
Measuring the Performance of Vaccination Programs
Using Cross-Sectional Surveys: A Likelihood Framework
and Retrospective Analysis
Justin Lessler1*, C. Jessica E. Metcalf2, Rebecca F. Grais3,4, Francisco J. Luquero3, Derek A. T. Cummings1,

Bryan T. Grenfell5,6

1 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 2 Department of Zoology, University of

Oxford, Oxford, United Kingdom, 3 Epicentre, Paris, France, 4 Harvard Humanitarian Initiative, Harvard University, Cambridge, Massachusetts, United States of America,

5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America, 6 Forgarty International Center, National

Institute of Health, Maryland, United States of America

Abstract

Background: The performance of routine and supplemental immunization activities is usually measured by the
administrative method: dividing the number of doses distributed by the size of the target population. This method leads to
coverage estimates that are sometimes impossible (e.g., vaccination of 102% of the target population), and are generally
inconsistent with the proportion found to be vaccinated in Demographic and Health Surveys (DHS). We describe a method
that estimates the fraction of the population accessible to vaccination activities, as well as within-campaign inefficiencies,
thus providing a consistent estimate of vaccination coverage.

Methods and Findings: We developed a likelihood framework for estimating the effective coverage of vaccination
programs using cross-sectional surveys of vaccine coverage combined with administrative data. We applied our method to
measles vaccination in three African countries: Ghana, Madagascar, and Sierra Leone, using data from each country’s most
recent DHS survey and administrative coverage data reported to the World Health Organization. We estimate that 93% (95%
CI: 91, 94) of the population in Ghana was ever covered by any measles vaccination activity, 77% (95% CI: 78, 81) in
Madagascar, and 69% (95% CI: 67, 70) in Sierra Leone. ‘‘Within-activity’’ inefficiencies were estimated to be low in Ghana,
and higher in Sierra Leone and Madagascar. Our model successfully fits age-specific vaccination coverage levels seen in DHS
data, which differ markedly from those predicted by naı̈ve extrapolation from country-reported and World Health
Organization–adjusted vaccination coverage.

Conclusions: Combining administrative data with survey data substantially improves estimates of vaccination coverage.
Estimates of the inefficiency of past vaccination activities and the proportion not covered by any activity allow us to more
accurately predict the results of future activities and provide insight into the ways in which vaccination programs are failing
to meet their goals.
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Introduction

Immunization is a proven and cost-effective tool for control of

infectious disease. Two main types of immunization activities are

used to deliver vaccinations to populations, routine immunization

and mass campaigns such as Supplemental Immunization Activities

(SIAs). Routine immunization occurs year-round, with the aim of

providing coverage for all children, as part of the World Health

Organization (WHO) Expanded Program on Immunization. In

contexts where immunization goals are not met by routine activities,

such as measles vaccination in sub-Saharan Africa, SIAs are used to

increase vaccination coverage and provide the opportunity for a

second dose of vaccine. SIAs occur via campaigns at intervals

generally greater than 2 y, targeting a broader range of ages.

Throughout this paper, we use the term ‘‘immunization activities’’

to refer to both types of vaccination efforts, and specifically refer to

the former as ‘‘routine vaccination’’ and the latter as ‘‘campaigns.’’

Establishing coverage attained via these immunization activities

(i.e., routine coverage and campaigns) is of clear programmatic

importance. The coverage of vaccination activities is usually

determined by comparing the number of doses distributed during

the activity by the size of the target population (the administrative

method) [1]. This calculation ignores vaccine wastage and failure

to vaccinate inaccessible populations [2], and can sometimes lead

to nonsensical results such as ‘‘we vaccinated 120% of children

from 9 to 48 months of age’’ [1]. A more direct approach to

assessing the success of a vaccination activity is to quantify

outcomes (i.e., degree of coverage attained), rather than inputs

(i.e., number of vaccines distributed). One measure of outcomes is

provided by Demographic and Health Surveys (DHS), nationally

representative household surveys undertaken globally and geared

to provide comparable data for a wide range of monitoring and

impact evaluation indicators for population health, including

immunization status [3].

Considering vaccination outcomes (e.g., age-specific vaccination

rates) yields more accurate measures of coverage [2], and may also

allow identification of key correlates of vaccination (e.g., rural

versus urban) [4]. However, considering outcomes alone cannot

reveal whether poor coverage is predominantly due to a

proportion of the population being inaccessible to vaccination,

or predominantly due to distribution inefficiencies and wastage

within campaigns and routine activities. Here we show how linking

the input information (doses distributed) to the outcomes (age-

specific vaccination coverage) allows us to quantify the relative

importance of these two components, improving our operational

understanding of vaccination activities.

The ‘‘inaccessible population’’ includes those who refuse

vaccination (perhaps accounting for the majority of the ‘‘unreach-

able’’ group in highly developed nations [5]) and those who do not

have physical access to vaccination, e.g., people living in remote

areas with little access to health care services [6]. In addition to

groups who are literally inaccessible, the inaccessible population

includes individuals not covered because of overlaps between

vaccination activities larger than would be expected by chance

alone (i.e., correlations in coverage). For example, overlaps may

occur if vaccination activities tend to reach some sub-populations

more effectively than others. Hence, while particular immuniza-

tion activities may have covered more or less of the accessible

population, the size of the accessible population represents an

upper limit on both the coverage attained by any particular

activity and the coverage of all activities combined.

Individuals who are, in theory, targeted and reachable by

vaccination activities may also be missed because of inefficiencies

within immunization activities, such that not all nominally

distributed doses (i.e., doses reported as distributed on country

reports) result in an actual new vaccinee. Vaccine wastage may

result from discarded doses (due to cold chain lapses or partial use

of open vials), vaccination of individuals outside the target

population, or revaccination of children already vaccinated within

that activity [7]. Note that we consider revaccination an

inefficiency only if a child receives two doses in the same activity

(e.g., within the same campaign), not if they are vaccinated

multiple times in separate activities (e.g., receiving one routine

dose and one campaign dose), which may often be desirable.

These within-activity inefficiencies dictate how many new

vaccinees will be gained for each new dose of vaccine added to

a single vaccination activity.

Here we introduce a likelihood formulation that can be used to

estimate both the size of the population inaccessible to vaccination

activities and the inefficiency in the distribution of vaccine within

activities. Taken together, these two quantities dictate both the

rate and upper limit of improvement achievable solely by

introducing new doses of vaccine into a health system. The

analysis provides a method to predict the performance of past

vaccination activities and future activities if no systematic changes

are made. Also, it may provide some insight into where the vaccine

distribution system is failing (e.g., is there a large inaccessible

population, or are large numbers of doses being wasted within

activities?). Our framework requires only data from a cross-

sectional survey measuring age and vaccination status, and

information on vaccination activity timing, age range, and number

of doses deployed in the years preceding the survey. We illustrate

our technique using publicly available data on measles vaccination

in Ghana, Madagascar, and Sierra Leone.

Methods

Estimating Effective Vaccine Coverage
Data requirements. Two sources of data are needed to

estimate effective vaccine coverage using our method. The first is

administrative data on vaccination activities conducted during the

period of interest, including both campaigns and routine

vaccination. For each vaccination activity we need to know

when the activity occurred, the target age range for the activity,

the number of vaccine doses nominally distributed, and the size of

the target population. Routine vaccination activities occur over a

broad time frame, hence must be treated differently than

campaigns in statistical procedures (see ‘‘Modeling Routine

Vaccination’’ below). However, from a data standpoint, each

year’s routine vaccination activities can be represented as a

pseudo-campaign occurring on January 1 of that year covering all

ages. The first four columns of Table 1 illustrate the data on

vaccination activities required by our approach.

The second type of data required is a cross-sectional survey of

age and vaccination status in the population. This survey may be

an age-stratified survey aimed specifically at this question, or any

cross-sectional survey where the vaccination status of children of

differing ages is obtained (e.g., a DHS survey). Data from

vaccination cards, indicating a child’s age at the time of routine

vaccination, are not necessary but can be used to improve

estimates of the age distribution of routine coverage.

Vaccination probability and coverage. Suppose that an

individual has been in the target population for vaccination

activities V1, V2,…, Vm. The probability that this individual has

been vaccinated is one minus the probability that they avoid

vaccination in every activity:
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1{Pr not vaccinated inV1ð Þ|Pr not vaccinated inV2ð Þ|

. . . |Pr not vaccinated inVmð Þ
ð1Þ

Let us assume that there exists some population of size 12r that

never has a chance of being vaccinated in any activity, which we

term the inaccessible population. The probability that an

individual is vaccinated is then:

1{ 1{rð ÞzrP
m

j~1
Pr not vaccinated inVjjin accessible population
� �� �

ð2Þ

The probability that an individual in the accessible population is

vaccinated during activity Vj is some function of the number of

vaccine doses nominally distributed during that activity, vj, the size

of the population targeted by that activity, Nj, and the proportion

of that targeted population that is accessible to vaccination

activities in general, r. If vaccine doses were distributed with

perfect efficiency, then this value would be vj/rNj. However, it

seems reasonable to assume that there is some inefficiency in the

distribution of vaccine to the accessible target population, and that

this inefficiency has a larger effect as more nominal vaccinations

occur during an activity. That is, the first nominally distributed

dose will nearly assuredly result in an additional vaccinee, but the

1,000th nominally distributed dose has a smaller chance of

resulting in an additional vaccinee, and the 100,000th nominally

distributed dose has a still smaller chance. We denote this

inefficiency y, where y= 0 denotes an activity with perfect

efficiency, i.e., every dose results in an additional vaccinee, and

y= 1denotes a campaign that is effectively at random, i.e., your

chance of receiving any vaccine dose is independent of your

chance of receiving a dose previously in that activity (though

unlikely, values of y.1 are possible, and represent activities worse

than at random). Hence, the probability of an individual in the

accessible target population remaining unvaccinated during

activity Vj is f(vj, rNj, y) where (see Text S1 for derivation):

1{f nj ,rNj ,y
� �

~

e{nj

�
rNj if y~1

1{
nj

rNj

1{yð Þ
� �1= 1{yð Þ

otherwise

8>><
>>:

ð3Þ

Table 1. Timing, administrative coverage, and estimated coverage of routine and supplemental vaccination activities for Ghana,
Madagascar, and Sierra Leone.

Date Type Doses, V
Target
Population, N

Administrative
Coverage (100V/N)

WHO Estimated
Coverage

Model Estimated
Coverage (95% CI)

Ghana

2003 Routine 646,166 775,191 83% 80% 82% (81, 82)

2004 Routine 660,776 793,461 83% 83% 82% (81, 82)

2005 Routine 718,589 812,221 88% 83% 87% (85, 87)

2006 (Nov 1) SIA, children aged 9–60 mo 3,994,052 5,065,661 79% — 77% (77, 78)

2006 Routine 759,222 891,586 85% 85% 83% (82, 84)

2007 Routine 812,083 857,899 95% 95% 92% (91, 93)

2008 Routine 815,617 882,953 92% 86% 90% (89, 91)

Madagascar

2003 Routine 500,960 583,339 86% 56% 67% (65, 69)

2004 Routine 590,167 601,428 98% 58% 72% (70, 75)

2004 (Sep 13) SIA, children aged 9–168 mo 7,546,229 7,626,090 99% — 73% (70, 75)

2005 Routine 499,119 595,349 84% 61% 66% (64, 68)

2006 Routine 513,868 612,018 84% 65% 66% (64, 68)

2007 Routine 614,825 629,154 98% 81% 72% (70, 74)

2007 (Oct 22) SIA, children aged 9–60 mo 3,053,702 3,123,163 98% — 72% (70, 74)

2008 Routine 620,985 682,680 91% 70% 69% (67, 71)

2009 Routine 595,514 701,795 85% 64% 66% (64, 68)

Sierra Leone

2003 Routine 160,094 185,150 86% 73% 64% (62, 66)

2003 (Oct 28) SIA, children aged 9–168 mo 2,404,882 2,599,098 93% — 66% (64, 68)

2004 Routine 139,571 217,438 64% 76% 53% (51, 54)

2005 Routine 153,184 190,143 81% 71% 62% (60, 63)

2006 (Nov 26) SIA, children aged 9–60 mo 796,509 792,401 101% — 68% (66, 70)

2006 Routine 155,408 171,908 90% 65% 66% (64, 67)

2007 Routine 155,933 189,149 82% 60% 63% (61, 64)

2008 Routine 190,048 198,251 96% 66% 67% (65, 69)

doi:10.1371/journal.pmed.1001110.t001
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We can now formalize and simplify Equation 2 above to an

expression of the probability that any individual i has been

vaccinated:

g xi; r, yð Þ~r 1{ P
m

j~1
f nj ,rNj , y
� �� �zij

� �
ð4Þ

Where V1, V2,…, Vm now denotes all vaccination activities that

anyone in the population has been exposed to, and zij is an

indicator of whether person i was in the target population for

vaccine activity j, which is fully determined by the child’s age (xi).

The coverage of a particular vaccination activity, cj, is the same

as the probability that an individual who is in the target population

for only that activity (i.e., zij = 1 and zik = 0 for all k?j) is

vaccinated. Hence, the expected coverage of activity j is:

cj~r 1{f (vj ,rNj ,y)
	 


ð5Þ

Figures 1 and 2 illustrate how r and y affect actual coverage.

The accessible population, r, represents the upper limit of

coverage, while the efficiency parameter, y, dictates the expected

improvement in coverage from the introduction of additional

vaccine doses.

Modeling routine vaccination. In the simplest formulation,

routine vaccination activities can be treated as a single pseudo-

campaign occurring when a child reaches the age of

recommended vaccination (9 mo for measles), with the routine

vaccination coverage reported during the year of that event.

However, this approach ignores the fact that different children

receive their first dose of vaccine from routine immunization

activities at different ages. We can account for this by creating a

series of pseudo-campaigns representing the routine vaccination

coverage of each year when child i was alive. By weighting each

pseudo-campaign by the probability of a child having the

‘‘opportunity’’ to be vaccinated in a year’s routine activities (wij),

these pseudo-campaigns can be combined to obtain a child’s

probability of routine vaccination in their lifetime up to that point

(see Text S1):

fR xi,�v,r�N,yð Þ~w�i z
XR

j~1

wijf (vj ,rNj ,y) ð6Þ

where j = 1…R are the years of routine vaccination activities and

w�i represents the probability that the opportunity for routine

vaccination occurs after a child’s current age. These weights are

calculated as (see Text S1):

wij~FR xijzlj
� �

{FR xij

� �
ð7Þ

w�i ~1{F(xi) ð8Þ

where FR(x) is the probability of having the opportunity for

vaccination by age x, xij is child i’s age at the beginning of routine

vaccination year j, and lj is the length of exposure to a year’s

routine activities (12 mo for most years, but truncated in the year

of the survey). This new combination of pseudo-campaigns can be

included in Equation 4 above as a single vaccination activity.

Sophisticated distributions and forms of estimation for FR(x) are

possible, but here we make the simplifying assumption that there is

a constant ‘‘hazard’’ l of routine vaccination after 8.5 mo of age

and estimate this hazard in conjunction with the other model

parameters. That is:

FR xð Þ~
0 if xv8:5 mo

1{e{l x{8:5ð Þ otherwise

�
ð9Þ

Estimation. In a cross-sectional survey we observe a set of

individuals with ages x = {x1, x2,…, xn} and a set of corresponding

vaccination statuses, y = {y1, y2,…, yn}, where yi = 0 indicates that

an individual has never been vaccinated, and yi = 1 indicates that

he has. Using the formulation from Equation 4, the probability of

observing yi = 1 is g(xi, r, y), and the probability of observing yi = 0

is 12g(xi, r, y). Assuming that y1, y2,…, yn are independent

stochastic variables, the likelihood of the parameters r and y given

these observations can be expressed as the product of the

probability of each observation:

L r,y,l; x,yð Þ~ P
n

i~1
g xi; r,y,lð Þyi 1{g xi; r,y,lð Þð Þ1{yi ð10Þ

Numeric optimization (e.g., Nelder-Mead) or Markov chain

Monte Carlo (MCMC) methods can be used to estimate these

parameters.

We extend Equation 10 to use data on the age at time of

vaccination for those with vaccine cards to better fit l, optimizing:

L r,y,l;x,yð Þ~ P
n

i~1
g xi;r,y,lð Þyi 1{g xi;r,y,lð Þð Þ1{yi

� �
P
n’

i~1
h ri,lð Þ

� �
ð11Þ

where n9 is the number of children with a vaccination card, ri is the

age of routine vaccination on that card, and h(ri, l) is the

probability distribution function for Equation 9. This formulation

assumes that the age of routine vaccination is independent of the

probability of vaccination given that a child has a vaccination card

doses delivered per 100 population
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Figure 1. Expected coverage of a vaccination activity based on
the values of y and r. The left y-axis presents the proportion of the
total target population, while the right y-axis shows the proportion
vaccinated as a proportion of the accessible population, r. A value of
y= 0 indicates ‘‘perfect’’ vaccine distribution, where every dose of
vaccine reaches an individual not yet vaccinated in this activity, y= 1
indicates vaccine distribution equivalent to ‘‘vaccination at random,’’
and values of y greater than one indicate even worse performance.
doi:10.1371/journal.pmed.1001110.g001
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and that vaccinations recorded on vaccination cards only

represent routine vaccination.

Application to Measles Vaccination
We used data from WHO and country DHS to estimate the

effectiveness of measles vaccination activities in Ghana, Madagas-

car, and Sierra Leone. Countries were selected with the criteria that

at least one campaign (i.e., an SIA) occurred within the 5 y prior to

the most recent DHS survey, that no campaign occurred in the

same year as the most recent DHS survey, and that countries with

differing reported vaccination coverage were represented.

Values for the number of doses nominally administered during

routine vaccination and the size of the target population are based

on the values reported by countries to WHO (data provided by

WHO). WHO–United Nations Children’s Fund (UNICEF)

estimates of national immunization coverage for comparison were

obtained from WHO [8]. Information on when campaigns

occurred, doses deployed during campaigns, and the age range

targeted were obtained from WHO.

Measles vaccination status for children from 9 to 59 mo of age

was obtained from country-specific DHS surveys [9–11]. Children

were considered to have been vaccinated for measles if vaccination

was recorded on the child’s health card or the child’s mother

reported that the child had been vaccinated (Table 2). Vaccination

status, age, and timing of interview were obtained for 2,304

children from Ghana (DHS survey in 2008), n = 9,747 for

Madagascar (DHS survey in 2008–2009), and n = 3,966 for Sierra

Leone (DHS survey in 2008). Age at time of routine vaccination

was calculated for those children where the DHS data indicated a

vaccination card had been seen and a date of vaccination was

recorded (n = 1,550 for Ghana, 3,787 for Madagascar, and 1,216

for Sierra Leone).
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Figure 2. The expected number of additional people vaccinated in a vaccination activity per batch of 100 vaccine doses delivered,
in a hypothetical population of 1,000 individuals where r = 0.8. If y= 0, then each vaccine dose reaches an individual not yet covered by this
activity until the entire accessible population is vaccinated (800 individuals in this example). For higher values of y, each additional dose delivered
into the system has a reduced chance of reaching an individual not yet covered by this activity.
doi:10.1371/journal.pmed.1001110.g002

Table 2. Details of DHS data, contrasting numbers, and percent reported vaccinated by age as ascertained by vaccination cards, as
reported by mothers, and from either source.

Country Year Number Surveyed Vaccination Report Source Age

9–23 mo 24–35 mo 36–47 mo 48–60 mo

Ghana 2008 2,304 Card 529 (72%) 388 (76%) 307 (61%) 326 (58%)

Mother 70 (10%) 89 (18%) 136 (27%) 185 (33%)

Either 599 (82%) 477 (94%) 443 (88%) 511 (91%)

Total surveyed 734 508 501 561

Madagascar 2008–2009 9,747 Card 1,147 (42%) 984 (41%) 845 (38%) 811 (33%)

Mother 539 (20%) 815 (34%) 846 (38%) 1,037 (43%)

Either 1,686 (62%) 1,799 (76%) 1,691 (75%) 1,848 (77%)

Total surveyed 2,724 2,374 2,250 2,399

Sierra Leone 2008 3,966 Card 454 (35%) 322 (36%) 229 (25%) 211 (25%)

Mother 272 (21%) 286 (32%) 393 (42%) 366 (43%)

Either 726 (56%) 608 (68%) 622 (67%) 577 (68%)

Total surveyed 1,302 895 925 844

In some cases a card was present, but the date of vaccination was not recorded.
doi:10.1371/journal.pmed.1001110.t002
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Parameter estimates and 95% confidence intervals were

obtained using MCMC methods (the Metropolis-Hasting algo-

rithm). All MCMC chains were started from r= 0.5, y= 1, and

l= 1. Model convergence was checked by examination of MCMC

chains, comparison of the posterior distributions estimated from

different chains, calculation of R̂R [12], and comparison with results

from numerical fitting procedures (Nelder-Mead). Five chains of

length 5,000 were run for each country, and the posterior

distribution was estimated to be the empirical distribution of the

combined set of the last 2,500 iterations from all chains. Reported

parameter estimates are the medians of the posterior distributions

(posteriors were normally distributed on the scale used in

estimation), and 95% confidence intervals from quantiles of the

posterior distribution. The estimated coverage for each campaign

and confidence intervals were similarly obtained from the

posterior distribution created by applying Equation 5.

Confidence intervals on the age distribution of vaccination

reported in DHS data were obtained by bootstrapping (500

iterations). Confidence intervals for model estimates of the age

distribution of vaccination were obtained by performing 500

parametric bootstrap iterations where (a) parameters were sampled

from the posterior distribution, (b) a bootstrap population is

created based on the DHS data, and (c) each individual in the

bootstrap population is randomly assigned a vaccination status

based on the parameters selected in step a. This procedure

accounts for (a) uncertainty in parameter estimates, (b) uncertainty

in population structure, and (c) uncertainty from the Bernoulli

process; confidence intervals are thus comparable with those

obtained from the DHS data.

The age distribution that would have resulted from naı̈ve use of

WHO-corrected estimates of coverage was calculated assuming

independence between vaccination activities and routine vaccina-

tion at 9 mo of age. Campaigns were assumed to have coverage

that differed from that reported by the same proportion as the

routine vaccination activities occurring that year. Confidence

intervals were calculated using steps b and c above.

All statistical analyses were done in the R statistical package,

version 2.11 (http://cran.r-project.org).

Results

We estimate that 7% (95% CI: 6, 9) of children in Ghana, 23%

(95% CI: 24, 22) of children in Madagascar, and 31% (95% CI:

33, 30) of children in Sierra Leone were never accessible by

routine measles vaccination or campaigns (Table 3). The

estimated inefficiency within vaccination activities was highest

in Madagascar (y= 0.34, 95% CI: 0.28, 0.41), followed by Sierra

Leone (y= 0.33, 95% CI: 0.31, 0.39), then Ghana (y= 0.03,

95% CI: 0.02, 0.04). Hence, our estimates of routine and SIA

coverage are substantially lower than administrative estimates for

Madagascar and Sierra Leone, and only slightly lower for Ghana

(Table 1). Our estimates of routine coverage are in general lower

than the WHO-UNICEF estimates generated by a heuristic

method.

Based on our estimated routine vaccination distribution (l;

Table 3), children in all three countries who receive routine

vaccination do so near their 9-mo birthday. In Ghana, children

receive routine vaccination at a slightly younger age (mean

age = 10.0 mo) than in Madagascar (mean age = 10.2 mo) or

Sierra Leone (mean age = 10.6 mo). These estimates are slightly

lower than estimates obtained from the empirical distribution of

ages reported on vaccination cards (mean = 10.4, 10.8, and

12.2 mo respectively), reflecting that the constant rate assumption

is not precisely correct.

A comparison of the age-specific proportion vaccinated predicted

by our approach with the proportion vaccinated observed in the

DHS data shows substantial agreement (Figure 3). For Madagascar

and Sierra Leone, our predictions show substantially better

agreement with the DHS data than what is predicted by naı̈ve

application of WHO-adjusted coverage estimates. For Ghana,

where vaccination coverage is relatively high, the unreachable

population is small, and wastage very low, projections from WHO

generally agree with our estimates and the proportion vaccinated

observed in the DHS.

With the exception of Ghana, we find that the models including

both r and y as free parameters model the data substantially

better, as measured by Akaike information criterion, than models

where we assume a fully accessible population (r= 1) or perfect

efficiency (y= 0) (Table S1). In the case of Ghana, where y is

estimated to be nearly zero, assuming perfect efficiency leads to a

slightly improved but qualitatively equivalent model of the DHS

data.

Discussion

Reliable estimates of vaccination coverage are key to managing

population immunization status. Estimates of coverage are usually

based on administrative measures (i.e., the ratio of distributed

doses to the size of the target population). Refinements of this

approach do exist; however, current WHO adjustments of

estimates of coverage employ a heuristic method in which ‘‘no

statistical or mathematical models are used.’’ [1]. Data quality

audits [13] provide a verification factor that as yet has not proved

sufficiently stable to be useful [14]. Here we have introduced a

method by which administrative coverage estimates can be

combined with a cross-sectional survey to estimate the effective-

ness of vaccination programs. This method not only attempts to

correct coverage estimates, but also distinguishes between issues of

overall coverage and vaccine wastage within vaccination activities.

The causes of variation between country-specific levels of

inefficiency and overlap between campaigns (Table 3) may be

diverse, but general conclusions about immunization activities

emerge. While a combination of routine immunization via the

WHO Expanded Program on Immunization and campaigns can

Table 3. Estimated proportion of the population accessible by any vaccination activity (r), within-activity inefficiency (y), and
routine vaccination opportunity rate (l) for Ghana, Madagascar, and Sierra Leone.

Country r y l

Ghana 93% (95% CI: 91, 94) 0.03 (95% CI: 0.02, 0.04) 0.66 (95% CI: 0.54, 0.82)

Madagascar 77% (95% CI: 76, 78) 0.34 (95% CI: 0.28, 0.41) 0.60 (95% CI: 0.49, 0.73)

Sierra Leone 69% (95% CI: 67, 70) 0.33 (95% CI: 0.31, 0.39) 0.47 (95% CI: 0.38, 0.61)

doi:10.1371/journal.pmed.1001110.t003
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successfully maintain high coverage in countries like Ghana, the

analysis shows how in contexts like that of post-conflict Sierra

Leone, or Madagascar, the strategy itself may be inadequate. For

example, in Sierra Leone, despite investment in two campaigns in

3 y, both these campaigns and the underlying routine program

failed to reach 30% of children; and in 2010, there was a large

outbreak in children aged greater than 5 y in Freetown. More

generally, wherever such a large proportion of the population

remains inaccessible, e.g., when there is high overlap between

campaigns, the combined strategy of vaccination via the Expanded

Program on Immunization and via SIAs is unlikely to succeed, and

refocusing effort into the design of vaccination strategy (e.g.,

improving the vaccine distribution structure and finding novel

ways to target unreached populations) should yield considerable

rewards in terms of improved coverage.

For our technique to be useful, countries must have cross-

sectional data on vaccine coverage for children across a range of

ages, some of an age where they have been exposed to multiple

vaccination activities (e.g., one or more campaigns and routine

vaccination). As illustrated here, a DHS survey provides sufficient

information, but surveys aimed specifically at measuring coverage

that target a wider age range (ideally paired with serosurveys)

could improve estimates. Once countries have estimates of the

accessible population and within-campaign inefficiencies, they can

predict the coverage of activities occurring after the cross-sectional

survey (using Equation 5) and the age-specific coverage obtained

after these activities (using Equation 4). With these estimates in

hand, countries can better understand how susceptibility may be

building up in their population, perhaps enabling them to avoid

outbreaks of the type and scale observed recently in Sierra Leone,

Malawi, Zambia, and South Africa.

It may seem surprising that both y and r are identifiable using

only age-stratified vaccination prevalence. However, simulations

show that differences in these values lead to significant differences

in the age profile of vaccination coverage when children of

differing ages have differing exposure to multiple vaccination

activities (Figures S1 and S2). If children are not exposed to

multiple activities (e.g., there is only routine vaccination), it will not

necessarily be possible to distinguish between these two sources of

program inefficiency. A critical way estimates could be improved is

by conducting cross-sectional surveys of vaccination coverage

covering ages greater than 5 y (the current upper limit in DHS

surveys). Such surveys would include individuals who had been

potentially covered by more vaccination campaigns, improving

estimates and allowing for separate analysis of inefficiencies in

routine vaccination and SIAs.

Limitations of our approach include required assumptions that

may not always be justified. The assumption of constant

inefficiencies across the study period may not be appropriate,

especially in the context of a global measles elimination campaign.

A potential extension to account for this variation would be to

allow estimates of r and y to vary smoothly over time. The

assumption that the rate at which children have the opportunity to

receive routine vaccination is constant after 8.5 mo of age is

clearly an oversimplification. While more sophisticated techniques

can be used to fit this age distribution, as in [15], the simplified

approach still fits the age distribution seen in the DHS data well

(Figure 3).

Our sample estimates are also subject to the quality of the

available data. We assume that the target population is accurately

estimated. A sensitivity analysis of the effect of over- or

underestimates of the target population indicates that such

misspecifications do not much bias estimates of the size of the

unreachable population, but do impact estimates of within-

campaign efficiency (Table S2). Underestimates of the size of the

target population lead to underestimates of within-campaign

efficiency (i.e., overestimates of y), and overestimates lead to

overestimates of within-campaign efficiency (i.e., underestimates of

y). Hence, the high within-campaign inefficiency estimates for

Sierra Leone and Madagascar could be partially the result of

poorly specified denominators, particularly as in both cases at least

some of the immunization activities were performed long after the

last census (Table S3).

We also assume that the DHS data are representative of each

country. If DHS surveys in fact missed populations that were also

missed by immunization activities, the size of the population

inaccessible to vaccination would be underestimated. Another

potential source of bias is that a high proportion of the

vaccination data come from reporting by the mother (Table 2),

particularly in Sierra Leone. If mothers report more children

have been vaccinated than is in fact the case, both the size of the

accessible population and the efficiency of campaigns may be

overestimated, and the reverse if mothers report fewer children

vaccinated than there really are. Additionally, in all countries, the

proportion of reports from the mother increases with child age,

reflecting the fact that vaccination cards are more rarely

distributed during SIAs. This could lead to either over- or under-

reporting of vaccination occurring during SIAs. If underreporting
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Figure 3. DHS and model estimates of age-specific vaccination coverage. Proportion vaccinated by age in (A) Ghana, (B) Madagascar, and
(C) Sierra Leone. Points connected by solid lines are the window-smoothed (age 65 mo) estimates of vaccine coverage as measured by the most
recent DHS survey (blue), as predicted by naı̈ve application of WHO coverage estimates (green), and as fit using our approach (red) in a population
with the same age distribution as the DHS data. Shaded regions represent 95% confidence intervals on the window-smoothed estimate calculated as
described in Methods.
doi:10.1371/journal.pmed.1001110.g003
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of campaign coverage is occurring, the model will tend to both

underestimate overall coverage and overestimate within-cam-

paign inefficiency. Conversely, if campaign coverage is overre-

ported, our technique will underestimate within-campaign

inefficiencies. Age-specific serosurveys would provide a valuable

benchmark by which to evaluate the coverage estimates, and

could perhaps be paired with existing research, monitoring, or

vaccination activities.

The estimates obtained by our method bear an inconsistent

relationship to the WHO-UNICEF adjusted estimates (Table 1).

In some places we estimate significantly lower coverage (e.g.,

Sierra Leone in 2004) and in others we estimate higher coverage

(e.g., Ghana in 2005). In all cases our estimates are the result of the

reported administrative coverage and the estimated model

parameters. Where we estimate a large accessible population

and low inefficiency, our estimates will be high relative to

administrative coverage; where we estimate a small accessible

population and high inefficiency, our estimates will be relatively

low. We assume model parameters are constant over the 5 y

considered, while the heuristics used in the WHO-UNICEF

estimates may capture specific short-term factors of which we are

unaware [1], and hence may be more accurate for individual

years. However, without further information, it is unclear how to

combine yearly WHO-UNICEF estimates to the get full age

distribution of vaccine coverage (assuming independence clearly

performs poorly; Figure 3). Since the assessment of coverage from

multiple activities is integral to our approach, our approach has

some clear advantages despite its limitations.

The method presented here provides a way in which the

performance of vaccination activities can be more accurately

measured (and can be extended to consider, e.g., the problem of

access to a second dose; Figure S3). As illustrated by our examples,

this approach can be used to produce estimates of effective vaccine

coverage that are more consistent with the proportion of the

population reporting vaccination than current approaches are.

These estimates go beyond mere measures of cross-sectional

coverage obtained directly from a DHS survey, characterizing the

performance of the activities leading to that coverage, and helping

to predict the effect of future vaccination activities. Our estimates

can be used to identify those countries where problems in vaccine

delivery may exist (e.g., Madagascar and Sierra Leone), thereby

providing important operational guidance as to how vaccine

coverage may be improved. Such guidance is essential if measles

control goals are to be met.

Supporting Information

Alternative Language Abstract S1 French translation of the

abstract by CJEM and FJL.

(DOC)

Figure S1 Log likelihood surfaces for four parameter
combinations. This figure shows in each case the ‘‘true’’

parameter values (used in the simulation) as a black point and the

peak of the log likelihood surface as a red point. Surfaces are based

on simulated vaccine outcomes for populations of 4,000

individuals across an age range of 9 to 60 mo, with r values of

0.75 (corresponding to a large unreachable population) and 0.95 (a

small unreachable population) and y values of 9 (high vaccine

wastage) and 0 (high efficiency and low wastage). We assumed

three SIA campaigns, each occurring a year apart, targeting

children aged 9 to 60 mo, and with coverage of 0.65. For clarity,

we assumed no routine vaccination.

(TIF)

Figure S2 Proportion vaccinated over age for four
parameter combinations. This figure demonstrates the

benefits achievable by decreasing the size of the unreachable

population (i.e., increasing r) or decreasing wastage (i.e.,

decreasing y). The figure is based upon simulated vaccine

outcomes for 4,000 individuals (see Figure S1).

(TIF)

Figure S3 Probability of vaccination in multiple activ-
ities. The estimated probability of a child having received two or

more doses of measles vaccine by age in the entire population (red)

and the accessible population only (orange) in (A) Ghana, (B)

Madagascar, and (C) Sierra Leone. Estimates assume an

independent probability of receiving a vaccination in each

vaccination activity given that an individual is in the accessible

population. In population-based estimates (red) the probability of

being in the accessible population is considered to be r; in

accessible population estimates this probability is considered to be

one. Confidence intervals are calculated as described in Methods.

(TIF)

Table S1 Comparison of model fits to DHS data using
the full model. This table compares the performance of the full

model to a model where the entire population is assumed to be

accessible (r= 1) and to a model where campaigns are assumed to

have perfect efficiency (y= 0). Maximum likelihood estimates of

parameters were determined using Nelder-Mead numeric optimi-

zation, and in some cases differ slightly (by less than .01) from

MCMC-based estimates in the main analysis.

(DOCX)

Table S2 The effect of misspecified target population
size. (A) Simulation results for the mean bias when estimating y
and r with correct and misspecified target population size. To

examine possible bias in the estimation procedure, as well as biases

resulting from misspecification of the denominator, we performed

500 simulations of a population of 4,000 individuals and estimated

y and r with the assumed target population size being 80%, 95%,

100%, 105%, and 120% of its true value. We assessed the mean

bias in estimates of y and r (Table S1). We found that estimates of

the size of the unreachable population (r) were only biased when

size of the target population was severely overestimated (120% of

its actual value). Estimates of y are more sensitive to the

specification of the denominator, with underestimates leading to

substantial underestimates of within-campaign efficiency (i.e.,

overestimates of y), and overestimates leading to overestimates

of within-campaign efficiency (i.e., underestimates of y). (B)

Campaign coverage biases in percentages corresponding to

parameter estimates reflecting mean biases from population

misspecification in (A).

(DOCX)

Table S3 SIAs and population census timing and
coverage. Details of SIAs (years, estimated target population,

and estimated doses delivered; from [8]) and data on date of last

population census previous to each campaign from [16].

(DOCX)

Text S1 Mathematical derivations.
(PDF)
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Editors’ Summary

Background. Immunization (vaccination) is a proven, cost-
effective tool for controlling life-threatening infectious
diseases. It provides protection against infectious diseases
by priming the human immune system to respond quickly
and efficiently to bacteria, viruses, and other disease-causing
organisms (pathogens). Whenever the human body is
exposed to a pathogen, the immune system—a network of
cells, tissues, and organs—mounts an attack against the
foreign invader. Importantly, the immune system ‘‘learns’’
from the encounter, and the next time the body is exposed
to the same pathogen, the immune system responds much
faster to the threat. Immunization exposes the body to a very
small amount of a pathogen, thereby safely providing
protection against subsequent infection. More than two
billion deaths are averted every year through routine
childhood immunization and supplemental immunization
activities (mass vaccination campaigns designed to increase
vaccination coverage where immunization goals have not
been reached by routine vaccination). Indeed, these two
types of vaccination activities have eliminated smallpox from
the world and are close to doing the same for several other
infectious diseases.

Why Was This Study Done? To reduce deaths from
infectious diseases even further, it is important to know the
proportion of the population reached by vaccination
activities. At present, countries report vaccination coverage
to the World Health Organization (WHO) that is calculated by
dividing the number of vaccine doses delivered during the
activity by the size of the target population. However,
estimates arrived at through this ‘‘administrative method’’ do
not account for vaccine doses that were not actually
delivered, and can only reflect a single vaccination activity,
which prevents us from identifying populations that may be
systematically missed by all vaccination activities (for
example, children living in remote areas, or children whose
parents refuse vaccination). Moreover, estimates of coverage
obtained by the administrative method rarely agree with
estimates obtained through cross-sectional surveys such as
Demographic and Health Surveys (DHS), which are
household surveys of family circumstances and health
undertaken at a single time point. In this study, the
researchers developed a method for measuring the
performance of vaccination activities that estimates the
fraction of the population accessible to these activities and
within-activity inefficiencies. They then tested their method
by applying it to measles vaccination in three African
countries; before 1980, measles killed about 2.6 million
children worldwide every year, but vaccination activities
have reduced this death toll to about 164,000 per year.

What Did the Researchers Do and Find? The researchers
developed a set of formulae (a ‘‘likelihood framework’’) to
estimate the effective coverage of vaccination activities
using data on vaccine coverage from cross-sectional surveys
and administrative data. They then applied their method to
measles vaccination in Ghana, Madagascar, and Sierra Leone
using data obtained in each country’s most recent DHS
survey and administrative data reported to WHO. The
researchers estimate that 93%, 77%, and 65% of the target
populations in Ghana, Madagascar, and Sierra Leone,

respectively, were ever covered by any vaccination activity,
and that inefficiencies within vaccination activities were low
for Ghana, but higher for Madagascar and Sierra Leone.
Consequently, the researchers’ estimates of vaccination
activity coverage were substantially lower than the
administrative estimates for Madagascar and Sierra Leone
but only slightly lower than that for Ghana. Finally, the
researchers’ estimates of routine vaccination coverage were
generally lower than WHO-adjusted estimates but broadly
agreed with age-specific vaccination coverage levels from
DHS surveys.

What Do These Findings Mean? Although the accuracy
of the estimates provided by this likelihood framework
depends on the assumptions included in the framework and
the quality of the data fed into it, these findings show that,
by combining administrative data with survey data,
estimates of vaccine coverage can be substantially
improved. By providing estimates of both the inefficiency
of past vaccination activities and the proportion of the target
population inaccessible to any vaccination activity, this
method should help public health experts predict the
results of future activities and help them understand why
some vaccination programs fail to meet their goals.
Importantly, knowing both the size of the inaccessible
population and the inefficiency level of past programs makes
it possible to estimate the effect of providing additional
doses of vaccine on vaccination coverage. Finally, the
application of this new method might help individual
countries understand how susceptibility to specific
infectious diseases is building up in their population and
enable them to avoid outbreaks similar to the measles
outbreaks that have recently occurred in several African
countries.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001080.

N WHO provides information about immunization and
details of its Expanded Program on Immunization and its
Global Immunization Vision and Strategy; WHO Africa
provides details about measles immunization in Africa; a
photo story about mass measles vaccination in Côte
d’Ivoire is available (some material in several languages)

N The UK National Health Service Choices website provides
information for members of the public about immuniza-
tion

N The Measles Initiative is a collaborative effort that aims to
reduce global measles mortality through mass vaccination
campaigns and by strengthening routine immunization; its
website includes information on measles and measles
vaccination, including photos and videos of vaccination
activities

N MedlinePlus provides links to additional resources about
immunization and about measles (in English and Spanish)

N The charity website Healthtalkonline has interviews with
UK parents about their experience of immunizing their
children
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