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Objective: A novel locus in the hepatic lipase (LIPC) gene was found to be significantly related to advanced age-related
macular degeneration (AMD) in our genome-wide association study. We evaluated its association and interaction with
previously identified genetic variants and modifiable factors.
Methods: Participants in the Age-Related Eye Disease Study with advanced AMD (n=545 cases) or no AMD (n=275
controls) were evaluated. AMD status was determined using fundus photography. Covariates included cigarette smoking,
body mass index (BMI), and dietary lutein. Individuals were genotyped for the rs10468017 polymorphism in LIPC as
well as seven previously identified AMD genetic loci. Unconditional logistic regression analyses were then performed.
Results: The TT genotype of the LIPC variant was associated with a reduced risk of AMD, with odds ratios (OR) of 0.50
(95% confidence interval (CI) 0.20–0.90) and p=0.014 for the TT genotype versus the CC genotype, controlling for age,
gender, smoking, body mass index (BMI), and nutritional factors. Controlling for seven other AMD genetic variants, the
OR was 0.50, 95% (CI 0.20–1.1, p=0.077). The magnitude of the effect was similar for both atrophic and neovascular
forms of AMD. Cigarette smoking and higher BMI increased the risk, while higher dietary lutein reduced the risk of
advanced AMD, adjusting for genetic variants. There were no significant interactions between LIPC and smoking, BMI,
or lutein. There was a possible association between LIPC and complement factor H (CFH) rs1410996, and a possible
interaction effect between LIPC and both CFH rs10033900 and the complement factor I (CFI) variants in terms of risk
of AMD.
Conclusions: LIPC is associated with reduced risk of advanced AMD, independent of demographic and environmental
variables. Both genetic susceptibility and behavioral and lifestyle factors modify the risk of developing AMD.

The links between genetics, environment and age-related
macular degeneration (AMD) have been assessed in several
previous studies. The US twin study of AMD quantified the
proportions of variance in early, intermediate, and advanced
forms of this disease due to genetic and environmental factors
as 46%–71% and 19%–37%, respectively [1,2]. Several
environmental factors have been identified, including
cigarette smoking [3,4], higher body mass index (BMI) [5,6],
and dietary carotenoids [7–10]. A genetic effect was
suggested for several years based on clinical observations,
familial aggregation and linkage studies [1,2,11–15], and has
been confirmed by studies showing associations between
AMD and several genetic loci [16–30]. These genetic loci are
estimated to account for approximately one-half of the
heritability of AMD [22].

In an attempt to identify other susceptibility loci and to
explain the remaining heritability of AMD, we conducted a
large genome-wide association study (GWAS) of 979 cases
of advanced AMD and 1709 controls, with replication of our
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top results in independent cohorts with a total of 5789 cases
and 4234 controls [29]. Our scan identified the hepatic lipase
gene (LIPC) in the high-density lipoprotein cholesterol (HDL)
pathway as a novel locus for AMD risk, with a protective
effect for the minor T allele. A separate GWAS corroborated
the LIPC association with AMD [30]. LIPC encodes hepatic
triglyceride lipase, which is expressed in the liver. One of the
principal functions of the enzyme hepatic lipase is to convert
HDL to LDL. LIPC performs the dual functions of triglyceride
hydrolase and ligand bridging factors for receptor-mediated
lipoprotein uptake [29]. We further explored this LIPC locus
and found that the association was strongest at the functional
variant in the promoter region (single nucleotide
polymorphism (SNP) rs10468017), which influences LIPC
expression [29].

In this report, we expanded upon the results of the GWAS
discovery of the LIPC gene by evaluating the association
between the LIPC genetic variant and other genes related to
advanced AMD, exploring the relationship between this gene
and the two distinct advanced “dry and wet” phenotypes, and
assessing LIPC gene-environment associations and
interactions with demographic, personal and lifestyle factors.
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METHODS
The Age-Related Eye Disease Study (AREDS) included a
randomized clinical trial to assess the effect of antioxidant and
mineral supplements on risk of AMD and cataract as well as
a longitudinal study of progression of AMD that ended in
December, 2005 [8]. Based on ocular examination and
reading center photographic grading of fundus photographs,
participants with European ancestry in this study were divided
into two main groups representing the most discordant
phenotypes: no AMD defined as either no drusen or non-
extensive small drusen (n=275), or advanced AMD with
visual loss (n=545). The advanced form of AMD, which is
associated with visual loss, was then reclassified into the two
subtypes of either non-central or central geographic atrophy
(GA, n=139) or neovascular disease (NV, n=406),
independent of visual acuity level, using the Clinical Age-
Related Maculopathy Grading System [31], to determine
whether results differed between the two advanced AMD
phenotypes. Ethnicity and risk factor data were obtained at the
baseline visit from questionnaires as well as measurements of
height and weight.

All genotyping was performed using primer mass
extension and MALDI-TOF MS analysis according to the
MassEXTEND methodology of Sequenom (San Diego, CA)
at the Broad Institute Center for Genotyping and Analysis,
Cambridge, MA [32]. The single nucleotide polymorphism
(SNP), rs10468017, which is a functional variant of the
LIPC gene on chromosome 15q22, was assessed. In addition,
variants in seven other known AMD genes were also
determined: 1) the common SNP in exon 9 of the complement
factor H (CFH) gene on chromosome 1q31 (rs1061170), a
change 1277T>C, resulting in a substitution of histidine for
tyrosine at codon 402 of the CFH protein, Y402H; 2) CFH 
rs1410996, an independently associated SNP variant within
intron 14 of CFH; 3) SNP rs10490924 in the ARMS2/
HTRA1 region of chromosome 10, a non-synonymous coding
SNP variant in exon 1, resulting in a substitution of the amino
acid serine for alanine at codon 69; 4) Complement
component 2 or C2 E318D (rs9332739), the non-synonymous
coding SNP variant in exon 7 of C2 resulting in the amino acid
glutamic acid changing to aspartic acid at codon 318; 5)
Complement Factor B or CFB R32Q (rs641153), the non-
synonymous coding SNP variant in exon 2 of CFB, resulting
in the amino acid glutamine changing to arginine at codon 32;
6) Complement component 3 or C3 R102G (rs2230199), the
non-synonymous coding SNP variant in exon 3 of C3,
resulting in the amino acid glycine to arginine at codon 102
on chromosome 19; and 7) Complement Factor I or CFI
(rs10033900) on chromosome 4. The genetic variant on
chromosome 10, ARMS2/HTRA1, remains a subject of debate
as to whether the gene HTRA1 adjacent to it may in fact be the
AMD-susceptibility gene on 10q26 [26,27]; however, the
relevant SNPs in these two genes have been reported to be
nearly perfectly correlated. Thus, while the other SNP is a

promising candidate variant, rs10490924 used in this study
can be considered a surrogate for the causal variant that resides
in this region. For the C2/CFB genes, there are two
independent associations to the C2/CFB locus, but because of
linkage disequilibrium, we do not know which of the two
genes or if in fact both are functionally affected.

Statistical analyses: Logistic regression was used to
determine the association between LIPC genotypes and other
risk factors. Individuals with advanced AMD, as well as the
GA and NV subtypes, were compared to the control group of
persons with no AMD in regards to genotype and risk factor
data. Multivariate unconditional logistic regression analyses
were performed to evaluate the relationships between AMD
and LIPC, controlling for age (70 or older, younger than 70);
gender; education (high school or less, more than high
school); cigarette smoking (never, past, current); BMI, which
was calculated as the weight in kilograms divided by the
square of the height in meters (<25, 25–29.9, and ≥30); dietary
lutein (micrograms), which was determined from food
frequency questionnaires, divided into tertiles, and adjusted
for sex and calorie intake because men tend to have a higher
calorie intake than women; and assignment to a supplement
containing antioxidants or a supplement not containing
antioxidants. We included dietary lutein in our models
because it is related to AMD [7,10,33] and because HDL is
the major lipoprotein transporter of lutein and zeaxanthin in
the body; moreover, the T allele of the LIPC gene increases
HDL [29,34–36].

A separate statistical model including all of the above
factors, plus the seven other genetic variants, was also
evaluated. The association between the LIPC gene and these
variants was assessed. Tests for multiplicative interactions
between genes and between genes and environmental factors
were performed using cross-product terms according to
genotype and the individual risk factors [37]. Odds ratios and
95% confidence intervals were calculated for each risk factor
and within the genotype groups.

RESULTS
The distributions of demographic, personal, and lifestyle
variables, previously shown to be associated with AMD in
studies of this cohort [6,33,38,39], are shown in Table 1
according to the LIPC genotypes for controls and cases with
geographic atrophy and neovascular disease. There were no
significant differences in gender, education, smoking, BMI,
antioxidant supplements, or calorie-adjusted dietary lutein
among the LIPC genotypes. There was a significant
association between the number of T alleles and age for the
NV group, which was not seen in the other groups.

The associations between LIPC and other known AMD
genetic loci are shown in Table 2. There was a possible
association between LIPC and CFH rs1410996 in the GA
subgroup (p=0.035). There were no other significant
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associations between the LIPC gene and other AMD genetic
loci among the controls or in the advanced AMD phenotypes.

Table 3 shows the odds ratios based on the multivariate
models, comparing all advanced AMD cases, as well as GA
and NV cases, with controls for the LIPC variant, while
adjusting for demographic and behavioral risk factors.
Controlling for age, gender, education, smoking, BMI,
AREDS treatment, and dietary lutein in multivariate model 1
(MV1), the OR was 0.5 (95% confidence interval (CI) 0.2–
0.9) comparing the TT genotype to the CC genotype for
advanced AMD (p=0.014), which suggests a protective effect
for the TT genotype. Controlling for the other seven genotypes
(multivariate model 2), did not alter the magnitude of the
effect of this new genetic variant (OR 0.5, 95% CI 0.2–1.1),
although this was not statistically significant possibly due to
small numbers. There were minimal differences between GA
and NV for this locus. For GA in model 1, the OR was 0.5
(95% CI 0.2–1.3) for the TT genotype, and for NV, the OR
was 0.4 (95% CI 0.2–0.9).

Table 3 also shows the associations between advanced
AMD, GA, or   NV with older age, less education, cigarette
smoking (past and current), higher BMI, and lower levels of
dietary lutein intake, compared with controls and controlling
for the LIPC genotype. Cigarette smoking was associated with
a statistically significant increased risk of advanced AMD for
both subtypes, controlling for genotype and other factors. ORs
in the multivariate model 1 (demographic, environmental
factors and LIPC genetic variant) range from 3.9 to 4.0 for
current smoking and 1.5–1.8 for past smoking. A body mass
index of 30 kg/m2 or higher increased the risk for advanced
AMD for both neovascular cases (OR 2.1, 95% CI 1.3–3.4)
and for geographic atrophy (OR 1.8, 95% CI 1.0–3.2). Higher
lutein intake tended to reduce the risk of overall AMD, with
OR  0.6  (95% CI 0.4–1.0)  for  the  third tertile versus the
first  tertile.   Additional   adjustment  for   the  other   seven
genetic loci (multivariate model 2) did not substantially alter
these  ORs.  There were no substantial  differences between
GA and NV in the analyses of these covariates.

We assessed the effect of interactions between LIPC
genotypes and lifestyle factors on risk of AMD; results are
shown in Table 4. There were no statistically significant
interactions, meaning that the effect of the gene did not vary
significantly according to a specific category of the behavioral
factor. Higher BMI and cigarette smoking tended to increase
risk of AMD in the CC and CT genotype groups; numbers
were too small in the TT group to identify BMI and smoking
effects for this genetic subgroup.

Shown in Table 5 are the effects of interactions between
LIPC genotypes and other genes on risk of advanced AMD.
There was a borderline significant interaction between LIPC
and the CFI rs10033900 and CFH rs1410996 genotypes.
LIPC appears to be more protective when CFI rs10033900 is

CC or CT as opposed to TT. LIPC is more protective when
CFH rs1410996 is CT or TT versus CC.

DISCUSSION
To our knowledge, this is the first evaluation of the
relationship between the LIPC functional variant and
advanced AMD while controlling for demographic and
behavioral factors including BMI, smoking, and dietary
factors, as well as previously identified AMD genes. LIPC and
environmental factors were independently associated with
advanced AMD, the leading cause of visual impairment and
vision-related reduced quality of life among elderly
individuals. Controlling for the LIPC genotype, modifiable
lifestyle factors, including higher BMI, smoking, and lower
dietary lutein, were significantly associated with increased
risk of advanced AMD. Similar to our previous findings with
other genetic variants [38–41], there was an independent
effect of both the genetic and modifiable behavioral factors
when they were considered simultaneously, but there were no
significant interactions between the genetic and
environmental factors on risk of AMD. There was a possible
gene-gene association, however, between LIPC and CFH
rs1410996, and a possible interaction effect between LIPC
and both CFH rs1410996 and CFI rs10033900 variants in
terms of risk of AMD, but no other associations or interactions
were seen between LIPC and the other known AMD genes.

The association between LIPC polymorphisms and AMD
is biologically plausible because this gene is involved with the
HDL cholesterol pathway, and cardiovascular disease (CVD)
risk factors are associated with AMD [42]. It has been
suggested that CVD could also be a model for the role of
cholesterol in AMD [35]. Modifiable factors for CVD such as
smoking and BMI are associated with both cholesterol [43,
44] and AMD. High BMI and smoking are associated with
increased LDL and lower HDL [43,44]. In a separate report,
we evaluated the relationship between serum lipids, LIPC and
AMD, and found an inverse (protective) association between
HDL and AMD, and a positive (adverse) association with
higher LDL and total cholesterol [36]. When we evaluated
both LIPC and HDL together, the level of serum lipid did not
appear to modify the effect of LIPC on AMD [36], suggesting
that although LIPC regulates level of HDL, this may not be
the direct mechanism whereby LIPC reduces risk of AMD.
HDL transports lutein and zeaxanthin and these carotenoids
are also associated with reduced risk of AMD [7–10,34–36].
A change in the efficiency of carotenoid delivery is one
mechanism by which LIPC genetic variation could be related
to AMD [29].  Further research into the mechanisms of
LIPC and the HDL pathway in the pathogenesis of AMD are
needed.

Strengths of the study include the large, well
characterized population of patients with and without
advanced AMD from various geographic regions around the
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US, the standardized collection of risk factor information,
direct measurements of height and weight, and classification
of maculopathy by ophthalmologic examinations and fundus
photography. Misclassification was unlikely, since grades
were assigned without knowledge of risk factors or genotype.
We controlled for known AMD risk factors, including age and
education, as well as antioxidant status, in the assessment of
BMI, smoking, dietary lutein, and genotype. The
environmental and genetic risk factors were independently
associated with AMD, when considered simultaneously.
There may be some other unmeasured factors that might still
be confounding these relationships, but they would have to be
highly related to genotype, smoking and BMI, and a strong
risk factor for AMD to explain these results. Although this is
a selected population, cases likely represent the typical patient
with AMD seen in clinical setting. The overall population is

similar to others in this age range in terms of smoking and
prevalence of obesity, as well as the distribution of the LIPC
genotype. Furthermore, the biologic effects of LIPC and the
modifiable factors are not likely to differ in major ways among
various European populations with AMD. This study of
moderate sample size may not have sufficient power to detect
small to intermediate interaction effects between genes or
between genes and environmental factors. Larger studies, as
well as prospective studies, are needed to confirm and expand
upon these findings.

Conclusion: LIPC is independently associated with
reduced risk of advanced AMD, adjusting for demographic
and environmental variables. Both genetic susceptibility and
behavioral and lifestyle factors modify risk of developing
AMD.

TABLE 5. ASSESSMENT OF EFFECT OF INTERACTIONS BETWEEN HEPATIC LIPASE (LIPC) GENOTYPE (RS10468017) AND OTHER GENES ON RISK OF AGE-RELATED MACULAR

DEGENERATION.

  
CC

LIPC genotype
Number of cases   CT & TT
 Combined Advanced AMD 293 252
 Geographic Atrophy 82 57
 Neovascular AMD 211 195
Number of controls  128 147
  OR (CI) * OR (CI) *
CFH: rs1061170 (Y402H)   
 TT 1.0 0.5 (0.3 - 0.9)
 CT 1.7 (1.0 - 2.9) 1.9 (1.1 - 3.3)
 CC 5.6 (2.8 - 11.0) 5.3 (2.7 - 10.3)
 p (interaction)  0.12 (CT-TT versus CC)
CFH: rs1410996   
 TT 1.0 0.6 (0.2 - 2.0)
 CT 2.8 (1.1 - 6.7) 1.6 (0.7 - 4.0)
 CC 7.8 (3.2 - 19.0) 9.9 (4.0 - 24.5)
 p (interaction)  0.05 (CT -TT vs CC)
ARMS2/HTRA1: rs10490924   
 GG 1.0 0.9 (0.6 - 1.5)
 GT 3.9 (2.4 - 6.3) 2.6 (1.6 - 4.1)
 TT 21.2 (6.3 - 71.9) 12.8 (4.3 - 37.9)
 p (interaction)  0.32(CT-TT versus CC)
CFB: rs641153 (R32Q)   
 CC 1.0 0.9 (0.6 - 1.3)
 CT/TT 0.3 (0.2 - 0.6) 0.1 (0.1 - 0.3)
 p (interaction)  0.14 (CT-TT versus CC)
C2: rs9332739 (E318D) 1.0  
 GG 0.4 (0.1 - 1.4) 0.9 (0.6 - 1.2)
 CG/CC  0.2 (0.1 - 0.5)
 P (Interaction)  0.13 (CT-TT versus CC)
C3: rs2230199 (R102H)  1.0 (0.6 - 1.4)
 CC 1.0  
 CG 1.8 (1.1 - 2.8) 1.4 (0.9 - 2.2)
 GG 8.8 (2.0 - 39.4) 1.5 (0.6 - 3.8)
 p (interaction)  0.10 (CT-TT versus CC)
CFI: rs10033900   
 CC 1.0 0.7 (0.4 - 1.3)
 CT 1.5 (0.9 - 2.5) 0.9 (0.5 - 1.5)
 TT 1.1 (0.6 - 2.0) 2.1 (1.1 - 4.1)
 p (interaction)  0.04 (CT-TT versus CC)

*OR=Odds Ratio (adjusted for age, gender, education, smoking, BMI, calorie adjusted lutein, and treatment), CI=95%
Confidence Interval. Results shown are for combined advanced AMD.
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