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Abstract: The trajectory of the developing brain is characterized by a sequence of complex, nonlinear
patterns that occur at systematic stages of maturation. Although significant prior neuroimaging
research has shed light on these patterns, the challenge of accurately characterizing brain maturation,
and identifying areas of accelerated or delayed development, remains. Altered brain development, par-
ticularly during the earliest stages of life, is believed to be associated with many neurological and neu-
ropsychiatric disorders. In this work, we develop a framework to construct voxel-wise estimates of
brain age based on magnetic resonance imaging measures sensitive to myelin content. 198 myelin
water fraction (VFM) maps were acquired from healthy male and female infants and toddlers, 3 to 48
months of age, and used to train a sigmoidal-based maturational model. The validity of the approach
was then established by testing the model on 129 different VFM datasets. Results revealed the approach
to have high accuracy, with a mean absolute percent error of 13% in males and 14% in females, and
high predictive ability, with correlation coefficients between estimated and true ages of 0.945 in males
and 0.94 in females. This work represents a new approach toward mapping brain maturity, and may
provide a more faithful staging of brain maturation in infants beyond chronological or gestation-
corrected age, allowing earlier identification of atypical regional brain development. Hum Brain Mapp
36:1233–1244, 2015. VC 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Brain maturation encompasses a variety of structural and
functional processes that respond dynamically and interde-
pendently to learning, environment, and genetic influences.

Axonal pruning, dendritic sprouting, synapse generation,

and myelination begin at various stages of fetal development

and continue post-natally through to adulthood [Sowell

et al., 2003; Toga et al., 2006]. Cognitive and behavioral devel-
opment also occurs alongside, and symbiotically with, these
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morphological changes [Casey et al., 2005; Johnson and
Munakata, 2005]. Despite variations in the rate and extent of
these processes across the population, remarkable similarities
are evident within the general spatiotemporal sequence of
structural and functional development [Giedd and Rapoport,
2010; Supekar et al.; 2010; Yakovlev and Lecours, 1967].
Understanding and accurately characterizing these age-
related patterns is of inherent interest. Such information is
critical for identifying atypical brain development believed
to be associated with a growing number of neuropsychiatric
disorders [Courchesne et al., 2007; Just et al., 2012], as well as
providing a developmental basis for learning, language, or
intellectual delay [Trauner et al., 2000].

Objective and measurable aspects of brain structure or
function have been suggested as metrics of brain maturity.
Recent efforts, for example, have developed frameworks
for estimating “brain age” based on morphological fea-
tures from inherently qualitative structural MRI scans,
quantitative scans, and measures of functional connectiv-
ity. Applying a multivariate classification technique to
labeled T1-weighted MR images of healthy adults, 56–85
years of age, Lao et al. [2004] accurately categorized 90%
of subjects into 1 of 4 age-group brackets. Using a similar
approach but applied to multi-contrast structural MR
images of young children and adolescents, 3 to 20 years of
age, Brown et al. [2012] were able to estimate individual
age with a mean error of approximately 1 year by compar-
ing 231 morphological features. Using a more quantitative
approach, using measures of brain water content, Neeb
et al. [2006] estimated mean brain age in healthy adults,
23–74 years of age, with a median absolute deviation of
6.3 years between real and predicted ages. More recently,
measures of functional connectivity, taken as a surrogate
estimate of brain network maturity, have been used to
classify older children and young adults, from 7 to 30
years of age, as either children (7–11 years) or adults (24–
30 years) with 91% accuracy [Dosenbach et al., 2010].

Despite the success of these approaches, significant limi-
tations remain. These methods aggregate whole-brain age-
related changes to a single representative number (i.e., the
brain age), rather than estimating the age throughout the
brain. This undermines both the temporal and the spatial
complexity of the developmental processes taking place
and makes it difficult to associate cognitive or learning
delays to impaired maturation in discrete subserving brain
regions. Second, none of these approaches have been
implemented or tested in the earliest and most dynamic
stages of brain development, that is, infancy, when
impaired or altered development may have the most last-
ing and far reaching consequences. Early development is
also believed to be when many cognitive and behavioral
disorders (i.e., autism) first manifest [Courchesne et al.,
2011; Wolff et al., 2012].

Prior qualitative and quantitative MRI studies of healthy
infant brain development have revealed a consistent spa-
tiotemporal pattern of evolving white and gray matter
contrast that broadly mirrors the histologically established

pattern of white matter myelination [Barkovich et al., 1988;
Giedd et al., 1999; Paus et al., 2001]. Quantitative studies
using the multicomponent relaxometry approach termed
mcDESPOT [Deoni et al., 2008], which provides measures

that are sensitive to the presence of myelin and reflective

of the volume fraction of water trapped within the myelin

sheath (the myelin water fraction [VFM]), also mirrors this

histological sequence [Deoni et al., 2011, 2012]. From

mcDESPOT data acquired of male-only infants, our group

has previously investigated differential growth models

and has shown a Gompertz sigmoidal model faithfully

characterizes the VFM developmental profiles between 3

months and 5 years of age [Dean et al., 2014a]. Here, we

extend this model to develop a framework for estimating

the structural maturity of the brain. Using quantitative VFM

maps from 198 (81 female) infants, we construct a voxel-

wise probabilistic model of VFM maturation. This model

can then be inverted to provide brain age estimates across

the whole brain from any infant’s VFM data. This approach

is tested on an additional, independent sample of 129 (57

female) VFM datasets with mean absolute percent error

between estimated age and actual age and reproducibility

evaluated. Our results demonstrate the ability to estimate

brain maturation within this early age-span, and at the

voxel level, for the first time. The approach allows one to

objectively examine maturation across the whole brain,

potentially allowing the identification and discrimination of

brain areas exhibiting accelerated or delayed growth. Such

information holds intrinsic value for identifying abnormal

development associated with developmental disorders, as

well as in establishing structural-functional linkages that

may underlie language delay or other learning disorders.

MATERIALS AND METHODS

Subjects

MRI data used in this study was acquired as part of a
much larger, ongoing longitudinal study investigating white
matter maturation [Deoni et al., 2012] and while a subset of
the subject datasets have been previously used in the analy-
sis performed in prior publications [Dean et al. 2014a,b;
Deoni et al. 2012; O’Muircheartaigh et al., 2013, 2014], the
analytic methods, results, and conclusions have not been
previously reported in these prior publications. Parental
consent was obtained in accordance with Brown Univer-
sity’s Institutional Review Board. Enrolled children met the
following inclusion/exclusion criteria. They had: (1) uncom-
plicated (i.e., no preeclampsia, etc., and APGAR scores> 8)
singleton birth between 37 and 42 weeks gestation, (2) no
familiar history or major psychiatric illness; (3) no diagnosis
of major psychiatric, depressive or learning disorders;
(4) no preexisting neurological conditions or major head
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trauma; (5) no exposure to alcohol or illicit drugs during
pregnancy; and (6) no abnormalities on fetal ultrasound.

Subjects for this study consisted of 209 (86 females)
healthy volunteers between 76 and 1526 days (corrected to
a 40 week gestation, GC) of age at recruitment. A total of
327 successful MRI scans were acquired from these 209
subjects: 128 subjects were scanned a single time, 58 sub-
jects were scanned twice, 21 were scanned three times,
and 5 were scanned four times. Follow-up MRI scans were
acquired at 6 month intervals for children under 2 years of
age, and annually for children over 2 years. While males
and females were found to significantly differ in birth
weight, they did not significantly differ in their gestation-
corrected age, gestation duration, or maternal/paternal
socioeconomic status (SES; Table I).

MRI Acquisition and VFM Calculation

All MRI data were acquired during natural, nonsedated
sleep on a Siemens Tim Trio scanner using a 12 channel
radio-frequency (RF) head array [Dean et al., 2014b]. Opti-
mized age-appropriate mcDEPSOT imaging protocols were
used [Deoni et al., 2012], consisting of eight T1-weighted
spoiled gradient echo (SPGR, spoiled FLASH) images, two
inversion-prepared (IR)-SPGR images, and 16 T1/T2-
weighted balanced steady state free precession (bSSFP,
TrueFISP) images. SPGR and bSSFP images were acquired
with incremented flip angles and the bSSFP images were
acquired with two phase cycling patterns (0� and 180�).

Following acquisition and data preprocessing (including
correction for possible intra-scan motion, non-brain paren-
chyma signal removal, and B0 and B1 magnetic field inho-
mogeneity correction) [Deoni 2011], voxel-wise VFM maps

were calculated by fitting a three-pool multicomponent
relaxation model to the multiangle SPGR and SSFP data
[Deoni et al., 2013]. Each participant’s VFM map was then
nonlinearly aligned to a common, study-specific template in
approximate MNI space using the Advanced Normalization
Tools software package [Avants et al., 2008] and smoothed
with a 3 mm Gaussian kernel. This normalization procedure
has previously been shown to result in high correspondence
(Pearson r correlation coefficient range of 0.90–0.99)
between native and warped VFM values [Dean et al., 2014a]
and was, therefore, believed to reliably align individual
VFM maps to the study specific template.

Calculation of Age Maps and Aggregated Brain

Age

To construct the probabilistic developmental model,
data from the subjects’ initial MRI visit (i.e., no repeated
measurements) were used. A Gompertz growth curve of
the form VFM(age) 5 a*exp(2exp(b 2 c 3 age) 1 d 3 age)
[Gompertz, 1825] was fit voxel-wise to the 198 (81 female)
VFM datasets (Table II) using the wild bootstrap [Efron,
1979] with 1000 residual resamples. Male and female data
were fit independently, to avoid incorporating potential
gender-based developmental differences [Lenroot et al.,
2007; Lenroot and Giedd, 2010].

To invert this model and estimate brain age, a bounded
golden search approach [Kiefer, 1953] was used to seek the
minimum residual between the model-estimated VFM value
and the measured value. The algorithm was bounded by a
broad age range of 30 to1800 days to ensure the optimiza-
tion approach would not be biased to converge to a particu-
lar age. Calculation of age values was restricted to a central
white matter mask that was created by averaging the nor-
malized VFM maps of all subjects and thresholding this
average map by 0.05 to avoid regions of gray matter. Addi-
tionally, age values were only estimated for voxels that had
a VFM value greater than 0.015. This threshold level was
specified to guarantee age values were not calculated in
nonmyelinated brain regions, for example in younger par-
ticipants. A global brain age was further estimated by com-
puting the mean of the non-zero voxel-wise age estimates.

To evaluate the performance (accuracy and reproducibil-
ity) of the method, voxel-wise and global age estimates
were calculated for the additional 129 (Table II) datasets
not included in the model construction. Mean percent
error was calculated with respect to the participants’
gestation-corrected (true) age as

Percent Error5100
� Estimated Age – True Age
� �

=True Age (1)

Mean global brain age estimates were compared to the
true age using the mean absolute error (MAE):

MAE51=n � � �
X

i
j Estimated Age–True Agej (2)

TABLE I. Male and female group demographic

information of the 209 individual subjects

Male/female subject comparison

Characteristics Males (123) Females (86) P-Valuea

Gestational
Corrected
Age [days]

596.18 6 415.62 549.47 6 372.94 0.28748

Gestation
Duration [weeks]

39.43 6 1.19 39.44 6 1.32 0.96662

Birthweight [oz] 123.34 6 17.29 117.17 6 14.45 0.00085

Maternal SESb 5.82 6 1.14 5.79 6 1.12 0.85109
Paternal SESb 5.65 6 1.12 5.56 6 1.09 0.61016

aGroups comparisons were made using a two-sample t-test. Cor-
rection for type 1 family-wise error was performed using the
Holm–Bonferroni method.
bMaternal SES was evaluated using the Hollingshead Two Factor
Index of Social Position (Miller, D.C. (1977) Handbook of Research
Design and Social Measurement. New York: David McKay Com-
pany) p< 0.05.
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Comparison of Global Brain Age to

Developmental Age Equivalent Score

In addition to acquiring MRI data from the subjects,
each child was administered the Mullen Scales of Early
Learning [Mullen, 1995] at each time point. From this
standardized battery age equivalent scores, defined to be
the age at which the child’s raw score is the median score
can be computed for five separate scales (gross motor, fine
motor, expressive language, receptive language, and visual
reception). To examine the relationships between the
global brain age estimates presented here and these similar
developmental age scores, we created an overall develop-
mental age score by averaging four of the five age equiva-
lent scores (fine motor, expressive language, receptive
language, and visual reception) and performed linear
regression between this mean developmental score and
estimates of global brain age. Gross motor age equivalent
scores were not included in the overall developmental

score as this measure is only calculated for children 0–33
months of age and, therefore, was not collected for each
child. Maps and histograms of percent error, calculated
between voxel estimates of age and the mean developmen-
tal age score, were also computed to examine how well
age scores compare to established measures of
“developmental age.”

RESULTS

To illustrate the nonlinear development of VFM during
the investigated age range, representative developmental
trajectories with the corresponding fitted Gompertz func-
tion for the corpus callosum, frontal white matter, and
optic radiations are shown in the top row of Figure 1 (top
row). These anatomical regions were defined by superim-
posing coregistered masks from the MNI adult template
[Mazziotta et al., 2001] to the individual VFM maps used

Figure 1.

(Top Row) VFM trajectories from the corpus callosum, frontal

lobe white matter, and optic radiations fitted with the Gompertz

growth curve for both males and females. These representative

trajectories and fits illustrate how well the Gompertz model

characterizes VFM development. (Middle and Bottom Row) Rep-

resentative male and female axial slices of Gompertz parameter

volumes obtained after fitting VFM values voxel-wise. Note the

change in colorbar scale of these parameter maps. These parame-

ter maps characterize the developmental growth at the voxel level

and can be used to reconstruct population-averaged VFM maps.
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Figure 2.

Representative axial slices of measured VFM, model VFM, age,

and percent error maps for male and female subjects. Age maps

and percent error maps are overlaid on a T1-weighted study

template. Age values were calculated at voxels that had a VFM

value greater than 0.015 within a custom white matter mask,

created by thresholding the group mean VFM map at 0.02. The

outline of the mask is highlighted in green. Percent error values

were calculated between the predicted age values and the “true”

gestationally-corrected age.

Figure 3.

Histogram plots of the frequency of percent error values obtained from the maps of percent

error between gestational corrected age and predicted age measurements. The average absolute

percent error was found to be 13.36% for males and 14.63% in females.

r Dean et al. r
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in the training of the Gompertz model. Average VFM val-
ues were extracted from the non-zero voxels of the repre-
sentative regions and plotted with respect to the subjects’
gestationally corrected age. Qualitatively, these representa-
tive trajectories highlight the observed sigmoidal pattern
of development previously reported [Deoni et al., 2012;
Dean et al., 2014a]. Moreover, characteristic differences in
the shape of the individual regional trajectories illustrate
that development, and particularly myelination, does not
take place at the same time or at the same rate.

Maps corresponding to voxelwise estimates of the four
free Gompertz model parameters for the male and female
models are also shown in Figure 1 (middle and bottom
row). Of the four parameters, a, controls for the overall
scale and shape of the growth curve; b describes the lag
period before the initial inflection point, and c and d gov-
erns the growth rate of the model.

Representative matched axial slices through acquired
and model-reconstructed VFM maps, estimated brain age
map, and percent error maps are shown in Figure 2 for 3,
9, 18, and 42 month-old male infants, and 12, 21, 30, and
48 month-old female infants. Voxels of the age maps
revealed increasing image intensity with age, directly cor-
responding to and in agreement with the maturation of
white matter as viewed by the spatial timecourse of the

acquired VFM maps. While voxels of percent difference are
observed to have a wide distribution across the brain,
ranging from 298% to 172% and 299% to 232% for males
and females, respectively, these were uniformly distrib-
uted about zero, as shown by the histograms in Figure 3.
Averaged across all 72 male and 57 female test partici-
pants, the average percent error was 13.36% for males and
14.63% for females.

The mean global brain age for each subject was calcu-
lated from the voxelwise age estimates and was subse-
quently plotted against the subject’s gestation-corrected
chronological age (illustrated in Fig. 4). The correlation
coefficient calculated for the males and females were 0.945
and 0.94, respectively, further demonstrating the accuracy
of the method. For males, the method accounted for 89%
of the variability of individual differences in age and had
a MAE of 79.06 days. For females, the framework
accounted for 88% of the variability of individual differen-
ces and had a MAE of 90.02 days (Table III).

Average Mullen standardized (T-) scores of male and
female subjects are given in Table IV. These measures are
normalized to have a mean of 50 and standard deviation
of 10. No statistical differences were found between this
population mean and our sample mean in performing a z-
test (Table IV), thus demonstrating our sample to be repre-
sentative of a typical population of young children. Figure
5 shows the mean developmental age score (Mullen age
equivalent scores) plotted against the global estimate of
brain age for both males and females. The overall develop-
mental age score was found to be highly correlated to the
predicted global brain age with correlation coefficients of
0.93 and 0.92 for males and females, respectively. The
framework accounted for 87% and 85% of the variability
of individual differences in mean developmental age score,
for males and females, respectively. Representative percent
difference maps and histograms of percent error between

Figure 4.

Scatter plots of the estimated brain maturation for male (left) and female (right) test datasets.

Gestational-corrected age is shown on the abscissa axis and the predicted age is shown on the

ordinate axis. The overall correlation between estimated age and actual age was r 5 0.945 for

males and r 5 0.94 for females.

TABLE III. Performance measures of age estimation

in males and females

Best fit line

Mean
absolute

error

Mean
percent

error
Correlation
coefficient

Males 1.0128*x 2 14.613 79.06 13.36 0.9447
Females 0.8642*x 1 71.418 90.02 14.63 0.9401

r Estimating Age Using Myelin Water Fraction Maps r
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the voxel age estimates and mean developmental age
equivalent scores are shown in Figure 6. Similar to the
comparisons with gestational age, a wide spread of percent
difference values (ranging from 296% to 178% for males
and 298% to 160% for females) were found between pre-
dicted and developmental age across the brain. However,
these were additionally uniformly distributed about zero.

DISCUSSION

This work sought to evaluate the utility of white matter
and VFM imaging in accurately characterizing the matur-
ing brain and myelinated white matter. The method was
found to perform well within the bounded age range from
3 to 48 months of age, accounting for 89% and 88% of the
variance between estimated and gestation-corrected chro-
nological age in males and females, respectively. These
values compare favorably to other proposed methods in
children, adolescents [Franke et al., 2012] and adults [Ash-
burner, 2007; Franke et al., 2010; Lao et al., 2004].

Two important distinctions exist between the VFM-based
approach described herein and other prior techniques.
First, alternative designs have typically utilized multivari-
ate classification techniques [Brown et al., 2012; Dosenbach

et al., 2010; Lao et al., 2004], where information about the
age-related changes from multiple brain regions are com-
bined into a model and used to predict a single estimate
of age. Such studies are limited in the sense that they may
not be able to recognize where in the brain age-related
changes are occurring. Our approach, in contrast, models
the developmental changes voxel-wise and thus encodes
spatial information that can be used to estimate measures
of maturity at a voxel-wise level. As differing brain
regions grow and mature at different times throughout life
[Lebel and Beaulieu, 2011], voxel-wise age estimates
would allow one to observe the timing and location of
these age-related changes and, therefore, may be useful at
examining and monitoring neurological diseases and/or
developmental disorders that are thought to alter the brain
in time.

Second, we have examined a much younger cohort than
prior studies. Investigations of early brain development
are of increasing importance, as identification and treat-
ment of abnormalities at the earliest stages are believed to
provide the best possible outcomes. However, this devel-
opment period is also one of the most dynamic, with the
white matter maturation profile shown to be highly non-
linear [Dean et al., 2014a; Deoni et al., 2012; Giedd and
Rapoport, 2010; Lebel and Beaulieu, 2011].

TABLE IV. Average and standard deviation of Mullen standardized (T-) scores for males and females

Training data (mean 6 s.d) (min – max) P-value Testing data (mean 6 s.d) (min – max) P-value

Males 48.03 6 11.75 (20–80) 0.9804 48.11 6 12.60 (20–79) 0.9321
Females 50.28 6 11.31 (20–80) 0.4019 51.25 6 11.75 (20–80) 0.1735

Values are computed by averaging individual T-scores of visual reception, expressive language, fine motor, and receptive language. No
statistical differences between the population used here and a typical population, as defined by the Mullen Scales of Early Learning,
were observed.

Figure 5.

Scatter plots of the estimated brain maturation versus the mean age equivalent score (calculated

from the Mullen’s Scale of Early Learning measures) for male (left) and female (right) test data-

sets. The mean developmental age score is shown on the abscissa axis, and the predicted age is

shown on the ordinate axis. The overall correlation between estimated age and actual age was

r 5 0.93 for males and r 5 0.92 for females.

r Dean et al. r
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Voxel-wise estimates of age represent an unique
method to examine the time course of brain maturation.
As areas of the brain develop at different rates and at dif-
ferent times [Gao et al., 2008; Toga et al., 2006], voxel
intensities that correspond to age could indicate areas that
are different from what would be expected based on the
child’s gestation-corrected age. As shown by the histo-
grams in Figure 3, percent error values at the voxel level
ranged from 298% to 172% and 299% to 232% for males

and females, respectively. While this range represents a
large distribution of values, the majority of voxels were
contained within 650% of the true gestationally corrected
age. This error may seem large, however, the average per-
cent difference for males and females were 13.36% and
14.63%, respectively, corresponding to an average varia-
tion of 2.65 months for males and 2.68 months for
females. The variability observed in these voxel-wise esti-
mates is most likely due to the individual variation from

Figure 6.

Maps of percent error calculated between the overall developmental age equivalent score and

predicted age measurements. Histogram plots of the frequency of percent error values reveal

the distribution of percent error values.
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the population-averaged Gompertz growth model.
Improved characterization of the underlying growth
model, for example, by modeling longitudinal develop-
ment with nonlinear mixed models [Xu et al., 2008], may
reduce the observed variability and improve age estimates
at the voxel level.

While the maturation of myelin is thought to follow a
similar spatial-temporal pattern of cognitive and behav-
ioral development [Casey et al., 2005; Fields, 2008], the
association of these structural and functional aspects
remains poorly understood. Here, we examined the rela-
tionship between age equivalent behavioral scores and
brain age estimates calculated from VFM images. We
found global brain age to be strongly correlated with the
mean age equivalent score. These results compliment pre-
vious investigations that have shown myelination to corre-
late with various aspects of functional development
including the development of language [Aslin and Schlag-
gar, 2006; Brauer et al., 2011; Pujol et al., 2006], motor
skills [Shafir et al., 2008], and reading abilities [Deutsch
et al., 2005; Klingberg et al., 2000]. However, although
these results support the notion of concomitant structural
and functional development, further investigation is
needed. For example, although cross-sectional studies are
informative, integration of longitudinal VFM and neurobe-
havioral measurements may provide more meaningful
inferences of the relationships between brain and cognitive
development. Furthermore, the use of statistical mediation
models [Baron and Kenny, 1986] may help elucidate the
underlying mechanisms that relate myelination and behav-
ioral development.

A limitation of this study, however, is the restrictive age
range of the investigated sample. Although neurodevelop-
ment during the first few years of life is indeed a period
of rapid maturation, adolescence and adulthood represent
a time of continuing developmental changes both in struc-
ture and function. Extension of the developed framework
to incorporate older age ranges would be valuable given
the potential usefulness of mapping brain age in neurode-
generative diseases such as Alzheimer’s and other forms
of dementia [Franke and Gaser, 2012]. To extend this
approach to older populations, investigations of the Gom-
pertz model used to characterize the underlying matura-
tional process are needed to ensure this model remains
appropriate for describing the developmental trajectory in
these older populations or whether additional modifica-
tions and/or models are needed.

An additional limitation to this study is that our conclu-
sions are limited to data acquired from a single 3.0 T MRI
scanner. Although the beauty of using quantitative maps
to estimate brain age over structural and functional MRI
methods relies on the notion that quantitative imaging
separates out scanner-dependent effects (acquisition strat-
egy, scanner hardware), allowing for a standardized basis
for comparison [Weiskopf et al., 2013], further studies
investigating the reproducibility of mcDESOT across dif-

ferent scanners and field strengths are needed. The
mcDESPOT technique has been shown to have high intra-
site and intersite reproducibility [Deoni et al., 2009], how-
ever, none of the data analyzed in this work has been
separately acquired at a different imaging facility, scanner,
or field strength. Additional work investigating the repro-
ducibility of the mcDESPOT imaging technique as well as
the described age mapping technique on data acquired
from other scanners and at different field strengths are
particularly necessary to examine the generalizability of
the described approach.

Although scans from the same subject were not used in
the training of the developmental growth model, they
were used in the testing dataset. These repeated measures
may introduce a level of bias into the results presented
here, and therefore, greater care would be required to
model the observed developmental patterns. Longitudinal
analysis techniques, including linear and nonlinear mixed
models, provide the means to characterize observed pat-
terns of change from repeated measures and have been
demonstrated to be successfully implemented in studies
examining brain development [Sadeghi et al. 2013].
Advanced modeling frameworks, such as these, may be
advantageous in describing the nonlinear growth pattern
of VFM and provide a better estimation of brain age; how-
ever, examination of the histograms of percent differences
reveal the values to be normally distributed about zero,
giving us confidence that the inclusion of data collected at
different times from the same subject is justifiable. None-
theless, executions of longitudinal mixed modeling algo-
rithms are highly desirable and would provide a more
complete characterization of developmental patterns.

Although the presented technique offers a simplistic
approach to estimating the brain age, the inclusion of
additional information may provide improved accuracy.
For instance, alongside VFM values, mcDESPOT also pro-
vides water-pool specific T1 and T2 estimates, as well as
more conventional single-component T1 and T2 values
[Deoni et al., 2003]. We and others have shown T1 and T2

values to decrease exponentially throughout infancy and
early childhood, and then to increase gradually through-
out adulthood [Deoni et al., 2012; Hasan et al., 2010].
Incorporating these additional measures into a more com-
plete model of brain development may improve the per-
formance of the outlined method.

CONCLUSION

As neurobehavioral and neuropsychiatric disorders are
increasingly examined within the context of abnormal
development, the ability to accurately gauge regional brain
maturity becomes ever more important. Here, we have
outlined a framework for age-mapping the brain using
mcDESPOT-derived VFM maps in healthy infants and tod-
dlers and shown, for the first time, voxel-wise estimates of
brain age that correlate strongly with gestation-corrected
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chronological age and average developmental age equiva-
lent measures in healthy infants and toddlers. The method
provides an objective examination of the developing brain,
potentially permitting areas of accelerated or delayed mat-
uration to be readily identified. Such information is useful
within a research context toward understanding linkages
between evolving neurodevelopment and malbehavior, as
well as clinical-relevance in premature infants, or infants
exposed to alcohol or illicit substances in utero. Although
additional work is required to evaluate the utility of the
method in these at-risk populations, the high accuracy and
robustness of the method demonstrated in healthy infants
strongly intimates its feasibility and success.
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