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a b s t r a c t

Heart failure with preserved ejection fraction (HFpEF) is associated with multiple etiologic and patho-
physiologic factors. HFpEF leads to significant cardiovascular morbidity and mortality. There are various
reasons that fail to identify effective therapeutic interventions for HFpEF, primarily due to its clinical
heterogeneity causing significant difficulties in determining physiologic and prognostic implications
for this syndrome. Thus, identifying clinical subtypes using multi-omics data has great implications for
efficient treatment and prognosis of HFpEF patients. Here we proposed to integrate mRNA, DNA methy-
lation and microRNA (miRNA) expression data of HFpEF with a similarity network fusion (SNF) method
following a network enhancement (ne-SNF) denoising technique to form a fused network. A spectral clus-
tering method was then used to obtain clusters of patient subtypes. Experiments on HFpEF datasets
demonstrated that ne-SNF significantly outperforms single data subtype analysis and other integrated
methods. The identified subgroups were shown to have statistically significant differences in survival.
Two HFpEF subtypes were defined: a high-risk group (16.8%) and a low-risk group (83.2%). The 5-year
mortality rates were 63.3% and 33.0% for the high- and low-risk group, respectively. After adjusting for
the effects of clinical covariates, HFpEF patients in the high-risk group were 2.43 times more likely to
die than the low-risk group. A total of 157 differentially expressed (DE) mRNAs, 2199 abnormal methy-
lations and 121 DE miRNAs were identified between two subtypes. They were also enriched in many
HFpEF-related biological processes or pathways. The ne-SNF method provides a novel pipeline for sub-
type identification in integrated analysis of multi-omics data.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heart failure (HF) is the leading cause of hospitalization and
death around the world. Approximately half of HF patients have
a preserved left ventricular ejection fraction (HFpEF) and its preva-
lence is rising at an alarming rate of 1% per year relative to HF with
reduced ejection fraction (HFrEF) [1,2]. HFpEF patients are highly
heterogenous and have poor prognosis. No effective treatment
has been found to treat HFpEF patients [3]. Compared to HFrEF,
HFpEF patients are more likely to be older female, hypertensive,
anemic, and having atrial fibrillation. The annual mortality rate
for HFpEF patients is close to 8%; and the prevalence and 5-year
mortality rate of HFpEF patients over the age of 70 are close to
50% [4]. With an aging population worldwide, the growing chal-
lenge of HFpEF requires urgent attention to speed up disease char-
acterization and to identify subtypes of patients for more targeted
clinical diagnosis and treatment of HFpEF patients.

To date, most approaches to identify the subtypes of HFpEF are
mainly focused on phenomapping of HFpEF [5] using latent vari-
able model and hierarchical clustering methods, based on pheno-
typic features such as demographic, physical and clinical
characteristics, laboratory, electrocardiographic and echocardio-
graphic data. Although the targeted therapy for the identified
HFpEF phenogroups seems promising, the current therapy is lim-
ited to diuretic drugs and the treatment of co-morbidities [6].
The subtyping based on phenotypic features is still insufficient to
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identify HFpEF subgroups with unique underlying pathophysiology
and to assess the response to personalized therapy [7]. As the her-
itability of cardiovascular diseases (CVD) is at 40–50% in the gen-
eral population [8] several molecular subtype studies were
developed for CVD [9]. The subtypes based on common molecular
features lead to novel classification of HFpEF, and shed light on
mechanisms and plasma biomarkers involved in HFpEF [6]. With
the radical advances in sequencing and computer technology, we
are now able to extract high throughput multi-omics data without
limit. Integrative genomic study is being increasingly emphasized
[10]. It is promising that multi-omics data integration can capture
associations and potential causal relationships between different
data types [11] and further form a comprehensive understanding
of the underlying biological processes [10].

Rappoport and Shamir [12] did a comprehensive reviewofmulti-
omic data integration methods in general. Specifically, the authors
divided joint clustering of multiple data types into four categories:
1) Early integration, which simply combines multiple omics data
matrices to form a singlematrix and is themost simple one to apply.
However, it has a fewdiscernible limitations in practice as described
in the paper; 2) Late integration, amethod inwhich each omics data
type is clustered separatelyusing single-omicalgorithm, thendiffer-
ent clusters are integrated. One noticeable drawback is that one can
lose signals that are weak in individual omic data type; 3) Methods
based on statistical modeling (e.g. iCluster [13]), which assume a
probabilistic distribution of the data and are powerful but they run
slower and are sensitive to feature selections; and 4) Similarity-
based methods (e.g. similarity network fusion (SNF) [14]). The
similarity-based methods construct similarity matrices for each
omic data type separately. These similarities are then integrated,
with the advantage of incorporating diverse omics data types. SNF
uses message-passing theory to propagate information through
interactions between samples, thus effectively reduces noises and
strengthens similarities present in one or more networks. However,
it is acknowledged that in the fused network, the unavoidable noise
features generated by the limitations of measurement technology
and inherent natural variation, may dilute clustering signals and
lead to some spurious associations between samples [15]. To allevi-
ate this disadvantage, it is essential to further denoise the fused net-
works to achieve efficient and precise subtyping.

Recently, Wang et al. [16] proposed a network enhancement
(NE) approach to denoise weighted biological networks. NE uses
a doubly stochastic matrix operator to induce sparsity. Therefore,
it can remove weak network edges and enhance true connectivity,
which leads to better performance in downstream analysis. Given
the promise of NE, in this work, we incorporated the NE strategy to
denoise the SNF fused network (ne-SNF), thus strengthening strong
similarities between patients and removing weak edges mainly
caused by noises in the fused network. The proposed ne-SNF suc-
cessfully improved the performance of subtype identification com-
pared to SNF and other current state-of-the-art integration
methods. Specifically, using multi-omics data collected by Fram-
ingham Heart Study (FHS), we aimed to discover molecular sub-
types of HFpEF patients, and identify biomarkers and key
pathways. Subsequent biological analysis of the key molecular fea-
tures and pathways were shown to hold potential prognostic value
and biological significance.
2. Materials and methods

2.1. Data

2.1.1. Ethics statement
The Framingham Heart Study (FHS) data set used for this work

contain fully deidentified individuals obtained through dbGAP
1568
(http://dbgap.ncbi.nlm.nih.gov). This is a secondary data analysis
and the authors had no role in collecting the patient data. An IRB
approval was awarded before accessing the data set.

2.1.2. Diagnosis of HFpEF patients in Framingham Heart study
The FHS data in this study included clinical data, survival data

and multi-omics data, downloaded from dbGAP (study accession:
phs000007, http://dbgap.ncbi.nlm.nih.gov). The cohort includes
participants from Framingham, MA, to undergo biennial examina-
tions to investigate CVD and its risk factors since 1948 [17]. Off-
spring (and their spouses) and adult grandchildren of the original
cohort participants were recruited into the second- and third-
generation cohorts in 1971 and 2002 [18].

According to the ‘‘2016 ESC guidelines for diagnosis and treat-
ment of acute and chronic heart failure”, we selected HFpEF partic-
ipants with the following criteria: (1) signs and symptoms of HF;
(2) left ventricular ejection fraction >50%; (3) B-type natriuretic
peptide >35 pg/ml and/or N-terminal-pro hormone B-type natri-
uretic peptide >125 pg/ml; and (4) showing related structural
heart failure (left ventricular hypertrophy/left atrial enlargement)
and/or diastolic dysfunction. Patients with valvular vitium of the
heart and hypertrophic cardiomyopathy were removed. Out of a
total of 175 HFpEF patients, 125 participants from the offspring
cohort that took place between 1971 and 2011 (at examination
8) who had mRNA expression, DNA methylation and miRNA
expression profiling were included in this study. Survival time
was from the time of admission of HFpEF diagnosis to the time
of last follow-up (2011) or time of death from cardiovascular dis-
ease. The outcome was death from cardiovascular disease or sur-
vival. The survival time ranged from 0 to 29.6 years.

2.1.3. Omics data preprocessing
Three types of omics datawere obtained, including 17,874mRNA

expression probes, 443,207methylation CpG sites, and 416miRNAs.
We converted 17,874mRNA expression probes to 17,358 gene level
expressions by taking themean value ofmultiple probes as the gene
level expression, following the annotation from the Affymetrix Gen-
eChip Human Exon 1.0 ST platform. Using the annotation from the
Illumina Human Methylation 450 BeadChip platform, we mapped
443,207 CpG sites to 27,604 genes. We then took the mean beta
value of multiple CpG sites in a gene as the gene level methylation
signal. For miRNA, we filtered out biological features which had
>30% ofmissing values across patients, leaving 212miRNA features.
There was no missing data in mRNA expression. Missing values in
bothmethylation andmiRNA data were imputedwith the K nearest
neighbor (KNN) imputation method [19].

2.2. Statistical method

2.2.1. Similarity network fusion (SNF)
SNF [14] is a computational method to integrate multi-omics

data by calculating and fusing the similarity networks of patients.
To make the work self-contained, here we briefly introduce the SNF
algorithm which is implemented through the following three
steps:

Step 1, generates similarity networks from each omics data type
separately. Suppose we have n samples and m data sources. A
patient similarity network is represented as a graph G ¼ V ; Eð Þ.
The vertices V correspond to patients and the edges E represent
the correlations between two nodes (i.e., patients). Edge weights
are represented by an n� n similarity matrix W. Wði; jÞ indicates
the similarity between patients xi and xj and is computed as
follows,

W i; jð Þ ¼ exp �q2 xi; xj
� �
lei;j

� �
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where q xi; xj
� �

is the Euclidean distance between patients xi and xj;
l is a hyperparameter that can be empirically set in which we set l

as 0.5; ei;j ¼ mean q xi ;Nið Þð Þþmean q xj ;Njð Þð Þþq xi ;xjð Þ
3 , where mean q xi;Nið Þð Þ is

the averaged value of the distances between xi and each of its
neighbors.

To compute the fused similarity matrix from multiple data
sources, Wang et al. [14] defined a full and sparse kernel P given as,

P i; jð Þ ¼
W i;jð Þ

2
P

k–i
W i;kð Þ ; j–i

1=2; j ¼ i

(

so that
P

jPði; jÞ ¼ 1 holds.
Step 2, a local kernel matrix S using K nearest neighbors (KNN)

is introduced to further reduce noise between patients, where S
only retains the similarities between samples and their nearest
neighbors, while the similarities between samples far away from
each other are discarded (set as 0). i.e.,

S i; jð Þ ¼
W i;jð ÞP
k2Ni

W i;kð Þ ; j 2 Ni

0; otherwise

8<
:

Step 3, similarity networks are iteratively updated as described
below. Specifically, let

Pv ¼ Sv �
P

k–vP
kð Þ

m� 1

 !
� S vð Þ
� �T

Pfinal ¼
Pm

v¼1P
v

v ;v ¼ 1;2; � � �m

where Pv represents the similarity matrix derived from the vth data
type; Sv represents the local affinity which contains the nearest
neighbors’ information; Pfinal represents the fused network; and m
is the number of different data types. As a result, the similarity net-
works from different sources are more similar to realize the net-
work fusion.

2.2.2. Denoising SNF with network enhancement (ne-SNF)
To improve the signal-to-noise ratio of the fused network Pfinal

based on SNF, we incorporated the NE strategy [16] to denoise
SNF, termed as ne-SNF. Given the fused similarity network Pfinal ini-
tially obtained with SNF, NE constructed a symmetric and doubly
stochastic matrix (DSM) T 2 Rn�n with the following two steps:

Sne i; jð Þ ¼ Pfinal i; jð ÞP
k2Ni

Pfinal i; kð Þ � I j 2 Nif g

Ti;j ¼
Xn
k¼1

Sne i; kð ÞSne j; kð ÞPn
v¼1Sne v ; kð Þ

where IfÂ�g is an indicator function, Ni represents a set of xi’s neigh-
bors including xi in Pfinal i; jð Þ, T is a symmetric DSM which encodes
the local structures of the original network. The further diffusion
process using T was defined as follows [16]:

Utþ1 ¼ aTUtT þ 1� að ÞT
where tis the iteration step and a is a regularization parameter. The
initial value U0 can be set as the SNF fused similarity matrix Pfinal. Ut

remains as a symmetric DSM at each iteration t and further con-
verges to a non-trivial equilibrium symmetric DSM network.

NE defines a diffusion process that uses random walks of length
three or less and a form of regularized information flow to denoise
1569
the input network [16]. Following Wang et al. [16] after NE, 1) if
the original eigenvalues are either 0 or 1, the process preserves
these eigenvalues; 2) Let eigen-pair (k0;v0) denote the eigen-pair
of the initial DSM (T0Þ. Then the final converged graph has eigen-
pair ðf a k0ð Þ;v0Þ, where f a kð Þ ¼ 1�að Þk

1�ak2 . Because 1�að Þk0
1�ak02

� k0, the NE

process always decreases the eigenvalues; and 3) While all eigen-
values are reduced, function f a denoises the input by aggressively
down-weighting smaller eigenvalues more than it does on larger
eigenvalues. Thus, the constructed undirected network can effec-
tively improve the similarity between related nodes, leading to
better subtyping performance.

2.2.3. Spectral clustering
Given the ne-SNF denoised similarity network Une�SNF , we used

spectral clustering [20] to obtain network clusters. The spectral
clustering can effectively capture the global structure of a graph
[21] with the following processes:

First, each sample xi is associated with a label indicator

yi 2 0;1f gC , where yi kð Þ ¼ 1 if patient xi belongs to the kth cluster,
otherwise yi kð Þ ¼ 0. A partition matrix Y ¼ yT1; y

T
2; � � � yTn

� �
is

obtained to represent a clustering scheme. The spectral clustering
based on similarity matrix Une�SNF aims to minimize the objective
function as follows,

minQ2Rn�CTraceðQTLþQÞ ; s:t:QTQ ¼ I

where Q ¼ Y Y
0
Y

� ��1
2
and Lþ ¼ I � D�1

2Une�SNFD
�1
2 where D is a diago-

nal matrix whose diagonal element is the sum of the row elements
of Une�SNF .

2.2.4. Evaluation of prognosis of HFpEF patients
We used survival analysis to evaluate the performance of the

subtyping results and if the identified subgroups are clinically
meaningful in terms of survival rate. The Kaplan-Meier survival
curve represents the change in survival rate over time, and it is a
monotone decreasing curve representing the cumulative survival
rate [22]. The abscissa represents the survival time, and the ordi-
nate represents the cumulative survival probability. When t ¼ 0,
the survival probability is 1, and the survival probability gradually
decreases with the increase of time. The slope of decline indicates
the speed of death rate, and the survival curve can intuitively mea-
sure the survival risk of different subgroups. In addition, the log-
rank test was used to test the difference of survival curves.

Controlling for age, gender, smoking history, drinking, hyper-
tension, hyperlipidemia and body weight index, we conducted
Cox regression to explore the association between subtypes and
HFpEF survival outcomes, and identified patients with high risk
of prognosis. Meanwhile, the subtypes were compared in demo-
graphic and clinical features using Chi-squared test, two-sample
t-test or Mann-Whitney U test.

We further explored the significantly differentially expressed
(DE) mRNAs (DEmRNAs) and DE miRNAs (DEmiRNAs) between
subtypes using the significance analysis of microarrays (SAM) tool
[23] and used the R Limma package [24] to identify abnormal
methylation genes. We presented the top 15 features of mRNA,
DNA methylation and miRNA expression features that were most
relevant to the final clustering results, and performed a series of
biological functional analysis on these features using DAVID tools
[25] including GO [26] enrichment analysis and KEGG [27] path-
way analysis. miRTarBase (http://mirtarbase.cuhk.edu.cn/php/
search.php) [28] was used to predict the target genes of DEmiRNAs.
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3. Results

3.1. Characteristics of HFpEF in FHS

In this study, we used the data of all 125 HFpEF patients, who
ranged from 51 to 88 years old, with an average age of 74.8 years.
By the last follow-up, 57 patients survived and 68 died; the sur-
vival time ranged from 0 to 29.6 years. Their baseline characteris-
tics were shown in Table 1.
3.2. Subtyping of HFpEF using ne-SNF

We carried out the ne-SNF method for the 125 patients with
HFpEF using the mRNA expression (17,358 mRNAs), miRNA
expression (212 sites) and DNA methylation (27,604 genes) data.
Fig. 1 shows the flowchart of the ne-SNF analysis.

We compared the result of ne-SNF with the ones obtained by
using single data type as well as two other subtyping strategies
(unsupervised multiple kernel learning (UMKL) [29] and SNF)
(see Fig. 2). As expected, networks built with individual data type
yielded quite different patterns of patient similarity, while the
fused data clustered tightly and quite similarly. After the denoising
step with ne-SNF, the clustering result clearly shows three distinct
sub-clusters.

We further reported p-values using the log-rank test to evaluate
the significance of the difference in survival profiles between sub-
groups (Fig. 3). Analysis with single data type did not lead to signif-
icantly different survival profiles except for the result using miRNA
expression, while the fused networks had significant differences in
survival between subtypes in most cases. Although the smallest p-
value is observed with 3 clusters when using the miRNA data
alone, the heatmap does not show a clear pattern of three clusters
(see Fig. 2). Among the three fusion methods (UMKL, SNF and ne-
SNF), ne-SNF achieved the smallest p-value (P = 0.0059) with 3
clusters.

We further explored the association between prognosis of
HFpEF and the identified 3 subgroups based on ne-SNF. A total of
75 patients (60%) in group 1 had a 5-year mortality rate of 34.5%,
29 patients (23.2%) in group 2 with a 5-year mortality rate of
29.6%, and 21 patients (16.8%) in group 3 with a 5-year mortality
Table 1
Baseline characteristics of the study population (N = 125).

Item Classification n (%)/mean ± SD

Age, year 74.81 ± 8.35
Gender Female 48(38.4)

Male 77(61.6)
Smoking history Yes 18(14.4)

No 107(85.6)
Drinking Yes 63(50.4)

No 62(49.6)
Comorbidities
Hypertension Yes 91(72.8)

No 34(27.2)
Hyperlipidemia Yes 78(62.4)

No 47(37.6)
Diabetes Yes 33(26.4)

No 92(73.6)
Chronic kidney disease Yes 19(15.2)

No 106(84.8)
Vital signs and laboratory data
Systolic blood pressure, mmHg 132.86 ± 20.37
Diastolic blood pressure, mmHg 66.75 ± 11.35
Body weight index, kg/m2 30.36 ± 5.52
Serum creatinine, mg/dl 1.25 ± 0.91
Heart rate, bpm 63.33 ± 11.77
BNP, median (IQR), pg/ml 1036.5(947.4)
LVEF, % 59.82 ± 12.61
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rate of 63.3%. The difference of survival conditions between group
1 and group 2 was not significant (v2 = 0.499, P = 0.48). Therefore,
we combined group 1 and group 2 patients into one group which
was defined as the low-risk group, while group 3 patients were
defined as the high-risk group. Table 2 shows the 5-year mortality
of the two groups. The high-risk group comprised of fewer patients
(21 patients, 16.8%), but had the higher 5-year mortality rate
(63.3%). Those in the low-risk group had 5-year mortality rate of
33%. The survival curve and the first three principal components
(PCs) of the two subtypes were shown in Fig. 4. It can be seen from
the survival curve that the two subtypes based on ne-SNF had sig-
nificant differences in clinical prognosis (left figure). The survival
probability of the high-risk group was significantly lower than that
of the low-risk group (P = 0.0017). Besides, the 3D scatter plot
(right figure) based on the top three PCs can distinguish the two
subtypes (as shown in different colors).
3.3. Association of prognosis with identified molecular subtypes

Controlling for age, gender, smoking history, drinking, hyper-
tension, hyperlipidemia and body mass index, we conducted Cox
regression to explore the association between the two subtypes
and HFpEF survival outcomes. The results were shown in Table 3.
Patients in the high-risk group were 2.43 times higher in risk of
death than the low-risk group. The only significant covariate is
drinking (P = 0.04) and it is a protective factor.

Clinical characteristic varied significantly by low- and high-risk
groups. As shown in Table 4, hypertension, hyperlipidemia and
chronic kidney disease were reported more frequently in the
high-risk group.
3.4. Functional annotation of important features between HFpEF
subtypes

Focusing on the low- and high-risk groups, we conducted a DE
analysis for each omics data type. The low-risk group was used as a
control group. Based on an FDR q-value <0.05 threshold, a total of
157 DEmRNAs were identified, among which 95 were up-
regulated and 62 were down-regulated; 121 DEmiRNAs were iden-
tified, among which 10 were up-regulated and 111 were down-
regulated. We also identified 2199 abnormal DNA methylation
genes, among which 1627 were hypermethylated and 572 were
hypomethylated following the Bonferroni adjusted criteria of
Padj < 0.05 and tj j > 2. A heatmap of different omics features
between the low- and high-risk group is shown in Fig. 5.

To further demonstrate the biological significance of features
associated with the two subtypes, we selected the top 15 signifi-
cant features in mRNAs, methylations and miRNAs for further anal-
ysis. If these selected features are differentially expressed across
the two subgroups, their biological implications could help us con-
firm that the subtypes are biologically meaningful in addition to
their clinical implication. Firstly, we constructed a corresponding
heatmap of the total 45 features between two subtypes (see
Fig. 6). For the mRNA expression, in the low-risk group, SLC25A24,
MTERF1, SCLT1, USP1, ARHGAP18, SH3BGRL2, MTURN, NEIL3 showed
low expression, while high-risk group exhibited completely oppo-
site performance in the same gene set. In the methylation data,
low-risk group showed hypermethylation in IMPG2, SPATA5L1,
while high-risk group showed hypermethylation in other 13
methylations. The heatmap of miRNAs showed decreased
expression of hsa-miR-233-3p, hsa-miR-126-5p, hsa-miR-454-3p,
hsa-miR-590-5p, hsa-miR-186-5p-a1, hsa-miR-186-5p-a2, hsa-
miR-19a-3p, hsa-miR-222-3p, hsa-miR-374b-5p, hsa-miR-144-5p,
hsa-miR-16-5p, hsa-miR-106a-5p, and hsa-miR-17-5p, which
correlated with the decreased survival rate.



Fig. 1. Schematic representation of the pipeline for the proposed ne-SNF method.

Fig. 2. Heatmaps of similarity matrix derived from single data type (mRNA, DNA methylation and miRNA) and using different methods (UMKL, SNF and ne-SNF). In each
similarity matrix, the color shade represents the degree of patient-patient similarity: the darker the color, the higher the similarity between two individuals. Patients with
high similarities define a subtype group, called a subgroup.
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Fig. 3. Comparison of �log10(p-value) based on single data type, UMKL, SNF and
ne-SNF under different number of clusters (2,3,4 and 5).

Table 2
The 5-year mortality of low-risk group and high-risk group.

Item Low-risk group High-risk group

Total, n (%) 104 (83.2) 21 (16.8)
5-year mortality (%) 33.0 63.3
v2 9.835
P-value 0.002

Y. Wu, H. Wang, Z. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 1567–1578
Second, focusing on each single feature, we performed survival
analysis with a log-rank test, and found that >1/3 features showed
good partition ability (P < 0.05), including three mRNAs (EIF4A1,
SH3BGRL2, MTERF1), seven methylations (ZNF689, IMPG2, SPA-
TA5L1, LRRIQ1, ATP6V1G2, PYDC2, RAC3) and six miRNAs (hsa-miR-
186-5p-a2, hsa-miR-186-5p-a1, hsa-miR-19a-3p, hsa-miR-17-5p,
hsa-miR-106a-5p, hsa-miR-374b-5p). Fig. 7 shows the Kaplan-
Meier survival curves of the top 3 most significant features in
mRNAs, methylations and miRNAs. It can be seen that these iden-
tified biomarkers had direct clinical prognostic value.
Fig. 4. Kaplan-Meier survival curves for the low- and high-risk gr

Table 3
List of Cox regression results of 125 HFpEF patients.

Item Coefficient (SE) Wald

Subtypes* 0.890 (0.282) 3.153
Age 0.021 (0.016) 1.313
Gender �0.239 (0.280) �0.856
Smoking history 0.308 (0.331) 0.933
Drinking* �0.562 (0.286) �1.966
Hypertension 0.189 (0.394) 0.481
Hyperlipidemia �0.108 (0.331) �0.326
Body mass index �0.037 (0.025) �1.489

*Showing statistical significance at the 0.05 significance level.
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We further merged the identified mRNAs, methylation genes
and targeted genes of miRNAs into a core set, to determine the
functional relevance of the selected features, then performed the
GO enrichment analysis and KEGG pathway analysis. The genes
targeted by miRNAs were predicted using miRTarBase (an experi-
mentally validated miRNA-target interaction database). The final
core gene set contained 241 genes including 15 original mRNAs,
15 methylation genes and 211 miRNA targeted genes. The result
showed that the core gene set was enriched in 17 GO biological
processes, with the Bonferroni-adjusted p-value <0.05. Fig. 8
depicted all significant GO pathways. For KEGG pathway analysis,
45 pathways showed statistical significance (Bonferroni-adjusted
p-value <0.05). Fig. 9 showed 17 KEGG pathways with the most
significant enrichment.

4. Discussion

4.1. Classification of HFpEF based on ne-SNF

HFpEF is a highly heterogenous disease with no effective treat-
ment so far. Identifying high-risk group with the aid of molecular
data can provide meaningful clinical support for effective thera-
peutic treatment of HFpEF patients. Shah [30] did a comprehensive
oups (left), and 3D scatter plots of the first three PCs (right).

P HR 95%CI

0.002 2.432 (1.400,4.227)
0.189 1.021 (0.990,1.053)
0.392 0.787 (0.455,1.361)
0.351 1.361 (0.712,2.602)
0.040 0.570 (0.325,0.998)
0.630 1.209 (0.599,2.614)
0.745 0.898 (0.469,1.718)
0.136 0.964 (0.919,1.012)



Table 4
Clinical and laboratory characteristics stratified by subtypes.

Characteristic Low-risk group High-risk group v2=t p-value

Age, years 75.08 ± 8.59 73.52 ± 7.37 0.773 0.441
Female, n (%) 42(40.4) 6(28.6) 1.031 0.310
Comorbidities, n (%)
Hypertension* 72(68.9) 19(90.9) 4.422 0.035
Hyperlipidemia* 61(58.3) 17(81.8) 4.291 0.038
Diabetes 28(26.9) 5(23.8) 0.087 0.768
Chronic kidney disease* 12(11.7) 7(31.8) 4.263 0.039
Vital signs and laboratory data
Systolic blood pressure, mmHg 133.90 ± 20.35 127.6 ± 20.65 1.278 0.204
Diastolic blood pressure, mmHg 66.59 ± 11.71 67.57 ± 9.92 �0.360 0.720
Body weight index, kg/m2 30.43 ± 5.49 30.05 ± 5.91 0.282 0.778
Serum creatinine, mg/dl 1.26 ± 0.98 1.19 ± 0.41 0.313 0.755
Heart rate, bpm 63.68 ± 11.78 61.57 ± 12.13 0.746 0.457
BNP, median (IQR), pg/ml 1003.5(979.9) 1074.99(965.3) �0.746 0.456
LVEF, % 59.79 ± 12.62 59.96 ± 12.87 �0.058 0.954

Categorical variables are presented as counts and percentages, continuous variables are presented as mean ± SD.
*Showing statistical significance at the 0.05 significance level.

Fig. 5. The heatmap of DEmRNAs, abnormal methylations and DEmiRNAs between the low- and high-risk group. Each row represents an individual feature and each column
represents a patient. Red and blue color represents relatively high and low expression respectively, with the intensity of the color representing the magnitude of high/low
expression. The heatmap indicates that the high- and low-risk groups of HFpEF patients are highly heterogeneous among the three data types. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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review on precision medicine for HFpEF. While the reviewed works
mostly focus on clinical data from a deep phenotyping perspective,
there has been a large shift on precision medicine to omics-based
data driven studies. In this work, we conducted subtype identifica-
tion of HFpEF patients using multi-omics data. We proposed an ne-
SNF method to improve SNF for subtype identification. HFpEF
patients were further classified into two groups (low-risk and
high-risk group) which had dramatic difference in survival rate.
The high-risk group consisted of a smaller proportion of the study
population (16.8%); however, it had a higher 5-year mortality rate
at 63.3% compared to the low-risk group with a 5-year mortality
rate of 33.0%. Furthermore, after adjusting for the covariates’
effects, HFpEF patients in the high-risk group were 2.43 times
higher in death risk compared to the low-risk group. The high-
risk population and molecular markers identified in this analysis
can potentially help for the development of novel targeted
therapies.
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Our proposed ne-SNF method took the advantages of both SNF
and network denoising with the network enhancing technique
[16]. Given the SNF fused similarity network, we used NE as a pre-
processing step for spectral clustering, thus effectively denoising
the fused similarity network, and further improving the clustering
performance. The ne-SNF method generated meaningful disease
groups compared to the ones obtained with single data type and
other integrated methods for HFpEF subtyping; thus, provides a
novel pipeline for disease subtype identification in integrated anal-
ysis of multi-omics data.

4.2. HFpEF was associated with chronic comorbidities

The subtypes obtained with the ne-SNF demonstrated both bio-
logical and clinical relevance for HFpEF patients. The identified
high-risk group had high 5-year mortality, and was commonly
associated with hypertension, hyperlipidemia and chronic kidney



Fig. 6. The heatmap of the selected top15 mRNAs, methylation genes and miRNAs that are associated with the two risk subgroups.
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disease. This result illustrated that HFpEF along with chronic dis-
eases might be the main cause of patients’ death. Individuals with
hypertension were at high risk of HFpEF, and multimorbidity is
common in HFpEF [31]. HFpEF patients had a high rate of adverse
outcome with a high rate of hyperlipidemia and chronic kidney
disease [5]. This implies that one should make more effort in treat-
ing HFpEF patients with chronic diseases.
4.3. Role of molecular biomarkers in the pathophysiology of HFpEF

Our study discovered 157 DEmRNAs, 121 DEmiRNAs and 2199
abnormal methylations for HFpEF. Among DEmRNAs, 95 were
up-regulated and 62 were down-regulated. Among DEmiRNAs,
10 were up-regulated and 111 were down-regulated. Among
2199 abnormal methylations, 1627 were hypermethylated and
572 were hypomethylated.

In DEmRNAs, heart failure patients had elevated myocardia
NEIL3 expression. NEIL3 regulated LDL-C and HDL-C levels and
was associated with traditional cardiovascular risk factors
[32,33]. The expression level of MMP13 was significantly increased
while the expression of VEGF was significantly decreased in the
high-risk group. Significant changes in gene expression in the
two genes associated with HF were recently reported in a study
using Dahl salt sensitive rat [34]. In addition, gene LUM coding
for lumican was up-regulated in the high-risk group. Lumican is
an extracellular matrix localized proteoglycan associated with
inflammatory conditions known to bind collagen [35].

For the identified DE methylated genes, some studies have
shown that DNA methylation can regulate the expression of genes
related to cardiovascular disease and further affect the occurrence
and development of cardiovascular disease. In our study, we found
that MYBPC3 had higher methylation levels in the high-risk group,
which caused gene MYBPC3 silencing; and MYBPC3 ablation caused
defective diastolic relaxation and may affect an individual’s sus-
ceptibility to develop HFpEF [36].
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miRNAs have been shown to be attractive therapeutic targets.
Inhibiting an miRNA or stimulating its activity can potentially
influence many gene expressions. This could lead to significant
therapeutic effects compared to standard drug treatments [37].
In our analysis, hsa-miR-106a-5p, hsa-miR-193b-3p, hsa-miR-193b-
5p, hsa-miR-191-5p and hsa-miR-660-5p showed significantly dif-
ferential expression between the low- and high-risk group. Exist-
ing literature revealed that these miRNAs were associated with
several mechanisms of potential HF [38,39].

In addition, some HFpEF-related genes identified in this study
were found to be tumor-related. For example, gene ARHGAP18
was shown to be overexpressed in highly migratory triple-
negative breast cancer cells; gene CLIC4was shown to be a diagnos-
tic biomarker for different types of epithelial ovarian cancer [40,41].
Low-grade inflammation and increased oxidative stress were the
main cause of cardiovascular disease, including coronary artery dis-
ease and heart failure [42]. While inflammatory responses accom-
panied by oxidative stress may cause cancer [43], the cross
phenomenon betweenHF and cancermay share common patholog-
ical mechanism, which needs to be further studied.

Some of the DE genes were enriched in 17 GO biological process
terms. These terms have been shown to be correlated with HF. For
example, intrinsic apoptotic signaling pathway responds to DNA
damage and shows positive regulation of apoptotic process and
replicative senescence participated in the full life-cycle of HF
[44,45]. In addition, transmembrane receptor protein tyrosine
kinase is involved in myocardial damage in HF [46]. For KEGG anal-
ysis, a total of 45 pathways were identified. In particular, MAPK
signaling pathway showed statistical significance. MAPK signaling
pathway induces proliferation response and apoptotic response
which contribute to the augmented activity in HF, consequently
promoting inflammation and renin-angiotensin system activity in
regions with key cardiovascular regulations [47]. HIF-1 signaling
pathway was shown to participate in the process of myocardial
fibrosis, thereby impairing cardiac diastolic function; Ras signaling
pathway played a role in the pathogenesis of diastolic dysfunction



Fig. 8. GO biological process enrichment analysis of 241 core genes.

Fig. 7. Plots of survival curves of the top 3 most significant features in mRNAs, methylations and miRNAs: the top 3 most significant mRNAs, namely, EIF4A1, SH3BGRL2 and
MTERF1 (A-C), the top 3 most significant methylations, namely, IMPG2, PYDC2 and ATP6V1G2 (D-F), and the top 3 most significant miRNAs, namely, hsa-miR-19a-3p, hsa-miR-
186-5p-a1, hsa-miR-186-5p-a2 (G-I).
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Fig. 9. KEGG enrichment analysis of 241 core genes.
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in HFpEF [48,49]. In addition, Zhang et al. [50] revealed that genetic
risk factors are involved in p53 signaling pathway of HFpEF based
on gene set enrichment analysis of multi-omics data.
4.4. Can molecular biomarkers help direct future diagnosis and
therapy for HFpEF?

Many studies used clinical data to phenotype HFpEF subgroups
by machine learning and cluster-mapping approaches, and found
that HFpEF patients at high-risk have hemodynamic overload,
higher NF-proBNP, and renal dysfunction [51–53]. One of the limit-
ing factors is that patients with HFpEF often havemany overlapping
characteristics, making it difficult to assign them to a predesignated
clinical subgroup. Therefore, we took a new approach that using
multi-omics data to develop sub-clusters, then mapping the clus-
ters back to clinical features and biological pathways. The recent
emergence of genome-editing technologies has enabled a new
paradigm in which the human genome sequence can be modified
to achieve therapeutic effects. This includes adding therapeutic
genes at specific sites in the genome and removing deleterious
genes or genome sequences [54]. The identified biomarkers in this
work will provide a basis for gene therapy. On the other hand, the
regulatory pathways of HFpEF found in this study can be used as
drug targets in clinical practice, so as to provide new ways for the
treatment of HFpEF. For example, Nintedanib, a tyrosine kinase
inhibitor, has awide range of targets, including vascular endothelial
growth factor receptor, PDGF, and fibroblast growth factor receptor
[55]. Its effect on fibroblasts prevents ECM production and myofi-
broblast activation [56,57]. However, little study has been done
on HFpEF. Alternative angiotensin inhibitors appeared safe in phase
I studies, and this could represent a promising future additive ther-
apy to target the angiotensin pathway [58]. It should be noted that
the molecular features identified in this work need to be biologi-
cally validated before further clinical application.

Evidences from multiple clinical studies showed that BNP/NT-
proBNP are the most reliable indicators for the diagnosis and treat-
ment of HFpEF [59,60]. However, the role of clinical biomarkers in
the diagnosis of HFpEF is currently limited. For example, HF
biomarker-NT-proBNP was increased moderately in HFpEF and
showed poor predictive value for HFpEF [39]. A study showed that
biomarker panels of microRNAs demonstrated higher
discriminative power for distinguishing HFpEF compared to the
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result using plasma NT-proBNP levels alone [38]. Additionally,
studies of HFpEF from the 1980s to the present have shifted from
the perspective of mechanistic understanding to multi-organ
focused disease study [61] including pulmonary arterial hyperten-
sion, obesity and metabolic diseases, vascular stiffness, chronolog-
ical impotence, skeletal muscle disease, and renal insufficiency
[62]. This has been blamed for the clinical failure of treatment tri-
als [51]. At present, HFpEF therapy continues to improve symp-
toms, as well as focusing on treating comorbidities. The
identification of novel molecular biomarkers may contribute to
the understanding of the pathophysiology of HFpEF, help stratify
HFpEF subgroups, and open a new arena for individualized
therapy.

Like many other studies, there are some limitations in this
work. First, we were unable to find a second HFpEF multi-omics
data set to replicate the biological findings. Thus, the reproducible
issue cannot be assessed in this analysis. Second, our results should
be interpreted with caution. We only identified biomarkers associ-
ated with HFpEF, but could not establish causality. Further biolog-
ical validations are needed to functionally validate the findings.
Nevertheless, our proposed network enhanced similarity network
fusion strategy (ne-SNF) for multi-omics data integration shows
promising result in denoising the fused network and improving
the performance of subtype identification. Given the heteroge-
neous nature of HFpEF, the identified subtypes and biomarkers will
help for better design of clinical treatment and further lead to
development of targeted molecular therapy.
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