and a real time clock (RTC) module to timestamp and store all

behavioral data and training parameters on a SD card. Behavioral data included detailed information

for each trial (e.g. trial number, trial type, trial outcome, licking events, etc.) and head-fixation events

(e.g. switch trigger, head-fixation, release, etc.). Training parameters specified the current protocol

and training progression. Behavioral data and training parameters were updated after each behav-

ioral trial. Each mouse was associated with its own SD card that contained its behavioral data and

training parameters. If interrupted, the home-cage system could resume training based on the train-

ing parameters stored on the SD card. In this manner, each mouse could switch between any home-

cage systems using its unique SD card.

Enclosure
The entire behavioral system was fit into an enclosure (560 � 250 � 230 mm) constructed with rails

(XE25L, Thorlabs) and detachable acrylic boards (8505K745, McMaster). The top board of the enclo-

sure was cut with an opening (170 � 170 mm) to provide light access during light cycles. The open-

ing was protected with a mesh screen. The enclosed system was standalone and powered by a 12 V

power supply (for Arduino microcontrollers), a 24 V power supply (for solenoid valve and analog

pressure regulator), a 4 bar air supply (for the pneumatics and analog pressure regulator). In addi-

tion, each system has an optional USB cable (from the master controller) to stream real-time data for
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display on a PC (Figure 1—figure supplement 1). However, the system could operate without the

PC display. Multiple systems could be connected to a single PC through a USB hub (Figure 1—fig-

ure supplement 1).

Autonomous training and optogenetic testing protocols
Three separate protocols (‘head-fixation training’, ‘task training’ and ‘optogenetics’) on the master

controller autonomously trained mice in voluntary head-fixation and the tactile decision-making task,

as well as carrying out optogenetic testing.

Head-fixation training protocol
Head-fixation training had two subprotocols. A ‘headport entry’ subprotocol lured mice into the

headport and acclimated them to headport entry. A second ‘head-fixation’ subprotocol acclimated

mice to head immobilization (Figure 2E).

The headport entry subprotocol started by placing the lickport close to the headport with the

two lickspouts inside the home-cage. Mice could lick both lickspouts freely. However, only licking

the rewarded lickspout led to a water reward. Licks on the other lickspout were ignored. The

rewarded lickspout alternated between the two lickspouts (three times each) to encourage licking

on both lickspouts. This phase of the training acclimated mice to the lickport. After every 20

rewarded licks, the lickport was retracted one step (3 mm) away from the home-cage. The lickport

retraction continued until the tip of the lickspouts was approximately 14 mm away from the head-

port. At this point, mice could only reach the lickspouts by entering the headport with the headbar

reaching the end of the guide tracks (Figure 2B). This reliably triggered the mechanical switches at

the end of the tracks. If mice failed to trigger the switches when the lickport was fully retracted, or if

no licks were detected in 12 hr, these scenarios typically indicated that mice were not lured into the

headport. In these cases, the headport entry subprotocol would re-extend the lickport toward to the

home-cage to lure mice in again (Figure 2E). After the mechanical switches were triggered 30 times,

the training advanced to the head-fixation subprotocol (Figure 2E).

The head-fixation subprotocol started by turning on the pneumatic pistons and the head-fixation

control logics. Whenever the switches were triggered, the pneumatic pistons were activated to

clamp the headbar. The clamps were released under three scenarios: (1) ‘time-up release’, when

head-fixation lasted for a predefined duration; (2) ‘escape’, when the switches were no longer trig-

gered by the mice, (‘escape’ occurred when mice quickly pulled out from the headport before the

pistons could clamp the headbar); (3) ‘self-release’, when the weight readings from the load-sensing

platform exceeded a threshold. Head-fixations reduced the weight load on the platform, and overt

movements of the mouse typically produced large fluctuations in weight readings (Figure 2D). We

set two thresholds at �1 and 30 g to robustly detect any struggles, that is whenever the weight

readings fell below �1 g or exceeded 30 g, the clamps were released. These thresholds were

dynamically adjusted during the training process: if there were too many self-releases (>90% of the

head-fixations), the upper threshold would increase by 2 g and the lower threshold would decrease

by 2 g (increasing the range); conversely, if there were too few self-releases (<5%), the upper thresh-

old would decrease by 2 g and the lower threshold would increase by 2 g (decreasing the range).

The thresholds were adjusted based on the last 20 head-fixations.

Initially, head-fixation started with a ‘soft clamp’ mode (pistons pressure 1.78 bar) and each head-

fixation lasted for a short duration (time-up release, 3 s). The duration was increased by 2 s after

every 20 successfully head-fixations (i.e., time-up release). After the duration reached 10 s, head-fixa-

tion switched to a ‘hard clamp’ mode. In the hard clamp mode, each head-fixation started with low

pressure (1.78 bar), but the pressure increased to 2.78 bar after the first 2 s of fixation. At the end of

each head-fixation, if the mouse did not pull out from the headport after the pistons were release (i.

e., the switches remained triggered), the next head-fixation would initiate. The head-fixation training

subprotocol completed when the fixation duration reached 30 s (Figure 2E), and the master control-

ler automatically advanced to the task training protocols. From this point onward, the head-fixation

control logics ran continuously.

Importantly, we found it necessary to acclimate mice with task stimuli during head-fixation train-

ing, well before task training started (see below). Introducing novel stimuli after head-fixation train-

ing often caused an increase in self-release rate and reduced the number of head-fixations, which
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hindered task training. To circumvent this issue, we introduced the tactile stimulus and the auditory

‘go’ cue at the beginning of the headport entry subprotocol. Specifically, the pole was presented to

touch the whiskers at the locations corresponding to the rewarded lickspout. Water reward was only

given for the first lick on the rewarded lickspout after the ‘go’ cue sound.

Task training protocol
We trained mice in a tactile decision task with a short-term memory component. Mice used their

whiskers to discriminate the location of a pole and reported choice using directional licking for a

water reward (Figure 3A, anterior pole position!lick left, posterior pole position!lick right)

(Guo et al., 2014b; Guo et al., 2014a). The pole was presented at one of two positions that were 6

mm apart along the anterior-posterior axis. The posterior pole position was approximately 5 mm

from the whisker pad. The pole was always presented to the right whiskers. In each head-fixation,

mice were tested in a succession of trials. At the beginning of each trial, the pole moved into reach

of the whiskers (0.2 s travel time), where it remained for 1 s, after which it was retracted (retraction

time 0.2 s). The sample epoch was defined as the time between the pole movement onset to 0.1 s

after the pole retraction onset (sample epoch, 1.3 s). A delay epoch followed, during which the mice

must keep the information in short-term memory (delay epoch, 1.3 s). An auditory ‘go’ cue (pure

tone, 3.5 kHz, 0.1 s duration) signaled the beginning of response epoch and mice reported choice

by licking one of the two lickspouts. Each trial was followed by an inter-trial-interval (2.5 s), after

which the next trial began, until the head-fixation is released (Video 1).

Task training had three subprotocols that shaped mice behavior in stages (Figure 3C). First, a

‘directional licking’ subprotocol trained mice to lick both lickspouts and switch between the two.

Then, a ‘discrimination’ subprotocol taught mice to report pole position with directional licking.

Finally, a ‘delay’ subprotocol taught mice to withhold licking during the delay epoch and initiate lick-

ing upon the ‘go’ cue.

The directional licking subprotocol started immediately after mice completed the head-fixation

training. Lick left or lick right trials were presented consecutively. Mice had to obtain three trials cor-

rect before the program switched to the other trial type. At this stage of the training, the pole was

presented for 1.3 s and a short delay epoch (200 ms) was included but not enforced. Mice were free

to lick at any time during the trial, but only the first lick after the ‘go’ cue were registered as choice.

Licking the correct lickspout after the ‘go’ cue led to water reward (2–3 mL). Licking the incorrect

lickspout triggered a timeout (2 s). Trials in which mice did not lick within a 1.5 s window after the

‘go’ cue were counted as ignores.

The discrimination subprotocol started once mice reached 70% correct in the directional licking

subprotocol (assessed over 30 trials). All aspects of the task remained the same, but the lick left and

lick right trials were presented in random order. Several auto-assist programs tracked mice’s perfor-

mance and occasionally adjusted the probability of each trial type (see Auto-assist programs). In

addition, licking the incorrect lickspout triggered a longer timeout (4 s).

The delay subprotocol started once mice reached 75% correct in the discrimination subprotocol.

At this stage, licking before the ‘go’ cue triggered a brief pause (0.1 s). After the pause, the program

resumed the trial from the beginning of the epoch in which the early lick occurred (sample or delay).

This constituted an additional timeout. However, the mouse could still complete the trial to obtain a

reward if it licked the correct lickspout after the ‘go’ cue. Initially, the delay epoch was brief (0.3 s).

The duration of the delay epoch increased by 0.2 s every time mice reached 70% correct perfor-

mance. The delay subprotocol ended when the delay epoch duration reached 1.3 s.

At the end of the delay subprotocol, the head-fixation duration was further increased from 30 to

60 s. The duration was increased by 2 s after every 20 successfully head-fixations. This was done to

obtain more behavioral trials in each head-fixation.

Auto-assist programs
During task training, mice often developed idiosyncratic biases by licking one lickspout more fre-

quently or continuously licking one lickspout without switching to the other. We implemented four

different ‘auto-assist’ programs to counter these behavioral patterns (Figure 3C). These auto-assist

programs evaluated mice performance continuously and assisted mice whenever behavioral biases

were detected.
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First, if a bias developed (i.e. performance difference between the two trial types exceeded 30%

in the last 50 trials or exceeded 80% in the last 20 trials), the left/right motor moved the lickport

such that the non-preferred lickspout was closer to the mouse. Second, if a mouse made five conse-

cutive errors in one trial type, a free water reward was delivered to the rewarded lickspout in the

next trial. This motivated the mouse to lick the rewarded lickspout. Third, the program calculated

behavioral performance in the last 30 trials and the trial type with worse performance was presented

more frequently. Finally, if a mouse made three consecutive errors in one trial type, the program

would keep presenting the same trial type until the mouse got two trials correct.

Contingency reversal learning
Mice were trained in the tactile decision task without a delay epoch. The training protocol is the

same as described above, with the exception that the delay subprotocol was not included. Mice

always learned the standard contingency first where posterior pole position corresponded to lick

right and anterior pole position corresponded to lick left. Once performance was >80% correct for

100 trials, the correspondence between pole locations and lick directions were reversed. Mice did

not receive any cues about the reversal other than reward feedbacks: correct responses led to

rewards and incorrect responses led to timeouts. The new contingency remained in place until mice

reached 80% correct, upon which the continency was reversed again.

Optogenetics protocol
The optogenetics protocol was manually initiated by experimenters based on inspections of behav-

ioral performance (Figure 1—figure supplement 1B). In the optogenetics protocol, photostimula-

tion was given in a random subset of trials (10%) during the sample, delay, or response epoch.

Photostimulation power was randomly selected (see Optogenetic experiments). In addition, a mask-

ing flash (10 Hz) was given on all trials. Masking flash began at the start of the sample epoch and

continued through the end of the response epoch in which photostimulation could occur.

Measuring head-fixation stability
To measure the repositioning of the headbar across multiple head-fixations, we used a CMOS cam-

era (CM3-U3-13Y3M, FLIR) to measure the displacements of the clear skull implant. To measure the

displacements in the rostral-caudal and medial-lateral directions, the camera was placed over the

headport (pixel resolution, 52.6 mm/pixel). To measure the displacement in the dorsal-ventral direc-

tion, we glued a small plastic marker on the clear skull implant and placed the camera in front of the

headport (pixel resolution, 78.1 mm/pixel) to measure the vertical displacement of the marker. Across

16 different head-fixations, 10 images were acquired at random time points during each head-

fixation.

To determine the displacement, we selected small regions of interest (ROIs, 30 � 30 pixels) on

the clear skull implant or the marker (Figure 2—figure supplement 1). For each ROI, we computed

2D cross-correlations for every possible image pairs across the 16 different head-fixations (Figure 2—

figure supplement 1A). Cross-correlation (xcorr2 function, MATLAB) always produced zero-pixel

shift, indicating that any displacement was at a subpixel scale. We thus employed a subpixel image

registration algorithm (Guizar-Sicairos et al., 2008), which measured 2D rigid translation for a small

fraction of pixels to calculate the displacements. Displacements in the rostral-caudal/medial-lateral

directions and the dorsal-ventral direction were quantified separately since it involved different cam-

era configurations. Displacements were calculated for multiple ROIs (Figure 2—figure supplement

1A–F). Figure 2I shows the displacements pooled across all ROIs (mean, 8.8, 6.4, and 12.1 mm in

rostral-caudal, medial-lateral, and dorsal-ventral direction). The mean and SD were calculated on the

absolute values of the displacement.

To verify that the subpixel algorithm captured the displacements accurately, we also selected a

ROI on the wall of the headport. The ROI on the wall of the headport showed little displacement

(Figure 2—figure supplement 1G; mean, 2.07 and 1.10 mm in rostral-caudal/medial-lateral direc-

tions). We also selected a ROI containing the mouse’s whiskers. The ROI on whiskers showed large

displacement (Figure 2—figure supplement 1H; mean, 266 and 351 mm in rostral-caudal/medial-lat-

eral directions).
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Manual behavioral training
The procedures for manual behavioral training have been described previously (Guo et al., 2014b).

Mice were manually acclimated to head-fixation and tested in daily sessions that lasted 1–2 hr. The

training started by rewarding mice for simply licking the lickspouts. The auditory ‘go’ cue was played

immediately before water delivery.

After mice learned to lick for water (~60 rewards), the reward scheme was changed to teach mice

to sample both lickspouts (similar to the directional licking training protocol in home-cage training).

Only one lickspout held a water reward and the rewarded lickspout alternated after three rewards.

Occasionally, manual water delivery was necessary to prompt mice to lick from the other lickport. In

addition, the rewarded lickspout was moved closer to the mouse in each trial to encourage licking.

Gradually, the movement of the lickport was reduced and the lickport eventually remained in a fixed

center position. During this phase of the training, the vertical pole was also presented at the position

corresponding to the rewarded lickport (anterior pole position!lick left, posterior pole position-

!lick right). Presentation of the pole allowed mice to gradually associate the pole position with the

rewarded lickspout.

Once mice reliably switched licking between lickspouts, object location discrimination task started

(equivalent to the discrimination training protocol in home-cage training). In this stage of the train-

ing, the two trial types were presented in random order and the task did not include a delay epoch.

Mice were free to lick at any time during the trial, but only the first lick after the ‘go’ cue were regis-

tered as choice. Correct choice led to a water reward. Incorrect choice led to a time out.

After mice reached performance criterion (>70% correct), the delay epoch was introduced. Lick-

ing before the ‘go’ cue triggered an alarm sound from a siren buzzer and a brief timeout. The delay

epoch was initially short (0.3 s) and gradually increased to 1.3 s.

Optogenetic experiments
For mice tested in unsupervised optogenetic experiments (see Optogenetics protocol), light from a

633 nm laser (MRL-III-633–50, Ultralaser) or 625 nm LED (M625F2, Thorlabs) was delivered via an

optical fiber (M79L005, Thorlabs) above the headport. The photostimulus was a 40 Hz sinusoid last-

ing for 1.3 s, including a 100 ms linear ramp during photostimulus offset to reduce rebound neuronal

activity (Guo et al., 2014a; Li et al., 2019). Photostimulation started at the beginning of the sample,

delay, or response epoch. We used average power of 5–50 mW at the fiber tips, which corre-

sponded to light intensity of 0.3–3.5 mW/mm2 given the size of the light beam on the surface of the

skull.

For mice tested in photoinhibition of vS1 and ALM, we subsequently tested them in manual opto-

genetic experiments. In daily sessions, mice were manually head-fixed and tested by an experi-

menter on an electrophysiology setup. The light source and light delivery were the same as the

home-cage optogenetic experiments. The size of the light beam on the brain surface was also

matched. To prevent the mice from distinguishing photostimulation trials from control trials using

visual cues, a masking flash was delivered using 627 nm LEDs (Luxeon Star) near the eyes of the

mice. The masking flash began at the start of the sample epoch and continued through the end of

the response epoch in which photostimulation could occur.

Behavioral data analysis
The duration of each head-fixation was calculated as the interval between the onset of the piston

clamps and the following release (Figure 2). The inter-fixation-interval was calculated as the interval

between a release and the next head-fixation (Figures 2L and 6). Performance was computed as the

percentage of correct choices. Mice that never exceeded 70% correct after 35–40 days of training

were deemed as unsuccessful in task training. To quantify the effect of photostimulation, we also

separately computed performance for lick left and lick right trials. Chance performance was 50%.

Behavioral effects of photostimulation for each mouse were quantified by comparing its perfor-

mance under photostimulation with control trials. The within-mouse performance changes were then

averaged across mice. Significance of the average performance change in each photostimulation

condition was determined using a nested bootstrap to account for variability across mice, sessions,

and trials. We tested against the null hypothesis that the average performance change caused by

photostimulation was due to normal behavioral variability. In each round of bootstrap, we generated
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a resampled dataset by first resampling (with replacement) the mice included in the analysis. We

then resampled (with replacement) the sessions of each mouse. For each session, we then resampled

(with replacement) the trials in the session. We computed the performance change on the resampled

dataset. Repeating this procedure 10,000 times produced a distribution of performance changes

that reflected the behavioral variability. The p value of the observed performance change was com-

puted as fraction of times the bootstrap produced an inconsistent performance change (e.g. if a per-

formance decrease was observed during photostimulation, the p value is the fraction of times a

performance increase was observed during bootstrap, one-tailed test). In this bootstrap analysis,

each day (dark +light cycle) in the home-cage optogenetic experiments was treated as a ‘session’.

Logistic regression model of behavioral data
We used a logistic regression model to predict mice’s choice. The probability of choice in the current

trial, P(left), was a logistic function of the weighted sum of several behavioral and task variables. The

variables are the tactile stimulus in the current trial (S0, 1 for lick left trial, -1 for lick right trial), the

tactile stimuli in the last five trials (S1 to S5), choice in the last five trials (A1 to A5, 1 for licking left, -1

for licking right), reward outcomes in the last five trials (R1 to R5, 1 for rewarded, -1 for unrewarded),

the average stimuli in the last 20 trials (Savg =
P20

i¼1

Si=20), a win-stay-lose-switch strategy (WSLS =

A1�R1), and a constant bias term b0. The model was defined by the following equations:

P leftð Þ ¼
1

1þ e� zð Þ

z¼ bs0
S0 þ

X5

i¼1

bsi
Si þ

X5

i¼1

bAi
Ai þ

X5

i¼1

bRi
Ri þbsavg:

Savg:þbWSLSWSLSþb0

where the b’s were the weights for the regressors. P(left)>0.5 predicted licking left and P(left)<0.5

predicted licking right.

For each mouse, we built separate logistic regression models at different stages of learning. The

behavioral trials were concatenated in time, that is, across multiple head-fixations for home-cage

training and across multiple sessions for manual training. We used a sliding window of 500 trials (in

100-trial steps). In each window, the model was fit to the behavioral choice data using a gradient

descent algorithm to maximize the likelihood estimation cost function (glmfit, MATLAB). The model

performance was evaluated using 5-fold cross validation. In each round of cross validation, 60 conse-

cutive trials and their history data (the 20 trials before) were selected as the test set. A total of 400

trials were used as the training set while excluding the 20 trials before and 20 trials after the block of

trials used as the test dataset. This ensured absolute independence of the training and test data

since the logistic regression model used trial history data as its input. This cross-validation procedure

was repeated nine times and the prediction performance was averaged. To quantify the model pre-

diction performance, we computed the fraction of trials in which the model correctly predicted

choice in the test dataset.

During home-cage training, mice first underwent the ‘directional licking’ subprotocol that pre-

sented the same trial type in blocks to teach the mice to lick both lickspouts (see Task training proto-

col). This phase of the training could introduce dependencies of choice on the choice history. Thus,

the logistic regression analysis was performed only on behavioral data after mice advanced to the

‘discrimination’ phase of the training in which both trial types were presented randomly. For behav-

ioral data from manual training, the logistic regression analysis started at an equivalent time point

(see Manual behavioral training).

To quantify the contribution of each regressor, we constructed partial models in which specific

regressors were removed from the full model. Specifically, we set the weight (b) of the regressor to

zero and determined whether the prediction performance of the partial model was significantly

worse than the full model (Engelhard et al., 2019). To assess statistical significance, we used boot-

strap (Efron and Tibshirani, 1994) in which the test dataset was resampled with replacement 1000

times and the p value was computed as the fraction of times in which the partial model produced a

better performance than the full model (Figure 4B). In Figure 4E, if a regressor was significant

(p<0.05) in five consecutive time windows (1000 trials), the mouse was deemed to rely on this
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regressor during task learning. As a control, we also tested the full model fit to a shuffled dataset

(Figure 4C). To generate the shuffled dataset, we shuffled the choice across trials while maintaining

the stimulus and reward history. Model fitting and testing on the shuffled dataset was computed

using the same cross validation procedure described above. To examine whether the tactile stimulus

(S0) and choice history (A1) were sufficient to account choice prediction of the full model, we tested

a reduced model which only included the two regressors and a constant bias term (b0) (Figure 4C).

Electrophysiology
To characterize photoinhibition in cortex, we injected 200 nL of AAV9-hSyn-FLEX-ChrimsonR-tdTo-

mato viruses into the left barrel cortex (bregma posterior 1.5 mm, 3.5 mm lateral, 0.4 and 0.8 mm

deep) of GAD2-IRES-Cre mice. To characterize the effect of photostimulation in the striatum, we

injected 100 nL of AAV8-Ef1a-DIO-ChRmine-mScarlet-WPRE viruses into the left striatum (bregma

posterior 0.6 mm, 2.4 mm lateral, 2.2 mm deep) of GAD2-IRES-Cre mice. To characterize photoinhi-

bition in the superior colliculus, we injected 200 nL of AAV8-Ef1a-DIO-ChRmine-mScarlet-WPRE

viruses into the left superior colliculus (bregma posterior 3.5 mm, 1.5 mm lateral, 2.2 mm deep) of

GAD2-IRES-Cre mice.

Three weeks after the virus injection, we recorded extracellular spikes using 64-channel silicon

probes (H2 probes, Cambridge Neurotech) near the injection site. A small craniotomy (diameter,<1

mm) was made one day before the recording session. During the recording session, the silicon

probe was acutely inserted into the brain. To minimize brain movement, a drop of silicone gel (3–

4680, Dow Corning) was applied over the craniotomy after the electrode was in the tissue. The tissue

was allowed to settle for several minutes before the recording started. For recordings in the barrel

cortex, the silicon probe was inserted 0.9–1.11 mm below the brain surface. For recordings in the

striatum and superior colliculus, multiple recordings were obtained at a range of depths along a pen-

etration (insertion depths, 2.3–3.5 mm). Recording depth was inferred from manipulator depth and

verified with histology (Figure 8A and I). The voltage signals were amplified and digitized on an

Intan RHD2164 64-Channel Amplifier Board (Intan Technology) at 16 bit, recorded on an Intan

RHD2000-Series Amplifier Evaluation System (sampling at 20,000 Hz), and stored for offline analysis.

Photostimulation was performed by directing a laser beam over the surface of the brain

(Guo et al., 2014a). The light source and light delivery were the same as the home-cage optoge-

netic experiments. Photostimulation was delivered in approximately 7 s intervals. The mice were

awake but not engaged in any task. The power was chosen randomly from a predefined set. We

used average power of 0.5, 1.2, 3, 5, 10 and 14.5 mW, which corresponded to light intensity of 0.28,

0.68, 1.7, 2.83, 5.66, 8.21 mW/mm2 given the size of the light beam measured at the surface of the

skull.

Electrophysiology data analysis
The extracellular recording traces were band-pass filtered (300–6,000 Hz). Spike events that

exceeded four SDs of the background were subjected to manual spike sorting (Guo et al., 2014a).

171 single-units were obtained in the barrel cortex. A total of 348 single-units were obtained in the

striatum and 170 single-units were obtained in the superior colliculus.

In cortex, fast-spiking (FS) neurons and pyramidal neurons could be putatively distinguished

based on spike waveform. Spike widths were computed as the trough-to-peak interval in the mean

spike waveform (Figure 7C). Units with spike width <0.55 ms were defined as putative FS neurons

(14/171) and units with spike widths > 0.55 ms as putative pyramidal neurons (157/171). In the stria-

tum and superior colliculus, cell types were not distinguished based on spike waveform. Instead, we

separately analyzed neurons that were significantly excited or inhibited by photostimulation

(Figure 8D and L).

For each neuron, we computed spike rates during the photostimulus and a baseline period (500

ms time before photostimulus onset). Significant spike rate change was tested using two-tailed t-test

(Figures 7C, 8C, E and K). To quantify the effect size of photostimulation, we calculated a ‘relative

firing rate’. The spike rates during photostimulation were normalized by dividing the baseline spike

rate. The relative firing rate reported the spike rate modulation during photostimulation.
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Histology
Mice were deeply anaesthetized with isoflurane and transcranially perfused with PBS followed by 4%

paraformaldehyde (PFA). The brains were removed and post-fixed in 4% PFA for 24 hr before trans-

ferring to 30% sucrose. 100 mm coronal sections were cut and imaged on a fluorescence macroscope

(Olympus MVX10). We aligned each coronal section to the Allen Mouse Common Coordinate

Framework (CCF) (Wang et al., 2020) using landmark-based image registration. The registration tar-

get was the 10 mm per voxel CCF anatomical template. To align a coronal section, we first manually

selected the coronal plane in the anatomical template that best corresponded to the section. We

then manually placed control points at corresponding local landmarks in each image. Thirty to fifty

control points were placed in a single image. Next, the image was warped to the CCF using an affine

transformation followed by a non-rigid transformation using b-splines (Gao et al., 2018).
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