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Abstract: Barley and maize have dominated the Irish whiskey sector, but in recent years, alternative
grains have started to gain traction. Ireland has a high average wheat yield, producing grain that
is high in starch but low in protein, offering the potential for use in distillation. To successfully
utilise Irish-grown wheat in distillation, cultivars that are suitable to the Irish climate and give high
yields of alcohol need to be identified. This necessitates the development of a rapid screening test for
grain alcohol yield. This study examined the optimal temperature, time period, α-amylase dose rate,
and calcium concentration to be used in the cooking of wheat grain to maximise alcohol yields. It
was determined that lower cooking temperatures are more successful in achieving higher alcohol
yields, and it was confirmed that temperature is a key variable in the cooking process. By optimising
all parameters, alcohol yields of 458 LA/tonne were obtained, demonstrating that the optimum
parameters can be successfully used for both hard and soft endoderm wheat produced in Ireland
as well as for different varieties. This indicates potential for producing higher alcohol yields using
Irish-grown wheat in Irish distilleries.

Keywords: alcohol yields; response surface methods; process optimisation; wheat

1. Introduction

Despite the fact that the Irish tillage sector produces 0.6 million tonnes of wheat grain
per annum [1,2], the use of Irish grown wheat in the domestic distilling sector is minimal,
with barley and maize still dominant [1]. While barley is the most common cereal grown in
Ireland, maize grain is imported, thus undermining the provenance of Irish whiskey. By
contrast, Ireland has a high average wheat yield, producing grain that is high in starch and
low in protein, making Irish wheat ideal for producing significant alcohol yields (AY) [2].
In order to determine the viability of utilising Irish wheat in distilleries, research is required
to determine Irish-grown varieties’ ability to achieve high AY.

There are four potential factors involved in cooking grain: timeframe, temperature,
α-amylase dose rate, and calcium (Ca) ions concentration required to stabilise the enzymes.
Typically, high-temperature grain cooking is used to gelatinise starch, with enzymes such
as α-amylase aiding liquefaction [3]. There has been little research into optimising cooking
parameters of wheat for spirit alcohol in an Irish context due to the nature of the processes
employed alongside perceived processability issues, such as viscosity and excessive foam-
ing. In most Irish distilleries, grains are cooked at temperatures ranging from 92 ◦C to
105 ◦C, with the addition of commercial enzymes and calcium. However, research com-
paring high-temperature cooks (142 ◦C) with low-temperature cooks (85 ◦C) [3–6] have
indicated that lower temperatures result in higher AY for both hard and soft wheat.

The key issues that must be addressed are whether lower cooking temperatures may
be used in alcohol production utilising Irish wheat and thus determining any processability
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that may be observed during this process. An optimal standard procedure for the cooking
technique is required to ensure a consistent process for testing small batches of wheat for AY
potential. This research focuses on the optimisation of the cooking stage in the production of
alcohol from Irish-grown wheat grain to obtain the greatest AY in a system that mimics Irish
distilleries. The research concentrates on hard wheat (cv. Costello), which is the main wheat
type cultivated in Ireland because it is well-adapted to both cli-mate and environmental
conditions. However, hard wheat contains more protein than soft wheat, which may be
one of the reasons distillers avoid using it due to concerns about increased viscosity and
foaming during fermentation [3]. Hardness has also been connected to processing concerns,
with the starch being less accessible and causing handling problems [7,8].

The work utilised a laboratory-based approach, which has been developed by the
authors and mirrors Irish industry practices for optimising cooking parameters. This was
carried out through experimental design emphasising response surface methods. The
objective was to identify the best parameters for cooking wheat samples while considering
the roles that temperature, time, calcium, and α-amylase play in the process and to deter-
mine their optimum values. The main goals were both to establish the optimum cooking
process for the liquefaction of starch to fermentable sugars in small batches of wheat that
meet Irish industrial standards and to determine whether the optimum parameters are
suitable for different wheat varieties and endosperm types.

2. Materials and Methods
2.1. Cereal Grain and Composition

Hard wheat grain (cv. Costello), supplied by Goldcrop Ireland, was grown and
harvested in Ireland during 2019. Samples were stored in cool (4 ◦C), dark conditions
until required for use. Soft wheat samples 1, 2, and 3 were supplied by Irish distilling
industry professionals. Malted barley (cv. Laureate) was utilised during mashing. Before
use, the grains were also kept in cool, dark conditions. Costello had a moisture content
of 14%, and the soft wheat samples 1, 2, and 3 had a moisture content of 13.5%, 12%, and
13.75%, respectively.

2.2. Alcohol Yield Analysis

The method was based on that of Agu et al., 2006 [9], which stimulates the produc-
tion process conditions in a “typical” Scotch whiskey grain distillery but modified for
a “typical” Irish grain distillery. The main differences relate to the use of enzymes and
process temperature and times. Wheat flour (30 g) was obtained by milling the grains
in a Buhler Miag disc mill (setting 0.2 mm) (Buhler Group, Dublin, Ireland). This was
transferred into a mashing beaker and slurried with water (86 mL preheated to 40 ◦C)
containing a high-temperature-tolerant α-amylase (0–66 U/g of flour) (source: Bacillus
licheniformis, working temperature range 45–95 ◦C, working pH range 3.8–8.5. Trade name:
Termamyl (novozymes), Supplier: Sigma Aldrich, Dublin, Ireland) and 0–200 mg/L Ca
ions in the form of calcium chloride dihydrate (CaCl2·2H2O; ranged from 0–733.66 mg/L;
PanReac Appliedchem ITW reagents, Dublin, Ireland). The contents were gradually heated
to either 72 ◦C, 82 ◦C, or 92 ◦C (temperature rise 2 ◦C/min) in a water bath and cooked
for 60–150 min. The cooked slurry was then cooled to 66 ◦C and given a second treatment
of α-amylase (38 U/g of flour) (Sigma Aldrich, Dublin, Ireland) and amyloglucosidase
(0.22 U/g of flour) (Sigma Aldrich, Dublin, Ireland). This was mashed for 75 min, with a
malt inclusion rate of 5% using high diastatic power-distilling malted barley (cv. Laure-
ate, Miag setting 0.2 mm). After cooling to 22 ◦C, the mash was pitched with distiller’s
yeast (Pinnacle ‘M’ type, (AB Mauri), WHC labs, Wicklow, Ireland) at a pitching rate of
0.4% (w/w) and adjusted to 250 g with water. The mash was then fermented for 72 h at
30 ◦C with the addition of β-Glucanase (1.5 U/g of flour) (Sigma Aldrich, Dublin, Ireland).
The alcohol yield was determined from the alcohol strength of the distillate, which was
measured using an Anton Paar 5000 density meter (Anton Paar, Dublin, Ireland). The AY is
quoted as litres of alcohol per tonne (LA/tonne) on a dry weight basis (dwb).
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2.3. Comparison of Cooking Temperatures

The effect of high and low cooking temperatures on AY was investigated. The protocol
remains similar to that described in Section 2.2 for low cooking temperatures. During
cooking, α-amylase was set at a dose rate of 66 U/g and calcium at 150 mg/L, and the
timeframe was 150 min. Temperatures varied from 66–92 ◦C (temperature rise 2 ◦C/min)
(Figure 1). The cooked slurry was then treated as described in Section 2.2.
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Figure 1. Comparison of AY achieved during the initial comparison of cooking temperature on hard
wheat. All results presented mean ± standard deviation. Statistical analysis was employed, and
samples with the same letter indicated no significant difference.

Wheat flour (30 g) was obtained by milling the grains in a Buhler Miag disc mill
(setting 0.2 mm). This was transferred into a mashing beaker and slurred with water (86 mL
preheated to 40 ◦C). α-Amylase (66 U/g) and Ca (150 mg/L) were added before heating to
80 ◦C in a water bath. Samples were heated further to either 121 ◦C or 142 ◦C for 30 min.
Post cooking, the cooked slurry was treated using the mashing conditions described in
Section 2.2. All samples were run in triplicate. One-way ANOVA with Tukey post hoc test
was conducted to test the null hypothesis (Ho) to ensure that there is no difference in AY
when different cooking temperatures are employed.

2.4. Experimental Procedure: Response Surface Methods

A response surface methodology study was conducted to determine the relative
contributions of four predictor factors: (A) time (minutes), (B) temperature (◦C), (C) α-
amylase (U/g), and (D) calcium (mg/L) to final alcohol yield (AY). Values of each predictor
factor were based on previous literature [7,10,11], discussion with industry-based experts,
and professional judgment. The cooking step ranged in temperature from 72–92 ◦C for
60–150 min, with α-amylase ranging from 0–66 U/g and calcium (in the form of CaCl2·H2O)
varying from 0–200 mg/L. A central composite design (CCD), with two-level full factorial
with added centre and axial point, was used due to it being a widely used statistical method
based on the multivariate nonlinear model [12]. It encompassed a face-centred cube with
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triple-replicated factorial (blocks on replicates were applied), and the centre point was
constructed using the software package Minitab® V.20.01. Three levels of each predictor
were incorporated into the design. Table 1 shows the value range for each component and
the combination of these levels used in the face-centred cube. The response variable used to
measure the optimum process was AY (LA/tonne dwb). A multiple regression analysis of
the data was carried out by surface response methodology and the second-order polynomial
equation that defines predicted responses (Yi) in terms of the independent variables:

Yi = b0i + b1iA + b2iB + b3iC + b4iD + b11iAA + b22iBB + b33iCC + b44i+DD + b12iAB + b13iAC + b14iAD
+ b23iBC + b24iBD + b34iCD

(1)

where Yi = predicted response; b0i is intercept term; b1i, b2i, b3i, and b4i are linear coeffi-
cients; b11i, b22i, b44i, and b44i are squared coefficients; and b12i, b13i, b14i, b23i, b24i, and
b34i are interaction coefficients. A combination of factors represents an interaction between
the individual factors in the respective term. These responses are a function of the level
of factors. The response surface graphs indicate the effect of variables individually and in
combination and determine their optimum levels.

Table 1. Independent variables employed in the RSM study at both coded and uncoded levels.

Coded/Uncoded

Independent Variable Symbol Low (−1) Medium (0) High (1)

Time (minutes) A 60 105 150
Temperature (◦C) B 72 82 92
α-amylase (U/Gg) C 0 33 66
Calcium (mg/L) D 0 100 200

2.5. The Regression Equation and Predictive Analysis

Minitab was used to calculate regression equations (RE) from the RSM data output.
The RE was analysed according to Section 2.2. The accuracy of the RE was determined by
varying the amount of grain and grain size, as indicated in Table 2. After determining AY,
mean percentage errors (MPE) were calculated, with a negative percentage error indicating
an underperforming model and a positive percentage error suggesting a model that was
overperforming. The MPE was calculated according to the equation (Equation (2)):

MPE =
100%

n ∑n
i=1

AYexp − AYcal

AYexp
(2)

where AYexp is the experimental value obtain during experiments, and AYcal was obtained
from the regression equation.

Table 2. Predictive analysis: experimental variables studied using the RE and AY yields achieved.
The MPE and average MPE are presented. AYexp is presented as mean ± standard deviation.

Sample Time Temperature α-Amylase Calcium AYexp AYcal MPE (%)

(Minutes) (◦C) (U/g) (mg/L) (LA/Tonne dwb) (LA/Tonne dwb)

1 150 80 66 150 418.20 ± 4.55 425.60 −1.77
2 60 80 33 100 415.24 ± 2.52 425.90 −2.58
3 92 121 66 141 352.52 ± 3.59 370.62 −5.14
4 82 121 66 100 451.23 ± 1.26 452.13 −0.21
5 150 87 66 150 411.65 ± 3.40 414.91 −0.80
6 60 87 33 100 358.21 ± 6.82 368.31 −2.82

Average MPE (%) −2.22
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2.6. Soft versus Hard Wheat

Post optimisation, additional wheat samples were studied to determine if different
varieties and types of endosperms have an impact on the AY and to confirm whether
the chosen optimal cooking temperature is indeed suitable for both hard and soft wheat
types. Three soft wheat varieties were examined. All samples were cooked using optimum
conditions, following the method described in Section 2.2. A cooking temperature of 78 ◦C
was set for 123 min, using 66 U/g α-amylase and 141 mg/L Ca. An additional study was
carried out using optimal parameters but altering temperatures. Temperature profiles
ranged from low-temperature (72 ◦C, 78 ◦C, 82 ◦C, 85 ◦C, and 92 ◦C) to high-temperature
(121 ◦C and 142 ◦C). One-way ANOVA with Tukey post hoc test was carried out to test the
null hypothesis (Ho) that no differences in the mean AY would be obtained.

3. Results
3.1. Comparison of Cooking Temperatures

Multiple variables must be evaluated to begin optimising the cooking process in
a way that reflects industrial norms. To initiate the process of liquefaction of starch to
fermentable sugar, α-amylase and calcium are needed, but wheat starch must first reach
its gelatinisation temperature (51–60 ◦C) [13]. Some research shows that high-temperature
cooking (142 ◦C) [4] will provide the highest AY, and others advocate cooking at a lower
temperature, 85 ◦C [5,9], while personal communications with the Irish industry specialists
suggest 92 ◦C. Grains such as maize require greater cooking temperatures to achieve
higher AY [9], whereas wheat can be processed at lower temperatures, and yields can be
increased [4,11]. Green et al. [4] investigated this and stated that a cooking temperature of
85 ◦C produces more alcohol than using higher temperatures. Because of previous studies
that examined AY at this temperature [4,9,11], it was decided to test these temperatures
(85 ◦C and 142 ◦C) along with the current industry standard of 92 ◦C. Furthermore, because
mashing takes place at 66 ◦C, this was considered a suitable temperature to study for
comparisons to 121 ◦C, which is the temperature used for autoclaving (Figure 1).

AY ranged from 375 to 423 LA/tonne dwb (litres of alcohol produced by a tonne of
grain on a dry weight basis) during temperature cooking profiles (Figure 1). Initially, AY
appeared to have a low mean variation. However, the null hypothesis that all mean AYs
are equal is rejected (p-value 0.003). There is a substantial variation in the mean AY between
the temperatures. When samples were cooked at 85 ◦C and 92 ◦C (Figure 1), the Tukey
post hoc test demonstrated no variations in AY, with mean AY of 423 and 418 LA/tonne
dwb, respectively. During this trial, these were the highest yields. The mean AY at 121 ◦C
and 142 ◦C was 390 and 391 LA/tonne dwb, respectively, while the mean AY at 66 ◦C was
375 LA/tonne dwb (Figure 1), with no discernible differences between these temperature
ranges. At 85 ◦C, the AY of 423.07 LA/tonne is comparable to yields obtained by other
researchers for various types of feedstocks [3,9]. When wheat (cv. Viscount) was cooked at low
temperatures, Green et al. [4] reported AY of 454–459 LA/tonne, while Agu et al. [11] reported
AY of 467–482 LA/tonne with low-nitrogen wheat (1.24–1.53%) and 413–435 LA/tonne with
higher-nitrogen wheat (1.83–2.14%). At 142 ◦C, AY of 391.97 LA/tonne dwb was achieved in
this study. This was much lower than what had previously been reported in the literature.
It is worth noting that these studies primarily focused on soft wheat, thus comparing AY
across different types may be pointless in this case, especially when processing circumstances
vary slightly. When hard wheat (cv. Option) was cooked at 142 ◦C, one study reported an
AY of 439–462 LA/tonne, with better yields recorded in samples with a low-nitrogen rate
applied to them during field studies [10]. The AY achieved in this study was significantly
lower, implying that additional parameters employed during cooking, such as enzymes and
calcium loading rates, must be optimised. This emphasises the importance of examining each
independent variable in cooking to optimise each parameter. Temperature is important, but
the influence of time, α-amylase, and calcium ions must also be considered.
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3.2. RSM Analysis of Cooking Process

The RSM method uses design-of-experiment techniques to determine the optimal
level of each parameter in relation to the dependent variable. This method allows for the
detection of important variables in the process as well as examining how each variable
interacts to reach the common aim of higher AY. The four independent variables were in-
vestigated in a variety of experimental setups (Figure 2). In order to optimise each variable,
focus was placed on the amount of α-amylase required as well as calcium and temperature
profiles in order to maximize AY while also considering the interaction between variables
and their impact on AY. Depending on the experimental parameters, AY ranged from 240
to 450 LA/tonne dwb (Figure 2). Different combinations of the independent variable (Ca,
time, temperature, and α-amylase) resulted in varying AYs. It was evident that some com-
binations produced minimal alcohol when compared to other combinations. For example,
at 92 ◦C, the lowest yields are observed, while larger yields are observed at 72 ◦C and 82 ◦C.
As a result, in order to determine the most appropriate parameters for use in optimising
AY, a more detailed statistical assessment of the findings was required.
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3.2.1. Statistical Analysis

The aim of statistical analysis is to determine which independent variables have an
impact on the final AY, alongside helping in determining if there is any interaction between
independent variables and their impact on AY. The overall model’s analysis of variance
yields a p-value of <0.001, indicating that the null hypothesis of no relationship between
the independent and dependent variables may be rejected (Table 3). This means that each
independent variable affects the AY obtained throughout the model. Furthermore, the
p-value for the blocks on replicates is 0.139, showing that there are no significant changes
in blocks, indicating true replicates (Table 3). The independent factors explain the variance
in the AY obtained, according to the adjusted R-square value of 89.98%, showing that the
model has good practical importance (Table 4).
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Table 3. Analysis of Variance from RSM study.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value VIF

Model 16 98,397 89.08% 98,397.4 6149.8 6.63 0.001
Blocks 2 4351 3.94% 4282.7 2141.3 2.31 0.139 1.58
Linear 4 53,496 48.43% 53,495.6 13,373.9 14.41 0.000
Time 1 2422 2.19% 2421.9 2421.9 2.61 0.130 1

Temperature 1 30,119 27.27% 30,118.6 30,118.6 32.46 0.000 1
α-Amylase 1 6876 6.23% 6876.3 6876.3 7.41 0.017 1

Calcium 1 14,079 12.75% 14,078.8 14,078.8 15.17 0.002 1
Square 4 34,174 30.94% 34,173.9 8543.5 9.21 0.001

Time*Time 1 17,893 16.20% 341.2 341.2 0.37 0.555 2.84
Temperature*Temperature 1 12,075 10.93% 5924.6 5924.6 6.38 0.025 2.84
α-Amylase*α-Amylase 1 144 0.13% 31.4 31.4 0.03 0.857 2.84

Calcium*Calcium 1 4061 3.68% 4061.3 4061.3 4.38 0.057 2.84
Two-Way Interaction 6 6377 5.77% 6376.6 1062.8 1.15 0.391

Time*Temperature 1 1239 1.12% 1239.3 1239.3 1.34 0.269 1
Time*α-Amylase 1 7 0.01% 7.0 7.0 0.01 0.932 1

Time*Calcium 1 1237 1.12% 1236.9 1236.9 1.33 0.269 1
Temperature*α-Amylase 1 2623 2.37% 2623.4 2623.4 2.83 0.117 1

Temperature*Calcium 1 370 0.33% 369.9 369.9 0.40 0.539 1
α-Amylase*Calcium 1 900 0.81% 900.0 900.0 0.97 0.343 1

Error 13 12,063 10.92% 12,063.4 928.0
Lack-of-Fit 10 11,297 10.23% 11,297.0 1129.7 4.42 0.124
Pure Error 3 766 0.69% 766.4 255.5

Total 29 110,461 100.00%
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Table 4. RSM analysis: model summary.

S R-sq R-sq (adj) PRESS R-sq (pred) AICc BIC

30.4623 89.08% 75.64% 69,361.8 37.21% 363.22 326.26

In terms of the linear independent variables, there is a substantial disparity in AY
yields (p-value 1 × 10−4 (Table 3). According to the F-value (2.61), time is the least important
variable in the system, indicating that there is no substantial change in AY over time. This
showed that AY differed only slightly depending on the timeframe (90–150 min), with mean
AY ranging from 328 to 394 LA/tonne dwb. Temperature appears to be the most important
variable in the linear and overall system (F-value 34.46, contribution 27.27%) (Table 3). The
p-value for temperature is 7 × 10−6, showing that there is a substantial difference in AY
between the temperature profile investigations (Table 3). There is no significant difference
in AY between 72 ◦C and 82 ◦C (p-value 0.429) according to one-way ANOVA with Tukey
post hoc test; however, there is a difference between both temperature profiles and 92 ◦C
(p-value 0.028). The mean ± standard deviation AY varied by temperature profile, with the
lowest AY of 295 ± 42.6 in 92 ◦C, the highest AY of 400.7 ± 38.4 in 82 ◦C, and 72 ◦C yielding
376.8 ± 49.2. The standard deviation is rather high; however, these figures are based on
temperature values as a singular independent variable. During the RSM experiments, the
linear term of α-amylase yielded a p-value of 0.017, demonstrating variability in AY. The
amount of α-amylase added during the process, as expected, had a considerable impact on
the amount of AY obtained. This is due to α-amylase being essential for the conversion of
starch to fermentable sugars. When 33 and 66 U/g α-amylase were utilised, there was no
significant change in AY. However, when no α-amylase was used, there was a drop in AY
of over 40 LA/tonne. In addition, grain swelled and remained gelatinised until mashing,
when more enzymes (second dose of α-amylase and AMG) and malt were introduced, an
indication of observed large-scale processability difficulties.

Calcium (Ca) is the second most important independent variable in terms of linear
terms (F-value 9.21, contribution 12.75%) (Table 3). The AY yield observed when varied
quantities of Ca are used shows that Ca has a significant impact (p-value 0.002) (Table 3).
Alcohol yields increased by over 50 LA/tonne when 100 and 200 mg/L of Ca were em-
ployed. Furthermore, it is known that Ca is essential for the stabilisation of α-amylase
and maintaining the correct pH and that having the correct Ca concentration will have
a significant impact on the potential AY [13,14]. Overall, the linear terms exhibited sig-
nificant differences, bar time when they are studied as the singular independent variable
affecting the dependent variable, AY. Figure 3 depicts the standardised impacts of both
the independent and dependent factors in response to the dependent variable. The terms
are listed in ascending order of importance. Temperature clearly has the greatest impact
on AY, as previously stated, followed by both calcium and amylase having an impact on
the yields achieved. Temperature squared is the final factor with a considerable impact,
showing that temperature is the controlling phase in the process. This implies that, while
the other variables are essential, the effect of temperature on AY is critical, accounting for a
total contributing factor of 38.2% (Table 3).

The quadratic terms consider the squared power of each independent variable. There
are significant effects here (p-value < 0.001) but not across all independent variables (Table 3).
This suggests that some of the independent variables, such as α-amylase, are linear, and
as a result, the AY should rise as the concentration rises until all starch is converted
into fermentable sugars. There is no significant differentiation between the linear and
quadratic values of time. In terms of the power squared, both temperature (p-value 0.025)
and Ca (p-value 0.047, Table 3) are demonstrated to have a substantial impact on AY.
This means that both independent variables will have a maximum value at which the
maximum AY will be achieved, which will be discussed further in Section 3.2.2. The
two-way interaction produces some interesting results (Table 3). It implies that there
is not a substantial difference between any of the independent variable combinations
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and their impact on AY. In this case, the analysis of variance rejects the null hypothesis
that each independent variable would interact with another to create an effect on AY,
implying that each independent variable impacts AY by itself without the assistance of
other factors. The variance inflation factor (VIF), a multicollinearity test, demonstrated that
the dependent variables are unrelated (Table 3). This test measures how much the variance
of an independent variable is influenced by its interaction with the other independent
variables. All results are for the two-way interaction of variables are one (Table 3), indicating
that they are not correlated, and therefore, variables studies are not influenced by other
variables and their interactions.
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There is no association between variables when the value is less than one. This is
interesting because it was predicted that α-amylase and Ca interact to have a combined
effect on AY, as the literature states that adequate Ca ions are required to stabilise α-amylase
and that α-amylase is rapidly denatured without Ca ions [14,15]. Further research will be
required to ascertain whether there is interaction at play.

3.2.2. Functional Analysis

To determine how each parameter, both independently and in combination with other
factors, impacts AY, the functional relationship between each variable’s impact on AY was
investigated. This was accomplished using main effects plots (Figure 4), interaction plots
(Figure 5), and the regression equation (Equation (3)) generated during the RSM data
analysis. Each variable’s impact on AY is depicted as a single factor in the main effect plot
(Figure 4). Examining the graphs, it is evident that the duration of the cooking process
has a limited impact on AY. This term has a small curve, indicating that the AY is at its
optimum when the time frame is longer than 100 min (Figure 4). Positive polynomial
graphs are evident in both temperature and calcium (Figure 4). This means that when
each of these factors is set to its maximum value, the maximum AY can be achieved. It
was noted that at temperatures ranging from 76 ◦C to 79 ◦C, greater AY is achieved, with
approximately 425 to 430 LA/tonne being produced. Furthermore, Ca has been shown to
have a concentration that is optimal for AY. Ca levels should be between 130 and 145 mg/L
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for optimal AY results. α-amylase differs, displaying a linear curve for AY as a function of
the amount of α-amylase added during the cooking process (Figure 4). This means that
when the concentration of α-amylase increases, more alcohol is produced. This was to be
expected given that α-amylase is required for successful liquefaction, and the higher the
α-amylase activity, the more successful the starch-to-sugar conversion will be.
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The interaction plots (Figure 5) depict some of the most significant observations from
the research. They show how the interaction of two independent factors can affect the
dependent variables at each of the three levels considered. The least significant element,
time, was investigated first. The findings show that time has a minor impact on AY, with
little variation in AY across each of the timeframes tested. Temperature had the largest
impact on the system and so is considered the most important variable. On preliminary
inspection of time versus temperature, it is clear that AY yields vary dramatically, with
72 ◦C and 82 ◦C achieving over 360 LA/tonne throughout all time periods, while 92 ◦C
achieved less than 360 LA/tonne (Figure 5). This means that the ideal temperature for AY
is between 72 ◦C and 82 ◦C. It is also worth noting that as the duration lengthens, AY across
these temperature profiles became equal. These findings can be attributed to processability
issues. Water evaporation and starch swelling occurred at a faster rate when samples were
cooked at 92 ◦C, indicating the need for extra liquor to ensure successful liquefaction of
starch to sugars, which is a possible reason for lower yields. Furthermore, it is known
that enzymes work best in a thicker mash; yet, if only a small amount of liquor is present,
higher temperatures may result, thus inactivating the enzymes. Additionally, while the
α-amylase used was a high-temperature-tolerant enzyme, the optimum temperature for
the enzymes chosen was 80 ◦C. This impact can be seen in the graph (Figure 5), which
compares temperature and α-amylase. Temperature against α-amylase exhibits polynomial
curves, with a maximum AY shown. The best temperature for effective liquefaction with the
α-amylase employed was 75 ◦C to 80 ◦C, which corresponds to the optimum temperature
at which this enzyme impacts AY.

The interaction plots also show the impact that α-amylase has on the process. α-
amylase is the only enzyme used to convert starch to fermentable sugars during cooking.
When the temperature is at ideal conditions, the addition of α-amylase increases AY, with
66 U/g producing the maximum yields of over 440 LA/tonne. At 72 ◦C, both 0 and
33 U/g α-amylase produce identical AY, but 66 U/g produces 10 LA/tonne more. As the
temperature profile varies, the variances in AY across the different α-amylase range shifts,
with larger deviations being recorded (Figure 5). Amounts of 66 U/g α-amylase consistently
outperform the other factor levels across all temperature profiles. This should be regarded
as the ideal α-amylase concentration to use in the lab-scale protocol of analysing AY from
wheat grains. Despite earlier research demonstrating the relevance of Ca ions for stabilising
α-amylase, analysis of variance showed no two-way interaction (Section 3.2.1 and Table 3)
between Ca and α-amylase. When no Ca was applied, AY results were poor, with a
maximum of 360 LA/tonne at each dose rate of α-amylase. When 100–200 mg/L Ca was
introduced, AY rose to over 420 LA/tonne alcohol, with more than 50 U/g of α-amylase
producing over 420 LA/tonne alcohol. It can be shown that Ca and α-amylase do interact
with one another in order to affect AY. The AY obtained at 66 U/g α-amylase, for example,
shows a significant difference (p-value 0.021).

Overall, the functional relationship reveals a great deal about process optimisation,
namely how the independent factors interact to influence the dependent variable. This
paired with statistical analysis elucidates the role of each variable and its significance in
the process. Temperature is one of the most important governing variables. In order to
determine the optimum cooking process parameters, these data must be compared to other
experiments, and the overall yields must be considered.

3.2.3. Overall Alcohol Yield

Reviewing the overall AY achieved is one of the RSM model’s final processes in
order to determine the best process parameters. Various AY yields were achieved during
the study, ranging from 240 LA/tonne to over 400 LA/tonne in some cases (Figure 2).
Reviewing plots of AY LA/tonne for each parameter as well as the regression equation
established during this investigation can be used to optimise response.

Following a review of the data collected during this study, three optimal parameters
were identified (temperature, α-amylase, and Ca) (Table 5). Over 430 LA/tonne dwb was
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reached in each set. Both of these options resulted in high alcohol levels. Two of the
options were performed at 82 ◦C for the same amount of time and concentration of Ca
but with different levels of α-amylase and achieved AY greater than 450 LA/tonne dwb.
A difference of 4 LA/tonne dwb was observed between samples using 33 and 66 U/g
α-amylase, which is an insignificant difference. Processability issues were observed during
cooking with samples containing more α-amylase (66 U/g), liquefying the gelatinisation
starch at a faster pace than samples containing 33 U/g α-amylase and thus indicating that
more effective starch-to-sugar conversion was occurring. Following this, the other ideal
cooking settings were 72 ◦C for a slightly longer time period (150 min) with 66 U/g-amylase
and 200 mg/L Ca. Yields were slightly lower than at 82 ◦C but still exceeded 430 LA/tonne.
Even though this option produced less alcohol, the possibility for cost savings measures
while also potentially decreasing carbon footprint by performing a cooking process at such
low temperatures must be explored. After evaluating the data further, it was obvious that
a cooking temperature of 92 ◦C produced the lowest alcohol levels, ranging from 230 to
331 LA/tonne dwb depending on the other process parameters (Figure 6A). According to
contour plots, the best AY was obtained when the cooking temperature was less than 80 ◦C,
and the flour was cooked for more than 90 min. It is also worth noting that, as the cooking
temperature drops, a longer cooking time frame may become necessary. This suggests that
lower cooking temperatures are more effective at increasing AY.
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Figure 6. Contour plots examine the effect independent variables have on the overall AY achieved
during RSM: (A) The effects of time and temperature on AY, with (B–D) examining the combined
effects of α-amylase (U/g) and calcium (mg/L) over a time of 105 min with different temperature
profiles, as indicated in the hold values.
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Table 5. The optimum AY achieved during the RSM run. The table displays the top three parameter
setups that achieved the highest AY during experiments.

Sample Time Temperature α-Amylase Calcium AY

(Minutes) (◦C) (U/g) (mg/L) (LA/Tonne dwb)

1 105 82 33 100 454.72 ± 1.25
2 105 82 66 100 450.25 ± 2.52
3 150 72 66 200 432.85 ± 2.69

Previous researchers achieved AY ranging from 425 to 482 LA/tonne [3,4,9], which
is similar to the results obtained in this investigation. These levels can also be attained
when the cooking temperature is reduced further, according to the findings of this study
(Figure 7). However, one of the most significant differences in this method compared to
other research is the incorporation of α-amylase and amyloglucosidase in addition to the
malt inclusion rate. Furthermore, the focus of this research was on AY from cv. Costello,
a hard wheat, which is often cultivated in the Irish tillage sector. Distillers dislike hard
wheat because of perceived processability difficulties, such as increased foaming during
fermentation, increased viscosity, and extra water adsorption during cooking. It is hoped
that by adding enzymes, these difficulties associated with hard wheat can be alleviated. The
effects of temperature on cooking are a significant result in this study; it acts as a regulating
step and thus requires additional investigation. The effects of AY cooking temperature on
different wheat endosperm kinds and cultivars will be discussed in Section 3.3.
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Figure 7. Contour plots displaying the mean AY achieved for each set of parameters when the
independent variables are set at the optimal levels to achieve the highest AY.

Calcium and α-amylase do not interact, but they can have a substantial impact on the
AY obtained, as indicated when the top three optimal levels were evaluated (Figure 6A–C).
When the time is set to 105 min, and the temperature profile varied between levels in
the study design, contour plots (Figure 6A–C) show AY through the interaction of Ca
and α-amylase. The best AY is produced when calcium levels are more than 100 mg/L
at all three temperatures. The maximum AY (>350 LA/tonne dwb) is reached at 92 ◦C
when more than 50 U/g α-amylase is present during cooking. When utilizing >40 U/g
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α-amylase at 72 ◦C and 82 ◦C, over 420 LA/tonne dwb can be obtained. This revealed
that less α-amylase is required to liquefy the starch to sugars at lower temperatures. The
optimum temperature for α-amylase, which was used in this study, is 80 ◦C, which could
explain why high AY levels are reported at these temperatures due to optimum enzyme
activity. Furthermore, it was observed that when the optimum ratio of amylase to Ca ions
is achieved, higher AY is achieved; when no Ca is introduced, AY is less than 350 LA/tonne
dwb at all temperatures. In order to confirm this, studies investigating starch hydrolysis
will be required to establish how they interact and to determine ideal ratios.

Contour, factorial, and interactions plots are useful tools for determining the optimal
parameter for achieving the maximum AY, but they have limits [16]. The key challenge is
the division of AY into groups; it is evident which process parameters are the most efficient,
but regression analysis is required to establish the most optimum parameter. During the
analysis of RSM, the regression equation (RE) was determined, taking into consideration
both linear, quadratic, and interaction factors. The following equation was formed for AY:

AY (LA.Tonne) = −2782 + 3.32A + 76.4B − 3.08C + 1.604D − 0.00573A2

−0.483B2 + 0.0032C2 − 0.0044D2 − 0.196AB
= 0.0045AC − 0.00195AD + 0.00388BC − 0.00195BD
+0.00227CD

(3)

The ideal parameter for each of the four independent variables can be obtained using
this equation. The optimum AY that may be attained within this study was 458 LA/tonne
dwb, based on the regression equation and response optimisation. Using 141 mg/L Ca,
66 U/g α-amylase, and a temperature profile of 78 ◦C for at least 123 min, this AY was
accomplished. Figure 7 shows a contour chart for these optimum settings. When reviewing
the variable temperature, it was observed that temperatures between 75 and 85 ◦C resulted
in the highest AY (Figure 6). This is supported by the graph, which compares the effects of
temperature on time, calcium, and α-amylase. The ideal parameters for α-amylase have the
shortest windows, with >450 LA/tonne observed when Ca was between 110 and 150 mg/L
Ca, when cooking duration was 105 min, and when the temperature was within range.
All of this suggested that the optimum cooking parameters had been obtained. The key
variations between this procedure and that utilised in Scotland are the inclusion of enzymes
and the type of wheat used. The results obtained in this study using hard wheat appear to be
similar to those obtained with soft wheat samples previously published [9–11]. It was also
shown that a lower temperature is more beneficial in achieving higher AY. When comparing
the ideal parameter while adjusting the cooking temperature, there is a significant difference
in AY (Figures 6 and 7). The AY was 437 LA/tonne when the cooking temperature was
72 ◦C, a reduction of over 20 LA/tonne (Figure 7) when compared to AY at 78 ◦C. When the
cooking temperature is 92 ◦C, an AY of 375 LA/tonne dwb was obtained, and the biggest
difference was observed. This is a reduction of more than 82 LA/tonne, implying that this
temperature should be carefully considered before being used. A difference of 6 LA/tonne
dwb was observed between 82 ◦C and 78 ◦C, with the latter resulting in more alcohol being
produced. This is the temperature profile that is closest to the ideal, but it is still lower
than what is currently reported in the literature [9–11,17,18]. Since this optimal process
was created with hard wheat in mind, it is now critical to investigate the AY achieved using
various temperature profiles and wheat varieties. Section 3.3 will consider this factor.

3.2.4. Predictive Analysis

The final component of the RSM model was to investigate the accuracy of the regres-
sion equation to see if it could be applied to predict AY. A random parameter was chosen,
which is listed in Table 2, to determine the accuracy of the RE (Equation (3)). The parameter
was tested in triplicate, and the average experimental AY (AYexp) was calculated. The
predictive AY (AYcal) can be calculated using the regression equation. The mean percentage
error was evaluated in order to determine if the model was under or overperforming. In
general, the model underperformed in each example. This was to be expected. User error,
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environmental problems, and minor processability concerns can all contribute to poor
performance. The third run, which employed a temperature of 92 ◦C, had the highest MPE.
As previously stated, the greater temperature caused minor processability concerns in that
surplus water was absorbed/evaporated, making liquefaction slightly more difficult. Run
four had the lowest MPE (−0.21%), with all parameters set to the ideal bar temperature
profile of 82 ◦C. The average MPE was −2.22%, showing that the model was very well-fitted
to the given run. As a result, this procedure can be considered accurate, and it can also be
used in predictive analysis when determining AY using the same milling, mashing, and
fermentation conditions.

Overall, the RSM model shows good fit to the data and determines the key processing
parameters; however, it is important to note some limitation of the studies design. In
terms of regression equation, this can only be used to predicated AY at a local level, when
variables are within this study’s ranges the theoretical yield, they may not align with actual
yields. This study indicates, that on average a decreases of actual AY by >2% is expected.
Finally, the RSM model is assumed. The second limitation is the interaction at play; the
model is useful for predicting interaction; however, further work is need to evaluate why
these interaction are at play, and this has already been noted for the alpha-amylase and
calcium interaction.

3.3. Comparison of Soft and Hard Wheat

To determine the suitability of this optimum process for AY from small amounts
of grain, multiple wheat varieties and endosperm types must be explored. This was
accomplished by using the optimum time (12 min), calcium (141 mg/L), and α-amylase
(66 U/g) parameters, as determined from the RSM model. The temperature profiles ranged
from 72 ◦C to 141 ◦C. It was noted that the lower cooking temperatures achieved greater
AY than that of higher cooking temperatures (Figure 8). Both high-temperature studies
had AY ranging from 402.5–431.5 LA/tonne, with 121 ◦C outperforming 142 ◦C (Figure 8).
This means that higher-temperature cooks are not needed to convert wheat starch to sugars
for the creation of alcohol. The results observed at these temperatures are inconsistent
with what has previously been published in the literature [3,4,7,9,10,17–19]. AY from soft
wheat has been examined with a cooking temperature of 142 ◦C in a number of studies.
Swanston et al. [19] investigated Riband, Clair, Consort, and Deban and reported yields
of 450–460 LA/tonne dwb. More recently, Agu et al. [11] looked at ten different varieties
of wheat and reported an AY of 446–455 LA/tonne dwb. Kindred et al. [10] also studied
both hard and soft wheat and achieved yields of 431–463 LA/tonne with hard wheat
(Option) and 440–467 LA/tonne with soft wheat (Riband). Additionally, Green et al. [4]
investigated a soft wheat, Viscount, which is similar to soft wheat 2. Their study yielded
445–449 LA/tonne, whereas this study reports 421 LA/tonne at 142 ◦C and 428 LA/tonne
at a 121 ◦C cook. This implies that the process is not performing to its full potential and that
additional work may be required to optimise the mashing parameter to obtain these yields.

For all wheat varieties investigated, lower cooking temperatures performed well.
Lower temperatures yielded more alcohol while also allowing for a more cost-effective and
energy-efficient process. AY achieved during this study for all wheat types cooked at 85 ◦C
was compared to AY previously reported by other researchers (Figure 8). When cooking
Viscount at 85 ◦C, Green et al. [4] reported yields of 445–459 LA/tonne, while Costello
yielded 453 LA/tonne at the same cooking temperature in this investigation, and soft wheat
varieties that were evaluated all yielded over 463 LA/tonne. The primary goal of this section
was to determine whether soft wheat produced more alcohol at the recommended cooking
temperature of 78 ◦C. Hard wheat yielded 458 LA/tonne dwb when the optimum process
was employed (Figure 8). Soft wheat yielded more alcohol (<10 LA/tonne depending on
sample and temperature) than hard wheat, which was expected (Figure 8). Soft wheat is
preferred by distillers because it is thought to contain more starch and less protein, with
the starch being simpler to access since starch granules in soft wheat are loosely bound
with the lipids and proteins due to increased expression of interfering grain softening
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proteins [20]. Due to this, it is reasonable to expect soft wheat to produce more alcohol. Soft
wheat samples outperformed hard wheat samples by more than 10 LA/tonne across the
board, emphasising the validity of the low cooking temperatures regardless of the wheat
type employed. Soft wheat 1 yielded 473 LA/tonne dwb, about 20 LA/tonne higher than
hard wheat. It was also observed that at 78 ◦C, it was possible to obtain 23 LA/tonne
more than at 72 ◦C and the higher temperature of 82 ◦C (Figure 8). Following this, the
typical cooking temperature of 85 ◦C produced 30 LA/tonne less than the AY obtained at
78 ◦C. Soft wheat 2, a benchmark distilling variety, produced the highest yields at 78 ◦C,
yielding 485 La/tonne, a 15 LA/tonne improvement over the cooking temperature of 85 ◦C
(Figure 8). In the past, this variety has yielded 445–459 LA/tonne when cooked at 85 ◦C [4].
The yield obtained at 85 ◦C in this investigation was 479 LA/tonne dwb, with the rise in
yields likely due to the optimisation of α-amylase and Ca as well as the addition of other
enzymes in mashing. Furthermore, the highest yield obtained by this sample was at 78 ◦C.
Soft wheat 3 had the lowest yields when cooked at 78 ◦C but showed a substantial difference
in yields when compared to the other cooking temperatures, yielding over 30 LA/tonne
more than when cooked at high temperatures, while it also yielded 18 LA/tonne more at
78 ◦C than at 85 ◦C, further indicating the 78 ◦C is the optimal temperature for cooking.
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Figure 8. Comparison of cooking temperature for hard wheat and soft wheat samples post optimi-
sation. All independent variables were set at optimum levels, with the temperature being the only
variable altered. All results present mean ± standard deviation. Statistical analysis was employed,
and samples with the same letter indicate no significant difference.

When the statistical analysis was performed on the samples, it was discovered that
there was a significant difference in the average AY obtained (p-value 2 × 10−4) at 78 ◦C
across the different varieties (Figure 8). Tukey post hoc analysis revealed no difference in
yield between hard wheat and soft wheat 3 as well as no difference in yield between soft
wheat 1 and 2, indicating that soft wheat 1 and 2 outperformed the other kinds. Following
that, one-way ANOVA was utilised to see if there was any variation in the mean AY
obtained across varied cooking temperatures. The null hypothesis was rejected because
significant discrepancies in means were discovered. The average mean AY obtained is
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similar for temperature profiles 92 ◦C, 121 ◦C, and 142 ◦C. There was also no difference
observed between 72 ◦C, 82 ◦C, and 85 ◦C (Figure 8). The temperature of 78 ◦C revealed a
significant difference from all other temperatures, showing that it did achieve the maximum
AY across all wheat types studied. As a result, this cooking technique may be successfully
used for many varieties and endosperm types, and it yields more alcohol than other cooking
temperatures. This opens the possibility of cooking at a much lower temperature than per
previous reports, representing the ability to take advantage of a cost-saving and thus a
more energy-efficient process. Additional research is required to determine this capability
on a larger scale. Small-scale studies are suitable for testing options and determining
potential, but a scale-up should be performed to establish if there is any loss in AY at
increased capacity.

4. Conclusions

The objective of the study was to identify the most effective cooking parameters for
producing the highest potential AY. In the studies, Costello hard wheat was utilised, and
the RSM technique was employed to optimise the temperature, cooking period, α-amylase
dose rate, and Ca concentration. The following are key findings:

• A higher AY does not require higher cooking temperatures. When temperatures of
121 ◦C and 142 ◦C were used for Costello during this investigation, AY was signifi-
cantly lower compared to lower temperature (72 ◦C, 78 ◦C, 85 ◦C, 92 ◦C). The difference
in AY between 142 ◦C and 85 ◦C is 25 LA/tonne, with the lower temperature providing
a higher AY.

• The method was optimised using RSM, and the optimal parameters for high AY
were 78 ◦C cooking temperature for a minimum of 123 min, with a dosing rate
of 66 U/g α-amylase and 141 mg/L Ca. The alcohol yields obtained using this
optimum parameter was 458 LA/tonne, which was equivalent to those published in
the literature. Furthermore, the RSM model revealed that each independent variable
had a unique effect on AY, with the temperature being the most important variable for
better yields.

• Three soft wheat samples were studied, with different temperature profiles with ideal
parameters for Ca, α-amylase, and duration, suggesting that the optimum 78 ◦C
cooking temperature obtained the highest AY. Additionally, when soft wheat was
cooked at this temperature, AY improved by more than 20 LA/tonne as compared to
the cooking temperature of 85 ◦C currently reported in previous studies.

• This study has demonstrated that the improved technique is acceptable for both hard
and soft wheat and as such reached AY comparable to, if not greater than, those
previously reported by other researchers.

Further study is required to optimise saccharification (mashing) in the Irish whiskey-
production process to produce a thorough approach for evaluating small batches of Irish
wheat that replicates industrial production norms. Along with this, more research is needed
to investigate the interaction of α-amylase and Ca during cooking, which could lead to the
usage of lower dosing rates.
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