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Abstract: Well-diffracting protein crystals are indispensable for X-ray diffraction analysis, which is
still the most powerful method for structure-function studies of biomolecules. A promising approach
to growing such crystals is the use of porous nucleation-inducing materials. However, while protein
crystal nucleation in pores has been thoroughly considered, little attention has been paid to the
subsequent growth of crystals. Although the nucleation stage is decisive, it is the subsequent growth
of crystals outside the pore that determines their diffraction quality. The molecular-scale mechanism
of growth of protein crystals in and outside pores is theoretically considered. Due to the low degree
of metastability, the crystals that emerge from the pores grow slowly, which is a prerequisite for better
diffraction. This expectation has been corroborated by experiments carried out with several types of
porous material, such as bioglass (“Naomi’s Nucleant”), buckypaper, porous gold and porous silicon.
Protein crystals grown with the aid of bioglass and buckypaper yield significantly better diffraction
quality compared with crystals grown conventionally. In all cases, visually superior crystals are
usually obtained. Our theoretical conclusion is that heterogeneous nucleation of a crystal outside the
pore is an exceptional case. Rather, the protein crystals nucleating inside the pores continue growing
outside them.

Keywords: macromolecular crystallization; protein crystal nucleation; protein crystal growth;
nucleation theory; nucleants; porous nucleation-inducing materials; bioglass

1. Introduction

Providing a significantly higher resolution over a wider range of proteins, as compared
to nuclear magnetic resonance and cryo-electron microscopy, X-ray diffraction studies
account for 89% of structures deposited in the Protein Data Bank. Thus, even nowadays, X-
ray diffraction continues to be a key method in structural biology. Unfortunately, however,
protein crystals of sufficiently high diffraction quality are notoriously difficult to grow; this
problem has been mitigated using porous materials [1–11]. Due to the synergistic effects of
diffusion in confined pore spaces and protein adsorption on pore walls, a local concentration
increase, which is just sufficient for crystal nucleation to occur, can be created in pores.
Furthermore, excessively high supersaturation is highly unlikely to be achieved [12].

We have already considered the nucleation of protein crystals in pores, as can be seen
in [13], because it makes the difference between the success and failure of any crystallization
attempt. In doing so, we have shown that a prerequisite for growing 3D crystals in pores is
to have already formed completely stable (i.e., destined to grow) 2D crystal nuclei, which
are protein layers of monomolecular thickness. Such completely stable crystal nuclei require
the cohesive energy ∆Gv (which maintains the integrity of a crystalline cluster) and the
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destructive energy ∆Gs (which tends to tear it up) to be equal. However, in contrast to the
intensive theoretical study of protein crystal nucleation in pores, relatively little attention
has been paid to the subsequent growth of the nucleated crystals. It was merely noted that
“once nucleated, such crystallites continue their growth outside the pore orifice, forming
3D crystals.” [13].

In this paper, by considering the molecular-scale mechanism of growth of protein
crystals that are initially inside pores and subsequently outside them, we show that the
growth process is favored energetically in both cases. In other words, because under
supersaturation conditions the crystal growth proceeds spontaneously, there is no need to
form 3D nuclei—neither inside nor outside the pore. Most importantly, our consideration
provides a plausible theoretical explanation of experimental observations (some of which
are detailed below), which show that the use of various porous materials as nucleants
contributes to the growth of protein crystals of a better diffraction quality.

2. Results
2.1. Growth of Protein Crystals inside Pores

Firstly, and most importantly, there is a considerable difference between protein crystal
growth in the confined pore space and growth in the open space outside the pore. Inside
a pore, the growth of a crystal merely leads to an increase in volume, whereas the crystal
surface, which is exposed to the destructive action of the water molecules, does not change
in size (the reason being that the size of the pore hardly changes at a molecular distance).
Hence, importantly, the destructive efficacy of the water molecules with respect to the
protein crystal in the pore does not change. On the other hand, the growth of a crystal
outside the pore leads to a simultaneous increase in both its volume and surface; indeed, the
larger the crystal surface, the more intensive the destructive action of the water molecules.

The growth of a 3D protein crystal in a pore starts by attaching molecules to a pre-
viously formed, completely stable 2D crystal nucleus (for the latter, see Ref. [13]). The
first protein molecules impinging on the nucleus are strongly and sufficiently connected,
provided they are simultaneously bound to the pore wall and to the existing stable 2D
nucleus. Then, additional molecules arrive, and they are bound even more strongly at
kink sites formed by the first molecules and the lower crystal layer. The result of such a
growth process is a complete protein layer of monomolecular thickness, deposited onto the
pre-existing stable 2D crystal nucleus. When reiterated several times, this process leads to
the transformation of the stable 2D crystal nucleus into a 3D protein crystal.

Since, as shown in Ref. [13], real non-regularly shaped pore orifices yield theoretical
results that are very similar to those obtained with idealized pore shapes, we expect that
the conclusions reached in this paper for regular pore shapes are generally valid. Therefore,
we start the quantitative analysis of the formation of a 3D protein crystal in a pore by
considering the simplest crystal lattice, the so-called Kossel crystal (a simple cubic symmetry
crystal, constituted by small cubes held together by equal forces, as shown in Figure 1).
Importantly, the formation of a 3D protein crystal from a pre-existing 2D completely stable
nucleus inside the pore is an energetically driven process. The primary cause of this is the
substantial increase in cohesive crystal energy ∆Gv, resulting from the increased number of
intermolecular bonds between the two protein layers of monomolecular thickness (whereas
the crystal destructive energy ∆Gs remains the same). A stabilizing role is also played by
the interaction of the protein molecules with the walls of the pore. Surrounded by four
pore walls, the crystal inside it is substantially more stable than the 3D crystals formed
(and growing) on foreign surfaces, as can be seen in [14]. However, the bonding of the
protein molecules to the pore walls depends on the type of protein and porous material.
All this makes the calculation of the balance between the crystal cohesive and destructive
energies very difficult. To circumvent this problem, only for the growth of protein crystals
inside pores, the bonding to pore walls (which is weaker than the bonding between the
protein molecules in the crystal) is not considered. The price paid for this simplification is
that the results are merely indicative.
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Figure 1. A prismatic pore with a Kossel crystal growing in it; two layers of monomolecular thickness
are shown. The numbers of molecules at the edges of the Kossel crystal are denoted by n and n1. The
growth direction of the crystal is shown by a blue arrow.

Counting only the number of intermolecular bonds between the first and second
crystal layers, we obtain nn1 bonds, where n and n1 denote the number of molecules at
the edges of the Kossel crystal, as in Figure 1. To these, we must add the (n − 1)(n1 − 1)
bonds that account for the intermolecular bonds within the layer (obviously the same as
in the first layer of monomolecular thickness). As a result, the increase in the number of
intermolecular bonds is: [nn1+(n−1)(n1−1)]

(n−1)(n1−1) = 1 + nn1
(n−1)(n1−1) > 2, i.e., the growing crystal

becomes more than twice as strong.
More generally, the increase in ∆Gv depends on the type of crystal lattice. Because

the Kossel crystal has a relatively low-density packing, the increase in the number of
intermolecular bonds in the Kossel crystal will be compared with that in the closest-packed
crystal lattices (e.g., see Figure 2); we hope that this comparison sheds additional light on
the spontaneous growth of protein crystals in pores.

Figure 2. The two closest-packed layers of monomolecular thickness formed in a hexagonal pore
orifice are shown in top view: the completely stable crystal nucleus with edge length L = 3 (layer A)
is shown by blue balls and a second (ditrigonal) layer B (red balls) is deposited on it.

Figure 2 depicts a second monomolecular layer of a hexagonal close-packed (HCP)
crystal that is deposited onto the completely stable nucleus (the blue balls). This is a
ditrigonal layer, which is a little smaller than the first (hexagonal) layer. Therefore, it does
not touch the pore walls (meaning there is no interaction between the protein molecules
and the walls of the pore). However, each molecule in the ditrigonal layer (like in any
close-packed crystal structure) interacts with three molecules underneath it—meaning that
the energy needed for stripping-off one overlaying layer is three times larger. Consequently,
this energy contribution overcompensates for the absence of interaction between protein
molecules and pore walls (see Table 1 below).
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Table 1. Results for HCP crystal calculated by means of Equations (1) to (6). The analysis stops at
λ = 6 because the tendency is clear, and the consideration of larger crystals is superfluous.

Thickness of Crystal Growing
in Pores

Number of Molecules in the Edge of the Hexagonal
Layer (L = λ)

3 4 5 6

Crystal Binding Energy

∆Gh
v (In 2D nucleus monolayer) 42 90 156 240

∆Gh
v + ∆Gd

v (in two layers) 1 102 234 420 660
2∆Gh

v + ∆Gd
v (in three layers) 2 180 405 720 1125

Ratios (In ψb /ψd)

∆Gh
v /∆Gh

s 2.21 2.43 2.56 2.64
(∆Gh

v + ∆Gd
v )/∆Gd

s 8.5 8.67 8.75 8.8
(2∆Gh

v + ∆Gd
v )/∆Gh

s 9.47 10.9 11.80 12.36
1 The bonds between the two layers are added. 2 The bonds between the three layers are added.

The third layer in HCP crystals is also hexagonal; therefore, it touches the pore wall.
However, most important is the fact that the destructive energy ∆Gs, which tends to tear
up the crystal, is always equal to the number of molecules in the uppermost (ditrigonal
or hexagonal) crystal layers, which are exposed to the destructive action of the water
molecules. (Evidently, only the molecules on the crystal surface interact with the water.).

The numbers of molecules and the numbers of intermolecular bonds in the closest-
packed (ditrigonal and hexagonal) monolayers are known from crystallographic equations.
Using these, we can perform numerical calculations of the relations between ∆Gv and ∆Gs
for crystals with one, two, three etc., layers. In doing so, we denote by λ the number of
molecules in the longer ditrigonal crystal edges (which equals the number of molecules in
the hexagonal layer beneath it, as seen in Figure 2). As such, the number of molecules in
the ditrigonal monolayers denoted by Z is:

Z = 3(λ – 1)2 (1)

Equation (1) gives Z = 12, 27, 48, 75... for λ = 3, 4, 5, 6..., respectively.
And the number z of molecules in hexagonal layers, the edge lengths of which are

determined from the number L of molecules in them, is:

z = 3L(L − 1) + 1 (2)

Equation (2) gives z = 19, 37, 61, 91... for L = 3, 4, 5, 6..., respectively.
The number of bonds ∆Gv

d in ditrigonal layers is given by the following equation:

∆Gd
v = (3λ − 5)(3λ − 3) (3)

where λ corresponds to the longer edge of the ditrigonal layer.
The number of bonds ∆Gv

h in the hexagonal crystal layer is obtained from the crystal-
lographic formula:

∆Gh
v = (3λ − 3)(3λ − 2) (4)

With ψd being the destructive energy per bond, the destructive energies ∆Gs are, respectively:

∆Gd
s =Zψd (5)

and:
∆Gh

s = zψd (6)

The results of the calculations performed by means of these equations are shown in
Table 1, where the bonding energy is denoted by ψb. Since, again, the interactions with
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the pore walls are not considered, these results are indicative only (and serve merely for
comparison with the results of the Kossel crystals). A direct comparison shows that, in
both cases, the growth of the protein crystals in pores is increasingly stimulated as the
pores become wider. However, it is also evident that the wider the pore, the less important
the positive effect of the capillary walls becomes. Thus, there is an optimal range of pore
orifice widths.

The sharp increase in crystal stability with the thickening of the HCP crystal shown
in Table 1, although somewhat mitigated for larger crystals, suggests that the growth of
protein crystals in pores is, in general, an energetically driven process.

The fourth crystal layer, being again ditrigonal, has a smaller number of protein
molecules exposed to the destructive action of the water molecules. This strengthens our
conclusion that the growth of protein crystals in pores occurs by consecutive deposition
of layers of monomolecular thickness and, being energetically favored, it is ceaseless.
Therefore, there is no need to form a three-dimensional crystal nucleus to continue the
growth of the protein crystal inside the pore.

Finally, it is worth noting that point defects (vacancies and interstitials) increase the
conformational entropy and thus stabilize the crystals formed inside the pores [13]. On the
other hand, such small crystals hardly tolerate the formation of dislocations; it is therefore
more probable that dislocations arise in the crystals at later growth stages outside the pores.

2.2. Spontaneous Growth of the Protein Crystals outside the Pores

Because the volume of the protein crystal in the pore is negligible in comparison with
the volume outside it, the latter growth stage is of prime importance for the diffraction
ability of the protein crystal. Therefore, this stage of protein crystal growth deserves special
attention. Importantly, when the protein crystal reaches the orifice of the pore, it starts
growing at a protein concentration which is lower to that inside the pore: its growth is
therefore slowed down. Additionally, the slower the crystal grows, the more perfect it is.
The reason for this is that fewer impurities are incorporated by the slow-growing crystal,
which leads to fewer defects in its lattice, meaning an improved diffraction quality [6].
Therefore, by lowering the supersaturation under which the crystals nucleate and grow
(compared to the supersaturation needed for conventional crystal nucleation), the use of
porous nucleants contributes to the further success of X-ray protein crystallography. Our
experiments confirmed this theoretical suggestion [7].

Let us consider the growth of protein crystals outside the pores in more detail. Firstly,
the open space outside the pore is already advantageous for growing 3D protein crystals.
As they are expanding laterally, those crystals are fed from more directions; thus, the effect
of the reduced protein concentration outside the pore is somewhat mitigated. Secondly,
because the binding energy between the two monomolecular protein layers is added to the
binding energy between the molecules in the newly deposited monomolecular layer (see
Figure 3), the binding energy ∆Gv is substantially increased. Therefore, we could suggest
that the wider the pore orifice, the more energetically favored the growth of the crystal
outside it. However, a very wide pore would approach the limit of a flat surface. On the
other hand, since the pore opening is reached and the protein molecules enter the pore with
the same probability with which they reach an equally large flat surface area, the narrower
the pore orifices, the less accessible they are [12]. Additionally, the narrower the pore, i.e.,
the smaller the crystal nucleus, the higher the supersaturation required for its formation.
As already mentioned, however, excessively high supersaturation can hardly result from
the synergistic effects of diffusion in the confined pore spaces and protein adsorption on
pore walls. Thus, we conclude again that there is an optimal range of pore orifice widths.
Considering all the above arguments, we concluded that pores narrower than about 1 µm
can accumulate enough protein to induce crystal nucleation [12].
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Figure 3. HCP crystal emerging from a pore having the shape of a rectangular prism (side view, as
in Figure 1). The alternate layers are hexagonal A (blue balls) and ditrigonal B (red balls). Protein
molecules are attached (at places shown by the arrows) to the crystal for growth outside the pore.

To approach this issue quantitatively, we consider a crystal in a pore to have the same
volume as a completely stable homogeneously formed crystal nucleus, which is expected to
grow steadily [15,16]. The size of the latter is determined using the equilibration between
the cohesive energy that maintains the integrity of a crystalline cluster and the destructive
energy that tends to tear it up, i.e., the change in Gibbs free energy is ∆G = 0 (recalling that
the completely stable homogeneously formed crystal nucleus is 50% larger than the 3D
critical crystal nucleus.).

Crystals in pores can have diverse shapes, but a calculation of the value of the su-
persaturation needed for the growth of the crystal outside the pore can be obtained by
looking at a cubic crystal that has just reached the pore opening (see Figure 4). The change
in Gibbs free energy ∆G (see Figure 5), which is required for crystal formation, is a sum
of two terms: (1) the free energy gain resulting from the transfer of molecules from the
supersaturated mother phase into the crystal (which is proportional to its volume, the
so-called ‘volume term’); and (2) the free energy penalty, imposed due to the formation of
the new interface (i.e., a ‘surface term’, which is proportional to the total area of the crystal).
As such, we write the change in ∆G needed for the homogeneous formation of a cubic
crystal constituted by η molecules:

∆G = −η∆µ + Sγc = −η∆µ + 6δ2η2/3γc (7)

where S is the total surface of the nucleus, and δ the edge length of the crystal building
block; γc [erg/cm2] is the surface free energy.

Figure 4. Cross-section (green) of a pore with a cubic crystal that just reaches the pore opening; the
surface of the porous material is in gold. The protein crystal is in equilibrium with the solution
trapped beneath it.
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Figure 5. Change in Gibbs free energy ∆G with the number η of building blocks at the edge of the
crystal. The critical nucleus size η* arises at ∆G*. The red arrow shows the point where ∆G = 0.

For crystallization in solutions, the supersaturation ∆µ = kBTln
(

c
ce

)
is the driving

energy for crystal nucleation; kB is the Boltzmann constant; T is the absolute temperature; c
is the actual concentration; and ce is the equilibrium with respect to an “infinitely” large
crystal (as usual, activity coefficients equal to 1 are assumed).

Thus, for a completely stable and homogeneously formed cubic crystal nucleus, the
equilibration between cohesive energy ∆Gv and destructive energy ∆Gs (i.e., ∆G = 0, see
Figure 5) in Equation (7) gives:

η∆µv − 6δ2η
2
3 γc = 0 (8)

where ∆µv denotes the supersaturation needed for homogeneous formation of the com-
pletely stable crystal nucleus.

Dividing Equation (8) by η, we obtain:

∆µv = 6δ2η−1/3γc (9)

Of prime importance in our consideration is the fact that a large part of the surface of
the crystal in the pore is protected from the destructive action of the water molecules—the
latter can attack only a small part of its surface, the one that protrudes from the pore. Thus,
the vulnerable surface of the crystal is reduced sixfold, and for the completely stable crystal
face at the pore opening (at ∆G = 0), Equation (7) becomes:

∆G = −η∆µp + δ2η
2
3 γc = 0 (10)

where ∆µp is the supersaturation at which the cubic crystal shown in Figure 4 is expected
to grow steadily.

Again, dividing Equation (10) by η, we obtain the value of this supersaturation:

∆µp = δ2η∗−1/3γc (11)

Comparing Equation (9) with Equation (11), we see that ∆µp is six times lower than
∆µv. In other words, the unimpeded growth outside the pore orifice of the cubic crystal
face (shown in Figure 4) of size δ2η

2
3 is secured by supersaturation equal to ∆µp. Recalling

that protein crystals nucleate in pores at moderate supersaturations (which are achievable
in pores due to the synergistic diffusion–adsorption effect that arises from pore space
confinement and interaction with pore walls), we suggest that the protein crystal nucleation
in pores takes place in the nucleation zone, but close to the super-solubility curve (see the
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red point in Figure 6). Consequently, it is most likely that ∆µp is below the super-solubility
curve, i.e., already in the metastable zone (see the red arrow in Figure 6).

Figure 6. Ostwald–Miers phase diagram [17] illustrating the nucleation of a protein crystal in a pore
(see the red point close to the super-solubility curve showing its presumable place in the nucleation
zone where nucleation occurs), while, most probably, the crystal grows outside the pore orifice in the
metastable zone, which is shown by the red arrow.

However, besides the stabilization of the crystal face at the pore orifice, which results
from the protection of a considerable part of the crystal surface from the destructive action
of water molecules, there are additional factors which promote its unimpeded growth.
Apart from the open space outside the pore, another factor enabling the growth of the
crystal outside it can be the adsorption of protein molecules on the surface of porous
material. The shape of the pore orifice plays an important role in this respect: While angular
pore openings (assumed by Page and Sear [18] and seen in Figure 3) hardly promote the
adsorption of protein molecules, real ones (such as the one shown in Figure 7) that are
generally devoid of sharp angles are more suitable for protein adsorption. Performing a
random walk, some protein molecules arrive at the crystal face, which is level with the pore
opening (see the two red balls at both sides of the pore orifice, approaching as shown by
the arrows in Figure 3). However, they are not attached firmly enough to enable the lateral
growth of the crystal outside the pore (the molecules in Figure 3 are attached to only two
molecules of the crystal; for the closest-packed crystals especially, this is insufficient). More
suitable in this respect are pore openings such as the one shown in Figure 7; the reason
being that, in contrast to the case shown in Figure 3, the molecules on the right side of the
crystal in Figure 7 also interact with the inclined surface of the pore opening itself. Thus,
instead of only two intermolecular connections of energy ψb, the impinging molecules bind
firmly enough. The connection energy Eb of the peripheral row of length λ is:

Eb = λ(2ψb + ψ) (12)

where ψ is the adhesion energy of a single protein molecule to the pore material.
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Although neglected in [18], the adhesion energy ψ is a significant factor contributing to
the unimpeded growth of the protein crystal outside the pore; because larger molecules can
contact the solid surface at more sites, the adsorption of protein molecules at such surfaces
is strong even when affinity is very moderate [19]. In conclusion, the protein crystal grows
outside the pore orifice without the need for 3D nucleation.

2.3. Experimental: Diffraction Quality of Protein Crystals Grown by Using Porous Materials

It is well known that the nucleation of crystals requires much higher supersaturation
than is sufficient for their growth. The initial high supersaturation will, however, cause
a rapid growth of crystals in which case, as already mentioned, the crystals will incorpo-
rate a larger number of impurities, which in turn cause defects. Persisting in the grown
crystals, these defects deteriorate their diffraction quality. Hence, to grow more perfect
crystals, the time of rapid growth must be shortened as much as possible. With that end in
view, the stages of crystal nucleation and growth are sometimes separated, and the high
supersaturation that was needed for the initiation of crystal nucleation is lowered during
the subsequent growth stage. Usually, such an experimental approach yields better crystals.
However, the choice of the exact moment at which to lower the supersaturation depends
on the experimenter’s experience, and/or is determined by trial and error.

The important practical advantage of porous nucleants is that by using them, the sepa-
ration of the nucleation and growth stages becomes superfluous. The reason for this is that
only protein concentrations in the metastable zone are applied for growing protein crystals,
i.e., the supersaturation is already lowered before inserting the porous nucleants. (Indeed,
nucleants are only added in conditions that are known from preliminary experiments to
provide insufficient supersaturation to yield crystals). In contrast, supersaturations above
the super-solubility curve, which are necessary for the additional nucleation of 3D crystals
outside the pore, are never used.

Our data for the actual diffraction of proteins on heterogeneous solid nucleants are
reported here. Another porous material has been successfully tested as a protein crystal
nucleant: molecularly imprinted polymers (MIPs). It should, however, be noted that the
pores in the MIPs are too small (of the size of one, or possibly very few, protein molecules);
therefore, no growth inside such pores is possible. Thus, this part of the theory does not
apply to the MIPs, which function via a different mechanism of specific molecular affinity.
However, the MIPs do decrease the supersaturation that is needed for protein crystal
nucleation. Thus, the protein crystals grow under a lower supersaturation, and according
to the theoretical expectation, they should be of a better diffraction quality. This theoretical
expectation has also been confirmed by our experiments with MIPs, where six out of eight
proteins tested under metastable versus higher supersaturation conditions (which were
otherwise identical) yielded better diffracting crystals [8,10].

Diffraction data have previously been obtained for three target macromolecules (two
proteins and one modified cyclodextrin), all of which required improved diffraction in
order to determine their structure (Table 2).

Table 2. Resolution limits of crystals grown with a porous nucleant in the metastable zone of
conditions versus crystals grown in the absence of a nucleant in the spontaneous nucleation zone.

Protein
Resolution Limit in Presence

of Nucleant at Metastable
Conditions (Å)

Resolution Limit at
Nucleation Conditions (Å)

C1 domain of MyBP-C 1.6 (more typically 2.0–2.2) 3.0

InHr2 3.2 5

gguan 1.08 1.3

RNase A (model protein) 2.8 3.1



Int. J. Mol. Sci. 2022, 23, 10676 10 of 13

1. Crystals of the C1 domain of the human cardiac myosin-binding protein-C (MyBP-C),
obtained on buckypaper (made from an aggregate of single-walled carbon nanotubes
and surfactant Triton X-100), diffracted to a maximum resolution of 1.6 Å (more
typically in the 2.0–2.2 Å range). This is far superior to the best crystals obtained using
standard techniques, which only diffracted to 3.0 Å [7]. The dominant pore size in
the buckypaper was 9 nm. The crystals grew at metastable conditions in the trials
with porous material (10 mg/mL protein in 50 mM NaCl and 20 mM Tris pH 7.0,
equilibrated by vapor diffusion against a reservoir solution of 18% polyethylene
glycol (PEG) of mean MW 3350 and HEPES buffer, pH 7.3). The conventionally grown
crystals were obtained from 20% PEG reservoir solutions [7]. Importantly, in all
cases, the crystals in the drops containing nucleant were single, i.e., not in clusters
that may have appeared if repeated nucleation of novel 3D crystals outside the pore
had occurred.

2. Crystals of InHr2 were obtained in the presence of bioglass at metastable conditions as
well as at ‘borderline metastable’ conditions, i.e., conditions that gave visible crystals
overnight in the presence of bioglass, but only after 6 days in the absence of porous
material (10 mg/mL protein equilibrated against a reservoir solution of 11% PEG of
mean MW 3350, 0.1 M imidazole at pH 7.0 and 75 mM MgCl2). The best of these
crystals, obtained from the latter conditions, diffracted to 3.2 Å, in comparison to ca.
5 Å for routinely obtained crystals at higher PEG concentrations.

3. Crystals of the cyclodextrin derivative per(6-guanidino-6-deoxy)-γCD (gguan) that
were obtained at metastable conditions in the presence of bioglass diffracted to better
than 1.08 Å, whereas all X-rayed crystals routinely grown in standard, conventionally
optimized conditions, diffracted to 1.3 Å at best. This improvement in resolution
enabled the determination of this unusual structure [20].

Two model proteins were also crystallized with and without bioglass as part of the
present study, using known crystallization conditions (see Section 4 and Table 2).

1. Bovine α-chymotrypsin at metastable conditions (20 mg/mL protein in 25 mM NaOAc
pH 4.8, equilibrated against several ammonium sulfate concentrations in the range
0.8–1.3 M ammonium sulfate in the same buffer) yielded medium-sized crystals in
the presence of bioglass (and none in the controls). Most crystals were in contact with
the bioglass grains (Figure 8). All trials (bioglass and controls) yielded much smaller
crystals at higher supersaturations.

Figure 8. α-chymotrypsin crystals growing on bioglass at metastable conditions (drop volume after
equilibration ca. 1 µL; crystals visible to the left of the bioglass grain).

2. Bovine ribonuclease A at metastable conditions (12 mg/mL protein in 10 mM sodium
citrate pH 5.0, equilibrated against 24–27% (w/v) PEG of mean MW 4000 and 50 mM
of the same buffer) yielded small crystals in the presence of bioglass (and none in the
controls). At a higher supersaturation (32% PEG), larger crystals of a very similar size
and morphology were obtained both with and without bioglass, though the crystals
grew appreciably faster in the presence of bioglass (Figure 9). The best crystal grown
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in the presence of bioglass diffracted to 2.8 Å versus 3.1 Å for the best crystal grown
without bioglass.

Figure 9. Ribonuclease A crystal growing on bioglass at metastable conditions (drop volume after
equilibration ca. 1 µL; crystal visible to the right of the faintly visible bioglass grain).

To be completely convinced of the porous material’s ability to induce the formation
of crystalline nuclei, we used controls in each crystallization trial. While crystals were
observed in the samples containing porous nucleants, the controls set up under exactly the
same conditions, but without addition of nucleant, were crystal-free. Undeniably, this is
completely convincing evidence that the porous material acted as a nucleant.

3. Discussion

Using the Ising model, Page and Sear [18] considered nucleation and the growth
of crystals in pores and outside them. They observed that, after the pore was filled, the
crystallization process underwent a relatively long pause, and resumed later. The pause
was attributed by the authors to the existence of a second nucleation barrier; thus, they
suggested that 3D crystal nucleation is needed to continue the crystallization process. Page
and Sear state that “the nucleation often proceeds via two steps: nucleation of pore filling,
and nucleation out of the pore”. However, this conclusion may result from assumptions
made by the authors for a sharply edged rectangular shape of the pore orifice, instead
of the more realistic inclined shape shown in Figure 7, as well as from the absence of
protein molecule adhesion to the surface of the porous material. Furthermore, the rigidity
of the protein molecule must be considered. Lysozyme, for instance, possesses a highly
stable structure, whereas ‘soft’ protein molecules can adapt to pores more easily [13]. Thus,
different proteins prefer different pore sizes (hence, the most appropriate supersaturation
levels can be case specific, and protein nucleation materials with pores of various widths,
such as bioglass, are preferred).

In our approach, considering the protective role of the pore walls and the adsorption of
the protein molecules on the surface of the porous material, we showed that when coming
out of the pore, the crystal can grow unhindered. This means that a secondary nucleation
is hardly indispensable for the growth of the crystal outside the pore. (Importantly, this
thermodynamic result cannot be refuted by any non-thermodynamic method, including
the method used in [18]). In conclusion, as a natural prolongation of the crystal in the pore
(Figure 7), the protein crystal emerging from the pore orifice grows outside it without the
need for 3D crystal nucleation.

Moreover, it is important to note that a secondary nucleation outside the pore (as
suggested in Ref. [18]) may be detrimental to the quality of the grown crystal. It is likely that
the nucleation process will not be restricted to a single 3D crystal; the formation of several
crystal nuclei may also occur. This would, in turn, lead to the formation of sub-grains in the
growing crystal, which would lead to a deterioration in its diffraction quality. In fact, it was
established that such 2D crystal lattice defects can degrade the diffraction quality of protein
crystals to a greater extent than one-dimensional defects, the so-called dislocations [21].
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Koizumi et al. [21] have also shown that the large stress exerted on the sub-grains of protein
crystals could potentially be controlled by introducing grown-in dislocations in the crystal.
Importantly, it has been shown that dislocations can grow from seed crystals chemically
cross-linked by glutaraldehyde [22].

Rejecting the necessity of 3D crystal nucleation at the pore opening, we underline
that the diffraction quality of protein crystals grown using porous materials is improved,
because the supersaturation under which these crystals nucleate and grow is lower com-
pared to the one needed for conventional crystal nucleation [7]. Based on the observations
in Refs. [21,22], a further working hypothesis is that the misfit between the crystal lattice
and the supporting porous material can generate grown-in dislocations, leading to the
disappearance of any local strain that may arise due to possible sub-grains, resulting in an
improvement in diffraction quality of the protein crystals. Moreover, because the misfit
between the crystal lattice and the supporting porous material can be greater than in the
chemically cross-linked crystals, we suggest that grown-in dislocations appear more easily
in the former case.

4. Materials and Methods

Hanging drop vapor diffusion trials were set up for two model proteins at and around
known crystallization conditions, in the presence and absence of bioglass.

Bovine α-chymotrypsin (C3142, Sigma-Aldrich, Steinheim, Germany) was dissolved
at 20 mg/mL in 25 mM sodium acetate pH 4.8. Vapor diffusion crystallization trials were
set up under six conditions of varying precipitating agent concentrations, i.e., 0.8–1.5 M
ammonium sulfate, in the same buffer. The trials were set up as sitting drops in a Linbro
plate. A total of 1 µL protein stock solution was mixed with 1 µL from each precipitating
agent reservoir solution (0.5 mL reservoir volume) and dispensed onto siliconized glass
coverslips, which were then sealed over each well of the Linbro plate, using high-vacuum
silicone grease, and left to equilibrate. The plate was incubated at 16 ◦C.

Bovine ribonuclease A (RNase A, Sigma, R5500) was dissolved at 12 mg/mL in
10 mM sodium citrate pH 5.0. Vapor diffusion crystallization trials were set up at six
conditions of varying precipitating agent concentrations, in this case 24–35% (w/v) PEG of
mean MW 4000, in 50 mM of the same buffer. The trials were set up as described above
for α-chymotrypsin.

Bioglass grains were added with the help of tweezers or acupuncture-type needles
in the crystallization drops, immediately before sealing the coverslip over the well. Each
crystallization condition, in the presence and absence of bioglass, was set up in dupli-
cate. Metastable conditions were defined as the ones where both drops without bioglass
remained clear within the timescale of the experiment (ca. 3 weeks).

5. Conclusions

Theoretical considerations of the growth of protein crystals in and outside pores of
idealized shapes have shown why crystals grown with the aid of porous materials can have
better X-ray diffraction quality compared to crystals grown under the same conditions,
but in the absence of such substrates. Furthermore, the improved diffraction quality of
some protein crystals grown on bioglass was confirmed experimentally. Importantly, it
was argued that the crystal growing outside the pore (which is the part of the crystal that
will eventually undergo diffraction), is a natural prolongation of the crystal nucleated and
grown inside the pore. Growing under lower supersaturation compared to the one needed
for conventional crystal nucleation and growth, such a protein crystal incorporates fewer
impurities, thus having better diffraction quality.

Author Contributions: Conceptualization, C.N.N. and N.E.C.; theoretical investigation, C.N.N.;
methodology and analysis, L.G. and E.S.; writing—original draft preparation, C.N.N., E.S. and N.E.C.;
writing—review and editing, all authors. All authors have read and agreed to the published version
of the manuscript.



Int. J. Mol. Sci. 2022, 23, 10676 13 of 13

Funding: This research was funded by COST (European Cooperation in Science and Technology),
Action CM1402-Crystallize.

Acknowledgments: Katerina Donta at the Chemistry Department, University of Athens, is acknowl-
edged for setting up crystallization trials.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Chayen, N.E.; Saridakis, E.; El-Bahar, R.; Nemirovsky, Y. Porous silicon: An effective nucleation-inducing material for protein

crystallization. J. Mol. Biol. 2001, 312, 591–595. [CrossRef] [PubMed]
2. Rong, L.; Komatsu, H.; Yoshizaki, I.; Kadowaki, A.; Yoda, S. Protein crystallization by using porous glass substrate. J. Synchrotron

Radiat. 2004, 11, 27–29. [CrossRef] [PubMed]
3. Chayen, N.E.; Saridakis, E.; Sear, R.P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium.

Proc. Natl. Acad. Sci. USA 2006, 103, 597–601. [CrossRef] [PubMed]
4. Sugahara, M.; Asada, Y.; Morikawa, Y.; Kageyama, Y.; Kunishima, N. Nucleant-mediated protein crystallization with the

application of microporous synthetic zeolites. Acta Crystallogr. D 2008, 64, 686–695. [CrossRef] [PubMed]
5. Di Profio, G.; Curcio, E.; Ferraro, S.; Stabile, C.; Drioli, E. Effect of supersaturation control and heterogeneous nucleation on

porous membrane surfaces in the crystallization of L-glutamic acid polymorphs. Cryst. Growth Des. 2009, 9, 2179–2186. [CrossRef]
6. Saridakis, E.; Chayen, N.E. Towards a ‘universal’ nucleant for protein crystallization. Trends Biotechnol. 2009, 27, 99–106. [CrossRef]

[PubMed]
7. Asanithi, P.; Saridakis, E.; Govada, L.; Jurewicz, I.; Brunner, E.W.; Ponnusamy, R.; Cleaver, J.A.S.; Dalton, A.B.; Chayen, N.E.; Sear,

R.P. Carbon-Nanotube-Based Materials for Protein Crystallization. Appl. Mater. Interfaces 2009, 1, 1203–1210. [CrossRef] [PubMed]
8. Saridakis, E.; Khurshid, S.; Govada, L.; Phan, Q.; Hawkins, D.; Crichlow, G.V.; Lolis, E.; Reddy, S.M.; Chayen, N.E. Protein

crystallization facilitated by molecularly imprinted polymers. Proc. Natl. Acad. Sci. USA 2011, 108, 11081–11086. [CrossRef]
[PubMed]

9. Kertis, F.; Khurshid, S.; Okman, O.; Kysar, J.W.; Govada, L.; Chayen, N.; Erlebacher, J. Heterogeneous nucleation of protein
crystals using nanoporous gold nucleants. J. Mater. Chem. 2012, 22, 21928–21934. [CrossRef]

10. Saridakis, E.; Chayen, N.E. Polymers assisting in protein crystallization. Trends Biotechnol. 2013, 31, 515–520. [CrossRef] [PubMed]
11. Khurshid, S.; Saridakis, E.; Govada, L.; Chayen, N.E. Porous nucleating agents for protein crystallization. Nat. Protoc. 2014, 9,

1621–1633. [CrossRef] [PubMed]
12. Nanev, C.N.; Saridakis, E.; Chayen, N.E. Protein crystal nucleation in pores. Sci. Rep. 2017, 7, 35821. [CrossRef] [PubMed]
13. Nanev, C.; Govada, L.; Chayen, N.E. Theoretical and experimental investigation of protein crystal nucleation in pores and crevices.

IUCrJ 2021, 8, 270–280. [CrossRef] [PubMed]
14. Nanev, C.N. Theory of Nucleation. In Handbook of Crystal Growth, 2nd ed.; Nishinaga, T., Ed.; Elsevier: Amsterdam, The

Netherlands, 2015; Chapter 7; pp. 315–358.
15. Nanev, C.N. Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic

explanations and comparison with small-molecule crystallization. Prog. Cryst. Growth Charact. Mater. 2020, 66, 100484. [CrossRef]
16. Nanev, C.N. Evaluation of the critical nucleus size without using interface free energy. J. Cryst. Growth 2020, 535, 125521.

[CrossRef]
17. Chayen, N.E.; Saridakis, E. Protein crystallization: From purified protein to diffraction-quality crystal. Nat. Methods 2008, 5,

147–153. [CrossRef] [PubMed]
18. Page, A.J.; Sear, R.P. Heterogeneous nucleation in and out of pores. Phys. Rev. Lett. 2006, 97, 065701. [CrossRef] [PubMed]
19. Dee, K.C.; Puleo, D.A.; Bizios, R. Protein-Surface Interactions. In An Introduction to Tissue-Biomaterial Interactions; Wiley: New

York, NY, USA, 2002; pp. 37–52.
20. Saridakis, E.; Kasimati, E.-M.; Yannakopoulou, K.; Mavridis, I.M. A guanidino-γ-cyclodextrin superdimer generates a twin

receptor for phosphate dimers assembled by anti-electrostatic hydrogen bonds. Chem. Commun. 2022, 58, 5300–5303. [CrossRef]
[PubMed]

21. Koizumi, H.; Uda, S.; Suzuki, R.; Tachibana, M.; Kojima, K.; Tsukamoto, K.; Yoshizaki, I.; Fukuyama, S.; Suzuki, Y. Control
of strain in subgrains of protein crystals by the introduction of grown-in dislocations. Acta Crystallogr. D 2021, 77, 599–605.
[CrossRef] [PubMed]

22. Suzuki, R.; Abe, M.; Kojima, K.; Tachibana, M. Identification of grown-in dislocations in protein crystals by digital X-ray
topography. J. Appl. Cryst. 2021, 54, 163–168. [CrossRef]

http://doi.org/10.1006/jmbi.2001.4995
http://www.ncbi.nlm.nih.gov/pubmed/11575916
http://doi.org/10.1107/S0909049503023525
http://www.ncbi.nlm.nih.gov/pubmed/14646126
http://doi.org/10.1073/pnas.0504860102
http://www.ncbi.nlm.nih.gov/pubmed/16407115
http://doi.org/10.1107/S0907444908009980
http://www.ncbi.nlm.nih.gov/pubmed/18560157
http://doi.org/10.1021/cg800838b
http://doi.org/10.1016/j.tibtech.2008.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19110330
http://doi.org/10.1021/am9000858
http://www.ncbi.nlm.nih.gov/pubmed/20355914
http://doi.org/10.1073/pnas.1016539108
http://www.ncbi.nlm.nih.gov/pubmed/21690356
http://doi.org/10.1039/c2jm34527g
http://doi.org/10.1016/j.tibtech.2013.05.003
http://www.ncbi.nlm.nih.gov/pubmed/23764007
http://doi.org/10.1038/nprot.2014.109
http://www.ncbi.nlm.nih.gov/pubmed/24922271
http://doi.org/10.1038/srep35821
http://www.ncbi.nlm.nih.gov/pubmed/28091515
http://doi.org/10.1107/S2052252521000269
http://www.ncbi.nlm.nih.gov/pubmed/33708403
http://doi.org/10.1016/j.pcrysgrow.2020.100484
http://doi.org/10.1016/j.jcrysgro.2020.125521
http://doi.org/10.1038/nmeth.f.203
http://www.ncbi.nlm.nih.gov/pubmed/18235435
http://doi.org/10.1103/PhysRevLett.97.065701
http://www.ncbi.nlm.nih.gov/pubmed/17026175
http://doi.org/10.1039/D2CC00323F
http://www.ncbi.nlm.nih.gov/pubmed/35411367
http://doi.org/10.1107/S2059798321001820
http://www.ncbi.nlm.nih.gov/pubmed/33950016
http://doi.org/10.1107/S1600576720015356

	Introduction 
	Results 
	Growth of Protein Crystals inside Pores 
	Spontaneous Growth of the Protein Crystals outside the Pores 
	Experimental: Diffraction Quality of Protein Crystals Grown by Using Porous Materials 

	Discussion 
	Materials and Methods 
	Conclusions 
	References

