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Multipath data transmission is a key problem that needs to be solved urgently in wireless sensor networks. In this paper, sensor
node failure, link failure, energy exhaustion, and external interference affect the stability and reliability of network data
transmission. Amultipath transmission strategy for wireless sensor networks based on improved shuffled frog leaping algorithm is
proposed. A mathematical model of multipath transmission in wireless sensor networks is established. In the shuffled frog leaping
algorithm, combined with the transition probability in the particle swarm optimization algorithm, random individuals in the
subgroup are introduced to assist the search when updating the frog individual position, which improves the algorithm’s ability to
jump out of the local optimum and improves the quality of the optimization algorithm solution.'emodel is applied to multipath
transmission in wireless sensor networks. 'en, the shuffled frog leaping algorithm is used to update, divide, and reorganize the
sensor nodes to select the optimal node to establish the optimal transmission path and improve the stability and reliability of the
network. Simulation experiments show that the algorithm in this paper can ensure the reliability of data transmission, reduce the
network packet loss rate and network energy consumption, and reduce the average delay of data transmission.

1. Introduction

'e Internet of 'ings (IOT) is based on the Internet, using
the radio frequency identification, wireless communication
technology (such as Bluetooth, wireless sensor network,
mobile network, etc.), infrared sensor, global positioning
system, laser scanner, and other technologies to extend the
functions of the Internet and connect many items directly to
form a network with wider coverage and higher efficiency
[1]. Its essence is to use these new technologies to realize
intelligent identification, positioning, tracking, monitoring,
and management of global items, to achieve real-time in-
formation sharing. 'e technical architecture of the Internet
of 'ings includes the perception interaction layer, the
network transmission layer, and the application service layer

[2]. Achieving intelligent identification mobile wireless
sensor networks (MWSNs) is an autonomous and distrib-
uted large-scale of the sensor network.'e network topology
is dynamically changed, and the tasks are performed in a
cooperative manner [3]. It is precisely because of these
characteristics that the complexity of the network is greatly
increased. For example, the redundant transmission mode
adopted in the network leads to a decrease in the reliability
and stability of the transmission path of the network [4]. At
the same time, the number of redundant transmissions is
increased, and due to the uneven consumption of node
energy consumption, the energy of some nodes will be
completely lost, making the sensor nodes in some areas of
the entire network unable to work [5]. Ultimately, it leads to
the failure of the sensor network system and affects the
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network’s lifetime. Problems that need to be solved urgently
reflect the need for further optimization and development of
wireless sensor network technology [6].

1.1. Problem Statement andMotivation. Generally speaking,
the fault-tolerance capability of a sensor network means that
when some nodes or links fail, the network can recover the
data transmission or the network structure self-healing to
minimize the impact of node or link failure on the function
of the wireless sensor network [7]. When a wireless link is
disconnected, the routing strategy can automatically find a
new path to avoid the disconnected network link. 'is
greatly improves the reliability of the network and is also a
key feature of wireless sensor networks. Wireless sensor
networks must have strong fault tolerance to ensure high
reliability and robustness of the network system. Efficient
fault-tolerant routing mechanism is an important part of
prolonging the reliability of the network and the system’s
lifetime.

'e multiroute transmission fault tolerance technology
establishes a geometric path between the source sensor
node and the destination sensor node. By establishing
multiple transmission paths, the network bandwidth is
limited, and the load balancing ability is improved. 'e
five-layer network protocol transmission of application
layer, network layer, data link layer, physical layer, and
transport layer is realized through multipath transmission
fault tolerance technology and network coding data re-
dundancy transmission technology, combined with energy
manager, task manager, and topology manager to coor-
dinate processing control to achieve network transmission
reliability and stability. Another common method of
multipath transmission is network coding. Network coding
is to recompile a data source code to generate data blocks.
An information exchange technology that reorganizes the
source data after it is transmitted frommultiple paths to the
destination sensor node. 'is method combines multi-
routing and coding technology to improve the reliability of
data transmission.

In practical applications, node failure, link failure, and
energy consumption have a huge impact on the stability
and reliability of multipath data transmission at the net-
work layer. Aiming at this problem that needs to be solved
urgently, in this paper, we used the current popular swarm
intelligence bionic optimization algorithm and proposed a
multipath transmission strategy for mobile wireless sensor
networks based on the shuffled frog leaping algorithm
optimized by particle swarm optimization. 'is method
combines the classic multipath transmission AODV al-
gorithm, optimizes the data transmission strategy of sensor
nodes, locally updates the network, reduces the amount of
data transmission, improves the convergence speed of the
algorithm, adjusts the threshold selection range, and re-
duces the space difference of each path to optimize the
multipath transmission mode. Ad hoc on-demand distance
vector routing (AODV) is a routing protocol used for
routing in wireless ad hoc networks (also known as wireless
ad hoc networks). It can realize unicast and multicast

routing. 'is protocol is a typical on-demand routing
protocol in ad hoc networks. It is an on-demand routing
protocol. On demandmeans that the node will not store the
routing information of all nodes in the network. 'e
routing table will be checked only when it needs to transmit
data to the nodes. If there is no route, a routing request will
be sent to the network.'is is the route discovery process to
obtain the route to the node [8]. As a general term for
algorithms inspired by the biological world, biological
intelligence algorithms have the characteristics of robust-
ness, adaptability, and self-healing and are suitable for
application in the field of multipath data transmission in
wireless sensor networks. 'is paper combines the char-
acteristics of different types of wireless sensor networks,
such as two-level heterogeneous networks and mobile
networks, and comprehensively uses multipath routing
technology and a variety of biological intelligence algo-
rithms to discuss the routing fault tolerance strategies of
these types of networks in the data transmission process
[9]. 'e research results of this thesis can inspire people to
develop new fault-tolerant routing methods from the
perspective of biological intelligence algorithms for wireless
sensor networks to actively promote the development of
wireless sensor networks and biological coevolutionary
intelligent algorithm theory and technology. 'e multipath
routing fault tolerance strategy proposed in this paper
provides a stable and reliable data transmission environ-
ment for wireless sensor networks, an efficient multipath
routing recovery mechanism, improves the robustness and
reliability of the network, and prolongs the network
lifetime.

1.2. Contribution. In this work, a multipath transmission
strategy for mobile wireless sensor networks based on the
shuffled frog leaping algorithm optimized by particle swarm
optimization (PSO-SFLA) is proposed. In comparison with
the current general selection approaches, the main contri-
butions of our work in this paper can be summarized as
follows.

(1) Characterize the issues of the multipath transmission
strategy for mWSNs, and classify the current mul-
tipath transmission strategy.

(2) Propose amultipath transmission strategy formobile
wireless sensor networks based on the shuffled frog
leaping algorithm optimized by particle swarm op-
timization (PSO-SFLA).

(3) Evaluate the performance of the proposed algo-
rithms by comparing them with the multipath
transmission strategy of the PSO, SFLA, and PSO-
SFLA algorithm.

2. Related Work

'e multipath routing transmission mechanism and data
encoding and decoding transmission mechanism of mobile
wireless sensor network are mainly to improve the stability
and reliability of network transmission and improve the fault
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tolerance of network transmission [10]. 'is section will
introduce the research progress of related research work.
Due to the mobility of sink node, the dynamic change of
topology, the complex and bad deployment environment of
node, and many uncertain factors, the sensor node fails, the
quality of data transmission link becomes worse, and the
data packet transmission fails, which seriously affects the
stability and reliability of network operation and brings great
challenges to the adaptability and robustness of the network
[11]. 'e commonly used method is to adopt the fault
tolerance strategy, which can improve the operation stability
and network reliability of the mobile wireless sensor net-
work. 'e fault tolerance strategy of MWSNs refers to the
interruption of the original data transmission path when a
node or communication link in the sensor network fails. 'e
following have become urgent problems that should be
solved in current mobile wireless sensor networks: how to
quickly restore an efficient and reliable routing transmission
path, handle network faults adaptively, quickly, and effec-
tively, and ensure high reliability and accurate operation of
the network; how to design an efficient fault-tolerant
strategy, provide a stable and reliable data transmission path,
ensure the robustness and anti-interference ability of data
transmission, and improve network reliability and avail-
ability. 'e fault tolerance of MWSNs mainly includes the
design of fault-tolerant protocols at all layers of the network
and the multilayer joint optimization control. 'ere are two
methods commonly used in network layer routing fault
tolerance: multipath routing transmission fault tolerance
technology and network coding for redundant transmission
of transmitted data. Fault tolerance designmainly focuses on
node hardware fault tolerance, coverage fault tolerance,
topology control fault tolerance, and routing fault tolerance.
Among them, routing fault tolerance is the foundation and
focus of MWSN fault tolerance research. At present, the
routing fault tolerance methods proposed by domestic and
foreign researchers mainly focus on four aspects: link
retransmission method, network coding, error correction
code mechanism, and multipath data transmission method.

2.1. Link Retransmission Method. 'e wireless communi-
cation link failure rate in MWSNs is much higher than that
in finite networks and increases with the increase of node
transmission hops. 'e link retransmission mechanism only
needs one retransmission to transmit the information to the
required node. From the point of view of the validity of
MWSN channel usage, link retransmission is an effective
method. However, in a special application field, the link
retransmission mechanism also has obvious shortcomings.
Frequent data retransmission will affect the utilization of the
channel, and the sensor node will retain the information to
the route reconfirmation of the next hop, which greatly
occupies the limited memory of the node, which is obviously
not applicable in the application of MWSNs.

In [12], the authors discuss the use of network coding
algorithms combined with appropriate retransmission
techniques to improve communication reliability in wireless
sensor networks (WSN). Reference [13] proposes a flow-

centric strategy to reallocate retransmissions flexibly and
dynamically between links of multihop flows at runtime.
'is contribution is complemented by a method for de-
termining the number of retransmissions required to
achieve user-specified reliability levels under two failure
models that capture common wireless characteristics of
industrial environments. Reference [14] developed a
retransmission strategy derived from the Pareto principle
and the scale-free properties of complex networks. In our
revised definition of hop-by-hop reliability, sensors that
forward data directly to the central node must perform
retransmissions. Reference [15] addresses the degree of ir-
regularity parameters to facilitate adaptation to geographic
switching for two types of transmission in distributed sys-
tems: hop-by-hop and end-to-end retransmission schemes.
'e simulations determined results for average packet delay
transmission, transmission energy consumption, and
throughput. Simulations provide insights into the impact of
radio irregularities on neighbor discovery routing tech-
niques for both schemes. Reference [16] analyzes the energy
efficiency of unlicensed wireless networks, where retrans-
missions are possible if a transmitted message is decoded
while it is interrupted. After finding the optimal throughput
in the presence of retransmissions, we focused on the overall
power consumption and energy efficiency of the network
and how retransmissions, network density, and outage
thresholds affect the network’s energy efficiency.

2.2. Network Coding. Redundant transmission of network-
coded data is to encode the source data packets, transmit the
encoded data slices through multiple paths, and decode and
reassemble a certain number of encoded data slices into
source data packets at the destination node to achieve
transmission fault tolerance.

To increase the reliability of data transmission or provide
load balancing, [17] proposes a network coding multipath
routing algorithm in WSN (NC-WSN). Reference [18]
proposes an energy-efficient adaptive data aggregation
strategy using network coding (ADANC), which improves
the energy efficiency of cluster-based duty-cycle WSNs.
Network encoder nodes also act as aggregation points op-
portunistically according to the level of data correlation.
Reference [19] studies network coding as a power mini-
mization technique. Reference [20] proposed a reliable data
dissemination protocol AdapCode, which adaptively
changes the coding scheme according to the link quality. It
uses adaptive network coding to reduce broadcast traffic
during code updates. 'e data packets on each node are
encoded by linear combination and decoded by Gaussian
elimination. Reference [21] proposed a network coding-
based probabilistic routing scheme (NCPR) for wireless
sensor networks to alleviate the broadcast storm problem
and improve the network coding gain.

2.3. Error Correction CodeMechanism. Using the method of
reconstructing the original data, the error correction code
mechanism can obtain higher network reliability without
link retransmission. However, it needs to divide the data
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packet into various code words. 'ere is a defect in this
method. In the selection of the number of information and
code words, the number of information cannot exceed the
number of bits used to represent the information. At the
same time, the number of code words must be less than the
capacity used to calculate the external storage space.

Reference [22] proposes a step-by-step method to find
suitable error correction codes for WSNs. Several simula-
tions considering different error correction codes show that
RS meets the BER and power consumption criteria. Ref-
erence [23] studies two ECC algorithms, which are block
codes and convolutional codes, for energy, power, and
performance. Reference [24] proposed an adaptive error
control implementation framework.'is approach leverages
the capabilities provided by software-defined networking
(SDN) and forward error correction (FEC). 'e framework
supports the adaptability of transmitters and receivers.
Reference [25] proposes a fast and energy-efficient single
error correction-double error correction (SEC-DED) and
single error correction-double error correction-double ad-
jacent error correction (SEC-DED-DAEC) codes. 'e
proposed SEC-DED and SEC-DED-DAEC codecs require
lower area, latency, and power compared to existing coding
schemes. Reference [26] proposed a new adaptive error
control (AEC) algorithm. Adaptive error control adaptively
changes the error correcting code (ECC) based on the
channel behavior observed through the packet error rate
(PER) in the most recent previous transmission.

2.4. Multipath Data Transmission. 'e multiroute trans-
mission fault-tolerant technology can be divided into
methods such as reestablishing multiple transmission paths
when a node fails or selecting activation among the
established multiple paths. 'e most important purpose is
to extend the network life and improve the reliability and
success rate of data transmission. 'e multipath routing
fault tolerance method is to establish multiple data
transmission paths between the source node and the
destination node. When the sink node moves a certain
distance away from the communication range of the node,
the interference of external factors or the failure of the node
itself causes communication interruption, and then, the
current transmission path will become invalid. 'e method
can quickly switch to another transmission path to obtain
better fault tolerance and improve the reliability of data
transmission. In the multipath transmission method, how
to establish multiple reliable transmission paths quickly
and efficiently between the source node and the sink is the
key to this problem.

In [27], this paper proposes a new multipath reliable
transmission method (named RCB-MRT) suitable for
edge wireless sensor networks. It adopts redundancy
mechanism to realize the reliability of data transmission
and adopts concurrent weaving multipath technology to
improve the transmission efficiency of data packets.
Reference [28] developed a new algorithm called expo-
nential ant colony optimization (EACO) to solve the
routing discovery problem in wireless sensor networks

after finding the cluster head (CH) using the fractional
artificial bee colony (FABC) algorithm. Reference [29]
proposes a directed diffusion-based multipath algorithm
that enhances multiple routes with high link quality and
low latency. Reference [30] proposed a super cluster head
(SCH) selection algorithm between CHs based on fuzzy
concepts. A further cost function (CF) is proposed for the
mean residual energy and mean end-to-end (ENE) delay
and mean transmission reliability (AR) of the multipath
routing network.

Based on summarizing the predecessors, this paper
adopts a distributed processing method to accurately
monitor and measure big data according to the regional
structure of the network at each level. 'e shuffled frog
leaping is applied to the transmission mode between the
source node and the destination node in the multiroute data
transmissionmechanism, and the pheromone normalization
of the shuffled frog leaping is optimized by particle swarm
optimization (PSO-SFLA) to reflect the network path link
information volume. According to the improved leapfrog
model, the comparison of network connectivity, transmis-
sion delay, energy conversion efficiency, and other data was
analyzed and simulated, and the feasibility of the improved
shuffled frog leaping in its wireless network transmission
was verified.

3. Mathematical Model

In the data transmission of mobile wireless sensor network,
the sensor node n on the transmission path from the source
node to the destination node has a neighbor table, which is
used to store the relevant information of neighbor nodes,
such as the unique ID number of each node in the network,
the node residual energy, communication energy con-
sumption, and transmission delay. When the sensor node n
receives the data packet forwarded by the neighbor node nb
for the first time, it first registers the information of nb in
the routing table in the transmission path. N1(nk) is the set
of all nodes in the neighbor table of the sensor node nk, and
Nh(nk) is the set of Nh−1(nk−1). 'e neighbor table of the
mobile sink stores the neighbor nodes one hop away from
itself. N(nsink) represents the neighbor table stored in the
sink node, and the information of the routing table is
mainly used to restore the new transmission path. 'e
routing fault-tolerant recovery process of the mobile sink is
shown in Figure 1.

'e main influencing factors for finding the best alter-
native transmission path Qj are the remaining energy of
neighbor nodes, the length of the transmission path between
adjacent nodes, the network energy consumption, and the
transmission delay. Replace the remaining energy Rene(nk

j )

of the neighbor node on the path, replace the path length
Dist(ek

j) of the effective link between two adjacent nodes on
the path, replace the energy consumption Ene(nk

j) and
Ene(ek

j ) between a single node on the path and two adjacent
nodes, and replace a single node on the path and the
transmission delays Delay(nk

j) and Delay(ek
j) between ad-

jacent nodes. 'e fitness fitness(Qj) formula of the best
alternative transmission path Qj is as follows:
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(1)

Among them, the parameter f1 is the proportion of the
total energy consumed by the links contained in a path to the
total energy consumed by all the links in the cluster. 'e
parameter f2 is the total delay of the nodes contained in the
path in the total energy consumption of all nodes in the
cluster. 'e proportion of the delay of the parameter f3 is
the proportion of the total length of the links contained in
this path to the total length of all links in the cluster. 'e
parameters ω1, ω2, and ω3 are the weights corresponding to
the functions f1, f2, and f3, respectively. ω1 + ω2 + ω3 � 1,
ω1 � 0.4, ω2 � 0.2, and ω3 � 0.4. It can be seen that the
fitness represents a better network path.

At the same time, we define the energy model formula of
a single sensor node as follows:

ene(m, d) � enetx(m, d) + enerx(m)

� a11 + a2d
n

( 􏼁m + a12m.
(2)

Among them, the parameter d is the distance between the
node and the next-hop neighbor node, enetx(m, d) and
enerx(m) are the energy consumption of sending and receiving
m-bit data respectively, and the parameters a11, a2, and a12 are
the energy consumption of the transmitting circuit, trans-
mitting amplifier, and receiving circuit, respectively. 'e pa-
rameter n is the channel attenuation index. 'e parameter
eneDF is defined as the energy consumption for data fusion,
and eneRT is the energy consumption for updating the routing
table. We define the energy consumption of particle update,
immune cloning, high frequency mutation, particle selection,
and suppression for each iteration ofMWSNs in the simulation
as enePU, eneIC, eneIM, enePS, and enePR, respectively.
'erefore, the total energy consumption of MWSNs can be
estimated according to the energy consumption of each iter-
ation in each round of simulation.

4. Shuffled Frog Leaping Algorithm
Optimized by PSO

4.1. Shuffled Frog Leaping Algorithm. Shuffled frog leaping
algorithm (SFLA) is a swarm intelligence optimization al-
gorithm based on global search proposed byMaaroof et al. in
the new century. It can simply and quickly find the optimal
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solution in the set of feasible solutions of combinatorial
optimization [31]. 'e SFLA algorithm, which is inspired by
the frog’s search for food, searches for the target based on the
cooperative cooperation between the populations [32]. First,
different individuals search for information, and then, ex-
change information in the local scope to construct an in-
formation search strategy in the subgroup scope. With the
exchange of information within the subgroups, internal
evolution is formed, and then, different subgroups are de-
rived, and the information between the subgroups is
reanalyzed and exchanged to form a global information
exchange [33]. 'ese two approaches interact with the
population, acting alternately to solve combinatorial opti-
mization problems. 'e SFLA algorithm combines the
characteristics of the flock foraging method for iteratively
finding the optimal solution of the population behavior and
the meme algorithm of genetic bionics and is widely used in
the traveling salesman problem, function processing, power
supply system optimization, machine vision, and so on [34].

'e mathematical model and specific calculation process
of the hybrid frog leaping algorithm, in a d-dimensional
target search space, randomly generate D frog individuals,
that is, the number of solutions of the target optimization
function, forming the initial frog population
S � X1, X2, . . . , XD􏼈 􏼉. 'e current position of the i-th frog
individual is the solution of the current combinatorial op-
timization problem. Assuming that the current frog indi-
vidual is Xi � xi1, xi2, . . . , xi d􏼈 􏼉, the individual fitness
function value f(Xi) of each frog can be obtained by cal-
culating and solving, and then the obtained individual fitness
values of the frogs are arranged in descending order. At the
same time, referring to the frog group division criterion, the
entire frog group is divided into N population groups
Y1, Y2, . . . , YN, the frog population is divided into N pop-
ulation groups, and parameter N is the number of frog
population groups. Each subgroup contains M frog indi-
viduals, which satisfiesD�N×M.'e frog division criterion
is to divide the 1st frog into the 1st subgroup, the 2nd into
the 2nd self-group, and so on, until the entire frog group is
divided. 'e following is obtained [35]:

Yj � Xj+N(l−1) ∈ S􏽮 􏽯, 1≤ l≤M, 1≤ j≤N. (3)

A local optimal search is performed in each frog sub-
group, and in each iteration, the following three parameters
can be obtained. 'e optimal individual position Xb, the
worst individual position Xw, and the global best individual
position Xg are taken from the group, and then, the worst
individual position of the frog is updated. 'e update
strategy is shown in the frog step update formula:

Qi � rand × Xb − Xw( 􏼁, −Qmax ≤Qi ≤Qmax. (4)

'e positions of the frog subgroup individuals are
updated according to the following:

XW
′ � Hw + Qi, (5)

where rand() is a random number between 0 and 1, and the
parameter Qmax is the maximum step size allowed to update
in the frog subgroup. After executing the update strategy of

(4) and (5), the new position XW
′ is obtained. If the newly

obtained position XW
′ is better than the previous XW, the

frog will replace the previous position XW
′ with the previous

XW. Otherwise, according to (6), update the strategy
transformation and update the step size formula:

Qi � rand × Xg − Xw􏼐 􏼑, −Qmax ≤Qi ≤Qmax, (6)

XW
′ � Hw + Qi. (7)

After the new update, (6) and (7) are executed, the new
frog position is obtained, and the same is compared with the
previous position to replace the current position, if the frog
position has not been changed. 'en, a new individual
position (the solution of the function) is randomly generated
to replace the individual position of the principle frog, and
we can obtain

Xw
″ � rand × Omax − Omin( 􏼁 + Omin. (8)

Among them, the parameter Xw
″ is the current latest

position, and the parameters Omax and Omin are the maxi-
mum and minimum values of the search range in the frog
subgroup, respectively. 'e previously mentioned iterative
update steps are repeated continuously until the maximum
number of iterations set in the preset subgroup is satisfied.
When all subgroups perform local optimal search and obtain
the optimal position of individual frogs, global information
exchange is carried out. 'e exchange process involves
remixing, sorting, and resubgrouping all frog individuals.
Afterwards, a deep local search for the optimal solution (the
best position) is performed in each new subgroup, and so on
and so forth, until the preset iterative conditions are met.
'e hybrid leapfrog algorithm is shown in Figure 2.

4.2. ShuffledFrog LeapingAlgorithmOptimized by PSO (PSO-
SFLA). Combining the characteristics of particle swarm
optimization and the shuffled frog leaping algorithm, a new
improved SFLA algorithm based on particle swarm optimi-
zation is proposed in this paper. Kennedy and Eberhart
proposed a new global search method, the particle swarm
optimization algorithm. A lot of practice has proved that this
method is effective in solving optimization problems. Particle
swarm optimization algorithm is a heuristic algorithm with
individual improvement, population cooperation, and com-
petition mechanism, which is inspired by the predation be-
havior of flocks of birds or fish in nature. Each particle
updates its position in the decision space at an adaptable rate
to bring the particle closer to the required space. 'e optimal
position of each particle and the position information of the
optimal particle in the particle swarm jointly guide the search
position of the particle swarm. Each particle has a corre-
sponding velocity and position and a fitness value determined
by the objective function. Each iteration of the particle in the
solution space is based on the currently found better solution
to find the next solution. 'e i-th particle is denoted as
Xi � (xi1, xi1, . . . , xi d), and it has experienced the best po-
sition (with the best fitness value) and denoted as
Pi � (pi1, pi1, . . . , pi d), also known as pbest. 'e best position
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of all particles in the group in the iteration is represented by
the symbol Pg, also called gbest, and the velocity of particle i is
represented by Vi � (vi1, vi1, . . . , vid). 'e update of the ve-
locity and position of the i-th particle in the d-th dimension
decision space adopts the following expressions:

vid(t + 1) � wvid(t) + c1r1 pi d(t) − xid(t)( 􏼁

+ c2r2 pgd(t) − xi d(t)􏼐 􏼑,

xid(t + 1) � xid(t) + vid(t + 1),

(9)

where i � 1, 2, . . . , N, d � 1, 2, . . . , n. 'e parameter w is the
inertia weight, the parameters r1 and r2 are two random
functions that vary in the range of [0, 1], and the parameters
c1 and c2 are the acceleration constants, which determine the
learning ability of the particle to its own optimal position
and the optimal position of the population, respectively.

'e steps of calculating the global optimal solution of
shuffled frog leaping algorithm optimized by PSO are as
follows.

Step 1: Randomly initialize the position and velocity of
each particle of the population on the search space D.
Step 2: For each particle, calculate the fitness function.
Step 3: Obtain pbest and gbest values for the entire
population. Compare particle fitness evolution with
particle pbest. If the current value is better than pbest, set
the pbest value equal to the current value and the pbest
position equal to the current position in the dimension
space.
Step 4: Compare the fitness value with the overall pbest
value. If the current pbest value is better than gbest, reset
to the current particle value.
Step 5: Change the velocity and position of the particle
according to (4) and (5), respectively.
Step 6: When the number of iterations of the algorithm
reaches the maximum number or meets the minimum
error requirement, stop the iteration; otherwise, jump
to Step 2.
Step 7: Search for possible solutions to the population
of the frogs, which are sorted in descending order
according to their fitness and divided into subsets called
memeplexes (m).
Step 8: 'e i-th individual of the frog is denoted as
Xi � (Xi1, Xi2, . . . Xis), where the parameter S repre-
sents the number of variables.
Step 9: For each memeplex, the worst and best fitness of
the frog are denoted as Xw and Xb, respectively.
Step 10: Select the current best fitness as Xg.
Step 11: Improve the frog with the worst fitness
according to (4) and (5).

5. Application of PSO-SFLA Algorithm in
Multipath Transmission of MWSNs

In this paper, we mainly study the routing strategy of
MWSNs multipath data transmission and use the shuffled
frog leaping algorithm optimized by PSO algorithm to study
the optimal alternative routing construction strategy.
Sending data from the source node of the sensor network to
the destination node is analogous to the process of finding
food for the frog group, and the sensor node is analogous to
the individual frog population. 'e optimal path for data
transmission is the path for the individual frog to find the
best food location. 'e shuffled frog leaping optimized by
PSO algorithm is used to solve the multipath data trans-
mission problem of WSNs, and an efficient and reliable

Whether the termination 
conditions are met?

Determine the local maximum number of 
iterations J and the global maximum number 

of iterations T.

Start

End

Initialize the frog population and calculate 
the fitness value of each frog

Arrange all frogs in descending order 
according to their fitness values, record the 

global best solution, and divide the 
population into m groups.

Perform a local depth search

Remix the various subpopulations

Output the best result

N

Y

Determine the number of frog groups P; the 
number of sub-populations m; the number 
of frogs in each group n, the maximum step 

size Dmax.

Figure 2: 'e flowchart of the shuffled frog leaping algorithm.
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routing transmission path is quickly restored by making full
use of the information provided by the original path. 'e
proposed PSO-SFLA algorithm provides faster global con-
vergence performance and more accurate solutions for
network optimization. 'e steps of multipath data trans-
mission based on particle swarm optimization hybrid frog
leaping algorithm are as follows.

Step 1: Initialize the sensor network node parameters,
including the number of sensor nodes, the dimension
of a single node, the number of nodes of a single
random network group, the number of sub sensor
network groups, the number of iterations of a single
random network, the number of mixed iterations of the
whole network, and limiting the longest and shortest
values of a single path.
Step 2: Take the sensor continuous variable function of
each node as the input, and obtain the fitness value of
the sensor node.
Step 3: Obtain the current individual extreme value of
the entire population and the optimal value of the
entire sensor network. Compare the fitness value of the
sensor node with the current individual extreme value.
If the current fitness value is better than the current
individual extreme value, the current individual ex-
treme value is set equal to the current fitness value, and
the current individual extreme value position is equal to
the current position in the dimension space.
Step 4: Compare the fitness value of the sensor node
with the optimal value of the entire sensor network. If
the fitness value of the current sensor node is better
than the optimal value of the entire sensor network, it is
reset to the current value.
Step 5: Change the velocity and position of the sensing
node according to (4) and (5), respectively.
Step 6: When the number of iterations of the whole
network reaches the maximum number or meets the
minimum error requirement, stop the iteration; oth-
erwise, jump to Step 2.
Step 7: Search for possible solutions to the population
of the frogs, filter the optimal node and the worst node
and rank the moderate value of each sensor node in
descending order, and store it. Divide each sensor node
into each subsensor network in a regular order to form
N subsensor networks. 'e probability that each sensor
node is selected to enter the subsensor network.
Step 8: 'e sensor network node i is denoted as
Xi � (Xi1, Xi2, . . . Xis), where the parameter S repre-
sents the number of variables.
Step 9: For each subsensor network, determine the
optimal value, the worst value of the subsensor network
node and the optimal value of the entire sensor net-
work. 'e fitness value of a single sensor node is
updated according to (8), and it is repeated for each
subsensor network.
Step 10: Improve the sensor node with the worst fitness
according to (4) and (5). When the subsensor network

completes its iteration times and conforms to the full
network iteration times, the update ends and the op-
timal value of the entire network is output. Otherwise,
mix all sensor nodes and return to the sorting step for
reranking calculation. Figure 3 shows the workflow of
the multipath transmission of MWSNs based on PSO-
SFLA proposed in this paper.

In this paper, a multipath data transmission model for
MWSNs is established, and an optimal alternative route
recovery strategy based on particle swarm optimization
hybrid frog leaping algorithm is proposed. 'e proposed
algorithm further improves the exploration and develop-
ment ability of the algorithm, avoids premature convergence
caused by the algorithm falling into local optimum, and
improves the optimization efficiency and performance. 'e
proposed algorithm provides a stable and reliable data
transmission environment in the multipath transmission
strategy of MWSNs, an efficient multipath route recovery
mechanism, improves the robustness and reliability of the
network, and prolongs the lifetime of the network.

6. Algorithm Comparison and Result Analysis

To test the performance of MWSNs multipath transmission
of the algorithm proposed in this paper, the performance
simulation experiment was carried out withMATLAB 2014b
software. 'e sensor nodes are randomly and uniformly
distributed in a two-dimensional space of 500× 500m2.
During the network rounds simulation process, the source
node generates 10 data packets to send data to the desti-
nation node of Sink, and the size of each data packet is 4 kb.
'e total energy consumption of the sink is set to 500 J,
regardless of its energy consumption, and it moves in a
straight line at a constant speed of 1m/s. 'e parameters of
the hybrid frog leaping algorithm are set as follows: the total
number of frog population P is 100, the number of sub-
populations is 20, and the number of frog individuals in each
subpopulation is 10. 'e maximum number of evolutionary
iterations within the subpopulation is 10, the global maxi-
mum number of evolutionary iterations is 50, the dimension
of the optimal solution space is 20, and the algorithm runs 30
times independently with a population of 50.'e parameters
of particle swarm optimization are set as follows: the pop-
ulation number is 20, the inertia weight w � 0.96, c1 � 0.5,
and c2 � 0.7, and the number of iterations is 50. 'e sim-
ulation environment parameter settings are shown in
Table 1.

We compare the proposed algorithm with PSO and basic
SFLA algorithm and make detailed comparisons in terms of
multipath transmission effect comparison, network energy
consumption, packet loss rate, transmission delay, network
connectivity, and network reliability.

6.1. Comparison of Multipath Transmission Renderings.
To better reflect the effectiveness of the route recovery
strategy algorithm adopted in this paper, in the simulation
process, we give the uniform linear motion of the sink node
and the constantly changing transmission path of the source

8 Computational Intelligence and Neuroscience



node. Figures 4 and 5 show the comparison of path resto-
ration effect graphs for the three algorithms with 100 nodes
and 200 nodes.

As can be seen from Figure 4, the source node we set is
the upper left corner of the graph, numbered 191. 'e sink
moves in a straight line at a constant speed, moves eight
times to collect data, and waits for the data sent by the source
node 191. As the sink moves in a straight line at a constant
speed, it can be seen that the source nodes of the three
multipath data transmission algorithms will quickly estab-
lish an alternative path to send the sensed data to the mobile
sink, but the lengths of the constructed transmission paths
are different. When the mobile sink node starts to move, the
multipath transmission strategy of the PSO protocol in the
source node 191 to the destination node sink is

191⟶ 100⟶ 50⟶ 89⟶ 52⟶110⟶ 61⟶ sink,
with a total of seven hops. 'e SFLA protocol multipath
transmission strategy is 191⟶ 100⟶ 26⟶ 49
⟶ 89⟶ 72⟶154⟶ 61⟶ sink, with a total of eight
hops. 'e multipath transmission strategy of the PSO-SFLA
protocol is 191⟶ 112⟶ 26⟶ 89⟶ 52⟶110⟶
61⟶ sink, with a total of seven hops. When the mobile
sink node moves to the eighth time, the multipath trans-
mission strategy of the PSO protocol is 191⟶
46⟶ 26⟶ 49⟶1⟶ 43⟶ sink, a total of six hops.
'e SFLA protocol multipath transmission strategy is
191⟶ 46⟶14⟶ 83⟶ 56⟶178⟶ sink, with a
total of six hops. 'e multipath transmission strategy of the
PSO-SFLA protocol is 191⟶ 46⟶14⟶ 83⟶
56⟶178⟶ sink, with a total of six hops. 'e multipath
transmission strategy of the PSO-SFLA protocol is
191⟶ 46⟶14⟶ 83⟶ 56⟶178⟶ sink, with a
total of six hops.

'e source node set in Figure 5 is the lower left corner of
the graph, numbered as 118 nodes. When the mobile sink
node starts to move, the multipath transmission strategy of
the PSO protocol in the source node 118 to the destination
node sink is 118⟶19⟶ 60⟶109⟶105⟶172⟶
sink, with a total of six hops. 'e multipath transmission
strategy of SFLA protocol is 118⟶19⟶ 69⟶109
⟶ 105⟶172⟶ 61⟶ sink, with a total of seven hops.
'e multipath transmission strategy of the PSO-SFLA
protocol is 118⟶ 93⟶19⟶ 69⟶ 81⟶ 68⟶
109⟶11⟶ 60⟶ 24⟶105⟶172⟶ sink, with a
total of 12 hops. When the mobile sink node moves to the
10th time, the multipath transmission strategy of the PSO
protocol is 118⟶ 21⟶ 5⟶170⟶ 8⟶183⟶12
⟶ sink, with a total of seven hops. 'e SFLA protocol
multipath transmission strategy is 118⟶ 21⟶ 5
⟶ 170⟶ 8⟶183⟶12⟶ sink, with a total of seven
hops. PSO-SFLA protocol multipath transmission strategy is
118⟶ 93⟶ 21⟶ 44⟶ 5⟶ 95⟶ 56⟶170⟶
16⟶ 8⟶ 49⟶183⟶ 58⟶12⟶ sink, with 14
hops in total.

Compared with the other two algorithms, it can be found
that the data transmission alternative path of the PSO-SFLA
algorithm proposed in this paper has long hops, but there are
no more twists and turns. Try to find the shortest path with
the shortest data transmission delay, which balances the
network energy consumption; the network performance is

Table 1: Simulation environment parameter settings.

Variable Numerical value
Network range 500× 500m2

Number of nodes 200
Communication radius 80m
VSink 1 m/s
Initial energy 1 J
Eelec 50 nJ/bit
Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

L 4000 bits
d0

�������
Efs/Emp

􏽱
� 87m

Initialize network nodes

Start

Calculate node fitness value

Update the historical optimal 
position of each node

Update the global optimal 
position

Update speed and location

Sort by node fitness value

Divide the sensor nodes

Update worst fitness value

Hybrid all sensor nodes

Satisfy the 
number of 
iterations?

Satisfy the number 
of the network?

Y

N

N

Output optimal value

End

Y

Figure 3: Flow chart of multipath transmission strategy for
MWSNs based on PSO-SFLA.
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the best and the reliability is the highest. 'e main reason is
that after the route recovery strategy algorithm in this paper
replaces the path, it will replan the shortest path, and there
are few paths that overlap with the previous data trans-
mission. In addition, the algorithm proposed in this paper is
not only limited to the original shortest path but researches
the shortest path according to the surviving nodes to find the
global best path.

6.2. Comparison of Network Energy Consumption.
Network energy consumption is an important parameter to
evaluate the network lifetime of MWSNs, which directly
affects the network lifetime. Figure 6 shows the comparison
of network energy consumption of the three algorithms.'e
horizontal axis in Figure 6 is the number of simulated polls,
and the vertical axis is the overall energy consumption of the
network.

From the comparison of the three algorithms in Figure 6,
it can be clearly seen that with the increase of the number of
simulation rounds, the network energy consumption of the
three algorithms is gradually increasing, and there is a
certain linearity. Among them, the network energy con-
sumption of the PSO algorithm increases linearly, and the
slope is the largest. 'e energy consumption of the basic
SFLA algorithm is significantly lower than that of the PSO
algorithm. 'e PSO-SFLA algorithm proposed in this paper
has the lowest energy consumption and the smallest growth
slope. It can be seen that the optimization of network energy
consumption in the multipath transmission process pro-
posed in this paper is very effective.

6.3. Comparison of Energy Utilization. To reflect the im-
portance of the parameter index of network energy, the three
multipath data transmission protocols in Figure 7 are in the
case of 200 sensor nodes. Comparison of network energy
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Figure 4: Moving path transfer path of mobile sink (8 times). (a) PSO. (b) SFLA. (c) PSO-SFLA.
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utilization in each round of polling (network utilization is
the ratio of the average remaining energy of all nodes to the
initial total energy of the network). 'e horizontal axis of
Figure 7 represents the current polling times, and the vertical
axis is the energy utilization rate of the sensor network.

'e larger the energy utilization value, the better the
network energy utilization. From Figure 7, you can see that
the network energy utilization rate of the PSO algorithm
gradually decreases linearly, and the magnitude is very large.
When the node simulation reaches 200 polls, many deaths
occur. 'e energy utilization rate of the basic SFLA algo-
rithm is better and the decrease is smaller. 'e PSO-SFLA

algorithm proposed in this paper has the best energy uti-
lization and the smallest decrease.

6.4. Comparison of the Packet Loss Rate. 'e packet loss rate
is one of the important indicators to evaluate the network
performance, which reflects the reliability performance of
the network. 'e packet loss rate refers to the ratio of the
number of lost packets to the number of packets normally
received by the destination node during the process of
sending packets from the sensor node to the destination
node. In the case of different numbers of sensor nodes, the

V
er

tic
al

 ax
es

 y
 U

ni
t :

 m

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34 35
36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

5859

60 61

62

63

64

65 66

67

6869

70

71

72

73

74

75

76
77

78

79

80

81

82

83

84
85

86

87

88

89

90

91

92

93

94

95

96

97

98

99100
101

102

103

104

105 106

107

108

109

110

111

112

113

114

115

116

117

118

119
120

121

122 123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176 177

178

179

180

181

182

183

184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 5000
Horizontal axes x Unit : m

S
D
Previous Route

Altenetive Route
Sink Route

(a)

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34 35
36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

5859

60 61

62

63

64

65 66

67

6869

70

71

72

73

74

75

76
77

78

79

80

81

82

83

84
85

86

87

88

89

90

91

92

93

94

95

96

97

98

99100
101

102

103

104

105 106

107

108

109

110

111

112

113

114

115

116

117

118

119
120

121

122 123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176 177

178

179

180

181

182

183

184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

V
er

tic
al

 ax
es

 y
 U

ni
t :

 m

0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 5000
Horizontal axes x Unit : m

S
D
Previous Route

Altenetive Route
Sink Route

(b)

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34 35
36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

53

54

55

56

57

5859

60 61

62

63

64

65 66

67

6869

70

71

72

73

74

75

76
77

78

79

80

81

82

83

84
85

86

87

88

89

90

91

92

93

94

95

96

97

98

99100
101

102

103

104

105 106

107

108

109

110

111

112

113

114

115

116

117

118

119
120

121

122 123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176 177

178

179

180

181

182

183

184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

V
er

tic
al

 ax
es

 y
 U

ni
t :

 m

0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 5000
Horizontal axes x Unit : m

S
D
Previous Route

Altenetive Route
Sink Route

(c)
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comparison of the packet loss rate between the three mul-
tipath transmission strategies of the PSO algorithm, the basic
SFLA algorithm, and the PSO-SFLA algorithm proposed in
this paper is given, as shown in Figure 8.

It can be clearly seen from Figure 8 that the PSO algo-
rithm is very different from the basic SFLA algorithm and the
PSO-SFLA algorithm proposed in this paper. Its packet loss
rate is always between 0.3 and 0.45, and the overall network
packet loss rate is very large. 'e packet loss rate of the basic
SFLA algorithm is between 0.1 and 0.25, and the fluctuation
range is large. 'e packet loss rate of the PSO-SFLA network
proposed in this paper is about 0.1, and the fluctuation range
is not large.'e proposed PSO-SFLA algorithm has very little
packet loss during data transmission, and the network has
better reliability and stable performance.

6.5.ComparisonofDataTransmissionDelay. 'e end-to-end
data transmission delay refers to the average time it takes for
a data packet to travel from the source node to the desti-
nation node. 'e data transmission delay mainly includes
the route discovery delay, the waiting delay at the con-
nection, the transmission delay, and the data retransmission
delay of the MAC layer. 'e real-time performance of the
protocol is measured by the transmission delay of suc-
cessfully received packets. A data is denoted as Ts at the time
of transmission of the source node and denoted as Tr at the
time of reception of the sink node. 'en, the average
transmission delay formula is

Ttrans �
1

Nr

􏽘

v

i�1
Tri − Tsi( 􏼁. (10)

Among them, the parameter Nr is the total number of
successfully received packets. Figure 9 shows the average
packet transmission delay from the source node to the
mobile sink simulation for 50 times.

From the comparison of transmission delays in Figure 9,
the transmission delays of the three algorithms all increase
with time. 'is is mainly because, with the progress of the
simulation, after the energy consumption of the node is
exhausted, the number of transmission hops of the node
increases, and the transmission delay increases. From the
trend of the three algorithms, with the increase of the
number of simulation rounds, the transmission delay of the
PSO algorithm is the longest compared with the two other
algorithms. 'e basic SFLA algorithm and the proposed
PSO-SFLA algorithm are not much different.

6.6. Comparison of Network Connectivity. For the dynami-
cally changing mobile sensor network, the commonly used
method adopts the method of continuous motion
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discretization to calculate the connectivity of the network;
that is, in a relatively short period of time, it is considered
that the network topology does not change, and the network
structure remains unchanged. For the network at a certain
moment, the calculation of the connectivity rate of MWSNs
is generally determined by the perceptual node traversal
method. Assuming that a sensing node is used as a reference,
the nodes connected from its first hop, second hop, and third
hop are sequentially searched until the number of nodes
connected to the initial sensing node no longer increases.
'e mathematical calculation formula of the connectivity
ratio Ncon is

Ncon �
Nl

n
. (11)

Among them, the parameterNl is the number of adjacent
nodes within the communication range of the node, and the
parameter n is the number of all nodes in the entire sensor
network. 'e network connectivity comparison of the three
algorithms is shown in Figure 10.

tIt can be seen from Figure 10 that, with the increase of the
number of simulation rounds, the network connectivity rate of
the duo path out of the transmission strategy of the PSO al-
gorithm is low and fluctuates greatly, ranging from 0.55 to 0.72.
'e network connectivity of the basic SFLA algorithm is rel-
atively high and stable, ranging from 0.75 to 0.9.'e PSO-SFLA
algorithm proposed in this paper has the highest network
connectivity and is stable, but the fluctuation range is a bit large
in some places, ranging from 0.8 to 0.9. Overall, the PSO-SFLA
algorithm proposed in this paper has the best network
connectivity.

6.7. Comparison of Comprehensive Reliability of Network.
'e comprehensive reliability of the network generally
calculates the reliability matrix according to the distance

between the sensing nodes of MWSNs and then refers to the
obtained reliability matrix and random edge reliability
matrix samples [36]. According to Monte Carlo analysis, the
average node connectivity reliability value after 50 rounds is
obtained [37]. 'e comprehensive network reliability Rnet is
composed of network node connectivity reliability I1, net-
work connectivity rate I2, and network capacity I3. Its
mathematical formula is

Rnet � 0.3I1 + 0.4I2 + 0.3I3. (12)

'e parameter I1 refers to the reliability of the in-
terconnection between the end-to-end nodes, and the
parameter I2 is the network connectivity rate calculated
previously. 'e network capacity I3 is the network sur-
vival probability. Generally, the ratio of the current
network node survival nodes to the number of all network
nodes is the network survival probability. 'e network
reliability comparison of the three algorithms is shown in
Figure 11.

It can be seen that, with the increase of the number of
simulation rounds, the comprehensive network reliability
of the multipath transmission strategy of the PSO algo-
rithm gradually decreases, and the fluctuation is large, and
the comprehensive network reliability ranges from 0.75 to
0.85. 'e network comprehensive reliability of the basic
SFLA algorithm is relatively stable, with a small fluctua-
tion range, ranging from 0.84 to 0.9. 'e comprehensive
reliability of the proposed PSO-SFLA algorithm has a
small fluctuation range, ranging from 0.9 to 0.95, which is
slightly higher than the performance of the basic SFLA
algorithm. It can be seen that the reliability of the pro-
posed PSO-SFLA algorithm is the highest, which is
consistent with the simulation expectations. In the
comparison of these three algorithms, the proposed PSO-
SFLA algorithm has the highest energy utilization effi-
ciency, the lowest energy consumption, the smallest delay,
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and the best reliability in the multipath data transmission
process of mobile wireless sensor networks.

6.8. Comparison of Network Load Balancing. 'e calculation
formula of network load balancing is in [38]. According to
the calculation in [38], we can obtain the network load
balancing performance of the four algorithms. 'e com-
parison of network load balancing is shown in Figure 12.

'e higher the number of network balance, the better the
network balance. From the comparison of network balance
in Figure 12, the network balance of the SFLA algorithm and
the shuffled frog leaping algorithm optimized by PSO

algorithm is better, and the network balance of the PSO
algorithm is poor. 'is is mainly because the particle swarm
algorithm is very easy to fall into a local optimum in the
process of finding the optimal solution, and the data
transmission path it is looking for is not the optimal so-
lution, resulting in an unbalanced network. 'e PSO-SFLA
algorithm proposed in this paper has a wide search range, is
not easy to fall into local optimum, and has the best
performance.

7. Conclusions

In this paper, the improved SFLA algorithm is combined
with the multipath transmission mechanism of mobile
wireless sensor networks, which has been improved to a
certain extent in terms of the problems affecting the quality
of data transmission such as node failure and link failure,
which not only ensures the effective transmission of data, but
also reduces the energy consumption of nodes accordingly.
In this paper, the SFLA algorithm optimized by PSO is
proposed to optimize the multipath data transmission of
each node, and the node mutation factor is combined into it,
which is more in line with the actual changeable complex
environment, and can find the shortest and suitable path for
data transmission in the process continuous movement of
sink. According to the simulation experiments, the particle
swarm optimization leapfrog algorithm is significantly better
than the particle swarm optimization algorithm and the
basic hybrid frog leaping algorithm in terms of network
energy consumption, transmission delay, connectivity rate,
reliability, and other indicators.

In the future work, the latest swarm intelligence opti-
mization, such as the butterfly algorithm, the dragonfly
algorithm, and the sparrow search algorithm, will be
adopted and applied to the multipath data transmission
mechanism of the heterogeneous mobile wireless sensor
network. 'e next research direction is to quickly search for
a transmission path with low latency, low power con-
sumption, and high connectivity and reliability in complex
industrial application environments.
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