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Abstract

Single-cell RNA-sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity. Although scRNA-
seq reads from most prevalent and popular tagged-end protocols are expected to arise from the 3′ end of polyadenylated
RNAs, recent studies have shown that “off-target” reads can constitute a substantial portion of the read population.
In this work, we introduced scCensus, a comprehensive analysis workflow for systematically evaluating and categorizing
off-target reads in scRNA-seq. We applied scCensus to seven scRNA-seq datasets. Our analysis of intergenic reads shows
that these off-target reads contain information about chromatin structure and can be used to identify similar cells across
modalities. Our analysis of antisense reads suggests that these reads can be used to improve gene detection and capture
interesting transcriptional activities like antisense transcription. Furthermore, using splice-aware quantification, we find
that spliced and unspliced reads provide distinct information about cell clusters and biomarkers, suggesting the utility of
integrating signals from reads with different splicing statuses.
Overall, our results suggest that off-target scRNA-seq reads contain underappreciated information about various
transcriptional activities. These observations about yet-unexploited information in existing scRNA-seq data will help
guide and motivate the community to improve current algorithms and analysis methods, and to develop novel approaches
that utilize off-target reads to extend the reach and accuracy of single-cell data analysis pipelines.
Data Availability: The scripts for reproducing the results are available at https://github.com/COMBINE-lab/

sc-census. Supplementary files can be found at https://doi.org/10.5281/zenodo.10520670.

Key words: scRNA-seq, single-cell multiomics, off-target priming, chromatin structure, antisense transcription, enhancer
RNA.

Introduction
Single-cell RNA-sequencing (scRNA-seq) has become a popular

approach for gaining valuable insights into various biological

questions [Jovic et al., 2022, Sun et al., 2021, Hwang et al.,

2018] at the cellular level. In most short-read scRNA-seq assays,

such as the 10x Genomics Chromium 3′ system, cDNA reverse

transcription is primed using oligo(dT) in order to capture the

poly(A) tail of polyadenylated RNAs [10x, 2022a, Hrdlickova

et al., 2016]. Then, the synthesized cDNAs are amplified,

fragmented, and sequenced to generate sequencing reads as the

readout of the RNAs primed by oligo(dT) primers. Because,

in droplet-based scRNA-seq protocols, cells (or nuclei) are

lysed within each droplet, all exposed adenine-single nucleotide

repeats (A-SNRs) in lysed cells have the chance to be captured

by oligo(dT) primers and generate “valid” reads. This is true

regardless of whether or not the A-SNRs appear in a poly(A)

tail, or internally within a spliced or unspliced molecule, and,

of course, whether or not the underlying molecule is associated

with a protein-coding or non-coding RNA. Oligo(dT) priming

that occurs outside of the “expected” A-SNRs (i.e. the polyA

tail of polyadenylated RNA molecules) is typically referred to

as “off-target priming”. However, reverse transcription can be

initiated by priming oligo(dT) at internal sites with as few

as 6 consecutive As [Nam et al., 2002, Svoboda et al., 2022].

Additionally, a technical note from 10x Genomics [10x, 2021]

describes and explains the mechanisms of generating sequencing

reads from internal polyA sites on RNAs as well as on cDNAs,

supporting the validity, and to some extent, prevalence, of

off-target priming in scRNA-seq.

Recent studies have shown that off-target priming is

prevalent in scRNA-seq. For example, a detailed technical note

from 10x Genomics [10x, 2021] showed a high proportion of off-

target reads across popular 10X scRNA-seq assays. Svoboda

et al. [2022] showed the prevalence of intronic priming by

analyzing publicly available datasets. He et al. [2023] processed

eight 10X Chromium 3′ scRNA-seq datasets from both single-

cell and single-nucleus samples to show that when considering
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all sense genic reads, up to 40% of unique molecule identifiers

(UMIs) only have reads compatible with intronic regions

in unspliced (or partially spliced) transcripts. In general,

throughout this article, we will refer to “unspliced” molecules

in the understanding that they may be actively undergoing

splicing and hence be partially spliced. Meanwhile, researchers

have realized the underappreciated value of off-target reads

and designed sophisticated algorithms to incorporate off-target

reads in scRNA-seq data analysis [Chamberlin et al., 2022,

10x, 2022b, Pool et al., 2023, Chari et al., 2023, Gorin

et al., 2023]. One example is single-cell RNA velocity, in

which cellular splicing dynamics are inferred using spliced

gene counts from reads compatible with spliced transcripts,

and unspliced counts accounting for reads compatible with

unspliced transripts [La Manno et al., 2018]. Although these

studies showed the existence of some types of off-target reads

and suggested plausible biological interpretations, there is not

yet a comprehensive study systematically analyzing all types of

off-target reads from different genomic features and exploring

their potential use cases.

In this study, we introduced scCensus, a comprehensive

Nextflow [Di Tommaso et al., 2017] workflow for systematically

classifying the off-target scRNA-seq reads from different

genomic feature groups. We divided scRNA-seq reads into three

categories: sense intragenic, antisense intragenic, and intergenic

reads. We performed an in-depth analysis for reads belonging

to each read group, and we observed that off-target reads

from all genomic feature groups reflect meaningful biology.

Our results show that intergenic scRNA-seq reads are enriched

near open chromatin regions (OCR) as detected from single-

cell sequencing assay for transposase-accessible chromatin

(scATAC-seq), i.e., scATAC-seq peaks, and provide information

about open chromatin regions. Furthermore, OCR-associated

reads can result, at least at low resolutions, in clustering

results consistent with the standard method. Furthermore,

when sense and antisense intragenic reads are quantified

separately we find that their quantification results are highly,

but imperfectly, correlated, suggesting that antisense reads can

be used to improve gene detection. On the other hand, some

antisense reads are likely to be derived from genuine antisense

transcripts [Pelechano and Steinmetz, 2013, Barann et al.,

2013]. Finally, using splice-aware quantification methods [He

and Patro, 2023, He et al., 2022], we find that the clustering

results generated from spliced, unspliced, and ambiguous

matrices are consistent to a large extent (at a coarse level),

but also show informative differences (at finer granularity).

Well-established marker genes of cell types were exclusively

discovered from each of these count matrices, further suggesting

that reads with different splicing statuses should be processed

and analyzed separately and integrated in a later stage. All

of these results suggest that off-target scRNA-seq reads reflect

meaningful and interesting biology. Therefore, we urge the

community to expand current analyses to incorporate such off-

target fragments, and to develop novel methods and approaches

that intrinsically account for such fragments.

Methods

Data Description

In this study, we processed seven scRNA-seq datasets generated

using single cells and single nuclei samples from the brain,

blood, and bone marrow of mouse and human. Details about

the selected datasets can be found in Supp table 3. We

processed all human datasets using the GRCh38 version 2020-A

genome build and all mouse datasets with the mm10 version

2020-A genome build. Both genome builds were downloaded

from the 10X Genomics website 1. For each genome build, we

applied two sets of gene annotations, one was downloaded from

the 10x Genomics website along with the genome build, and the

other was the scRNA-seq optimized gene annotations [Pool

et al., 2023]. The seven selected single-cell datasets span

different species, tissue types, and sample sizes.

Quantification

To perform downstream analyses, we processed the read

alignment BAM files generated in Supplementary section A.2

for sense intragenic, antisense intragenic, and intergenic reads.

The resulting count matrices represent the unique molecule

identifiers (UMIs) that are compatible with sense intragenic

(including intronic regions), antisense intragenic (including

intronic regions), and intergenic regions. Intergenic regions

are defined as genomic regions that do not intersect with

any gene annotations. In the following text, we describe the

quantification pipeline applied to each dataset.

First, we quantified the sense and antisense intragenic

reads using simpleaf [He and Patro, 2023] to generate cell

barcode-by-gene count matrices. For each single-cell dataset, we

generated a total of six-count matrices for intragenic UMIs with

a spliced transcript origin (MS), unspliced transcript origin

(MU), ambiguous splicing status(MA), and UMIs from genes’

antisense, reverse complement strand with the three splicing

statuses, Mrc
S , Mrc

U , Mrc
A , respectively. We note that only UMIs

that were not associated with any sense reads were used to

generate the antisense count matrices (that is, sense assignment

was preferred if it was possible), and the only change instructing

simpleaf to generate antisense instead of sense count matrices

was changing the expected-ori parameter from fw to rc.

The simpleaf pipeline used in this work involves two

steps: reference index construction and sequencing read

quantification. We used the spliced+unspliced (spliceu)

reference [He et al., 2023], which contains the sequence of

spliced transcripts and gene bodies. The gene body of each

gene contains the contiguous genomic interval from the 5′

farthest exonic locus to the 3′ farthest exonic locus of each

gene considering all its isoforms. Providing the spliceu reference

to simpleaf triggered the USA mode [He et al., 2022] of the

underlying alevin-fry module to generate three UMI count

matrices, representing the UMI count of each gene in each

cell with spliced, unspliced, and ambiguous splicing status.

Briefly, when using spliceu, the spliced count matrix contains

UMIs with exon-exon junctional mappings and without intronic

alignments, the unspliced count matrix contains UMIs that

are entirely or partially compatible with introns, and the

ambiguous count matrix contains UMIs compatible with both

spliced and unspliced transcripts, i.e., exonic UMIs.

Additionally, We developed a custom pipeline to process

intergenic reads to generate four open chromatin region(OCR)-

associated count matrices. In this work, we used the ATAC-seq

peaks discovered from the ATAC-seq component of the single-

cell multiome ATAC+RNA (scMultiome) assays to represent

the experimental open chromatin regions. To show that our

conclusions apply to unpaired ATAC-seq and RNA-seq data,

we also used the peaks discovered from independent ATAC-seq

samples for validation. In order to verify that the ATAC-seq

1 https://support.10xgenomics.com/

single-cell-gene-expression/software/downloads/7.0/
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peaks represent cis-regulatory elements, we apply the same

pipeline using the candidate cis-regulatory elements (cCREs)

from the SCREEN project [Consortium. et al., 2020] as the

OCR features to generate cCRE-associated count matrices. As

the same pipeline was applied to all OCR feature sets, in the

following text we describe the pipeline for one feature set,

F , which can be an ATAC-seq peak set or the cCREs from

SCREEN. Note that in this pipeline, only UMIs that are not

associated with intragenic reads were included to generate the

count matrices.

The pipeline is divided into the following steps. First,

we filtered the original feature set, F , into two subsets

using bedtools intersect. The first subset, Fig, contains

only intergenic features. The second subset, Fnc, contains

all features that do not intersect with protein-coding genes

(on either strand of the genome). Second, we process all

or a subset of sequencing data with F , Fig, or Fnc using

the bedtools closest program by specifying -d and -t first

to find the closest features for each read. Specifically, We

used only intergenic reads together with Fig to generate

the intergenic feature-associated count matrix, MF ig
ig . The

subscript represents the reads (in this case, intergenic reads)

used to generate the count matrix, and the superscript

represents the feature set (in this case, intergenic features).

We used reads from UMIs that are not compatible with any

protein-coding genes on either strand of the genome with Fnc

to generate the non-coding features-associated count matrix,

MFnc
nc . We used reads that are not compatible with protein-

coding genes in the forward orientation with the whole feature

set, F , to build the not-sense-coding feature-associated count

matrix, MF
nsc. We used all read alignments with F to build an

all feature-associated count matrix, MF
all. During this process,

only alignments that are less than 4, 000 bases away from their

nearest feature were used, corresponding to the reported length

range of eRNAs and other lncRNAs [Wan et al., 2022].

We tested that using more restrictive thresholds for the

distance did not affect our conclusions (data not shown).

Finally, we processed all sets of filtered alignments in Python

using pysam2 to generate the feature-associated count matrices.

We assigned each UMI to its closest feature, among all filtered

alignments, to get the UMI count of each feature.

Cell type identification

For each dataset, we used sctype [Ianevski et al., 2022] to assign

a cell type to each high-confidence cell. The quantification

results generated by simpleaf using the sense intragenic

alignments were loaded into an R (version 4.3.2) environment

as a seurat object [Hao et al., 2021] using the loadFry function

from the fishpond Bioconductor package [Zhu et al., 2019]. For

cell samples, we used the spliced and ambiguous total count

to create the seurat object. For nucleus samples, we used the

spliced, unspliced, and ambiguous total count to create the

seurat object. As this is the standard strategy to create the

count matrix for cell and nucleus samples, we call them the

standard matrices Mstd throughout the paper. For each seurat

object, SCTransform [Hafemeister and Satija, 2019] with the

default setting was used for preprocessing.

Next, we computed the top 100 principal components (PCs)

by applying the RunPCA function using the variable features

found by SCTransform. The number of significant PCs was

found using findPC [Zhuang et al., 2022]. We then used

2 https://github.com/pysam-developers/pysam

these significant PCs to assign a cell cluster to each cell by

calling FindNeighbors followed by FindClusters. The resolution

parameter of FindClusters was set as 0.7. We then adapted the

example code from the sctype GitHub repository3 to assign a

cell type to each cell. The predicted labels were written to disk

as a CSV file for future use. Although using a high clustering

resolution, 0.7, might result in more cell clusters than the actual

number of cell types, clusters with similar expression profiles

should be assigned the same cell type by sctype [Ianevski et al.,

2022].

The sense intragenic read analysis pipeline

In this section, we describe the pipeline for analyzing the

quantification results generated from the sense transcriptomic

reads in each dataset using simpleaf. This analysis focused

on comparing the cell clusters and the differentially expressed

genes discovered from each cell type across different count

matrices. The quantification results were loaded into R using

loadFry.The spliced, unspliced, and ambiguous count matrices

were saved separately.

We first created a seurat object for each of the following

count types: (1) spliced counts (MS), (2) unspliced counts

(MU), (3) ambiguous counts (MA), (4) spliced and ambiguous

total counts (MSA), and (5) spliced, unspliced and ambiguous

total counts (MUSA). Usually, (4) and (5) are the standard

count matrix for cell and nucleus samples. Each seurat object

was processed as described in section 2.3. For each seurat

object, we tuned the resolution parameter of FindClusters to

find three cluster sets, each with a different number of clusters.

Assuming that the number of cell types found by sctype

(section 2.3) is nc, the three cluster sets have max(3, nc × 0.2),

max(7, nc × 0.6), and nc, respectively. We performed this

resolution sweep, as we want to see how the clustering changes

and relates across different types of counts as the resolution

of the clusters changes, as similarities present at a coarse

resolution may either persist or diminish at a finer resolution.

To assess the similarity of two sets of cluster assignments with

the same number of clusters, we adopted the evaluation metrics

used in Yu et al. [2022], namely the adjusted Rand index

(ARI) [Chiquet et al., 2023], normalized mutual information

(NMI) [Chiquet et al., 2023], and Fowlkes–Mallows index

(FMI) [Galili, 2015]. All three metrics range from 0 to 1, where

1 represents a perfect match.

We then computed the differentially expressed genes (DEGs)

for each cell cluster identified by sctype (section 2.3) in each

seurat object using the FindAllMarkers function from seurat

with the default setting.

The antisense intragenic read analysis pipeline

In this analysis, we explored the count matrix containing

antisense intragenic UMIs (Manti). The antisense count matrix

was generated by quantifying UMIs that do not have any

associated sense intragenic alignments across all splicing

statuses (section 2.2) and loaded into R using loadFry. We

also generated a sense count matrix by considering the sense

UMIs across all splicing statuses, same as the MUSA described

in section 2.4. Then, based on Msense and Manti, we imputed

genes that were likely to be missing from the Msense matrix to

generate an imputed sense count matrix, Mimputed. This was

done by identifying cell, gene pairs whose count in Msense was

zero, but whose count in Manti was non-zero; these cell, gene

3 https://github.com/IanevskiAleksandr/sc-type
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pairs were then assigned a value of 1 in Mimputed. All non-

zero cell, gene entries from Msense were carried over directly

to Mimputed without modification. A sense and antisense total

count matrix, Mgenic, was also created by summing Msense and

Manti.

Next, we computed the correlation of each cell in Msense

and Manti using all genes that are detected in that cell in the

Msense matrix. We also tried to use genes that are detected in

Manti of that cell, and genes detected in both Msense and Manti.

The correlation was assessed using Spearman’s rank correlation

coefficient (ρ), the Pearson correlation coefficient (r), and the

cosine similarity (cos).

Then, we applied the same clustering analysis and

differential expression analysis pipelines introduced in section 2.4

to Msense, Manti, Mimputed, and Mgenic, to find the cell clusters

and the DEGs discovered in the sctype cell types (section 2.3).

The intergenic read analysis pipeline

In this section, we describe the analysis pipeline used

for analyzing intergenic scRNA-seq reads (section 2.2) from

each dataset. The input of this analysis consists of an

intergenic count matrix Mint, an intergenic open chromatin

region-associated count matrix Mocr, as well as a standard

count matrix, Mstd, generated from sense intragenic reads

(section 2.3). The Mstd of cell samples were generated by

summing the spliced and ambiguous count matrices, and the

Mstd of nucleus samples were generated by summing the

spliced, unspliced, and ambiguous counts. We explored all types

of OCRs defined in 2.2, including the intergenic OCRs, not-

protein-coding OCRs, non-sense-coding OCRs, and all OCRs

from ATAC-seq peaks and SCREEN cCREs. Those count

matrices were loaded into R using either loadFry or the Read10X

function from seurat, as appropriate. We built a seurat object

for each count matrix separately and used them in the following

steps.

To evaluate the abundance of intergenic reads near ATAC-

seq peaks, we designed a statistical test to evaluate if the

ratio of the count of intergenic regions from Mint to its OCRs

from Mocr is significantly different than the ratio of their size

(section A.3).

The intergenic read analysis pipeline contains two

components. First, we performed a clustering analysis as

discussed in section 2.4 using Mstd, Mocr, and Mint. For

Mstd, we set the number of variable features as 3, 000 when

invoking SCTransform. For Mocr, we used the top 70% of features

ranked by their variance as the variable features, because of the

sparsity. Meanwhile, we applied the standard Seruat pipeline

(using NormalizeData, ScaleData, and FindVariableFeatures

sequentially) instead of SCTransform for all count matrices

except Mstd, because (i) running SCTransform with too many

variable features was computationally prohibitive, (ii) we

processed Mstd using SCTransform in all other sections, and (iii)

the main purpose of this step is to test if the clusters generated

from Mstd are similar with others, which should not happen

owing to processing data differently.

Second, we showed that, in the multiomics datasets (Supp

table 3), the ATAC-seq peak counts of a cell are more similar

to its RNA-seq OCR counts than the RNA-seq OCR counts

of most other cells. In this analysis, because the processed

datasets are single-cell multiome ATAC + Gene Expression

(scMultiome) datasets, the two modalities of each dataset —

represented by the RNA-seq OCR count matrix and the ATAC-

seq peak count matrix — contain the same set of features

(ATAC-seq peaks) but different types of readouts. For each cell,

its RNA-seq OCR counts contain the UMIs representing the

RNAs that have read alignments associating with ATAC-seq

peaks, while its ATAC-seq peak counts are from the readout

of the DNA fragments measured by ATAC-seq. This allows us

to ascertain ground truth correspondence, against which we

can then compare by evaluating the similarity of the RNA-seq

OCR and ATAC-seq peak counts. The ATAC-seq peak count

matrix was downloaded as a part of each scMultiome dataset

and loaded into R using Read10X. It consists of the same set of

features (peaks) and cells with the OCR count matrix.

Cosine similarity was used to evaluate the association of the

two modalities to avoid the effect of genes that are undetected

in both modalities. The null hypothesis is that the ranking

of the cosine similarity of each cell’s counts across the two

modalities should not differ from the ranking of the cell’s

ATAC-seq peak count to a random cell’s OCR count. In other

words, there should be no meaningful association between the

ATAC-seq peak counts in a cell and the RNA-seq OCR peaks in

the same cell, so that, if we ranked one according to the other

with respect to their cosine similarity, it would appear at an

essentially random position in the ranked list. The statistical

significance of the rankings was evaluated by a Wilcoxon rank

sum test, the lower-tailed t-test, and the Kolmogorov–Smirnov

test on the two distributions.

Results
Below, we describe the results of analyzing seven selected

single-cell datasets (Supp table 3). First, we examine

the selected single-cell multiome ATAC+Gene expression

(scMultiomics) datasets and show that intergenic RNA-seq

reads retain cellular chromatin structure, and can be used for

identifying similar cells across modalities. Next, we explain

the relationship between the count matrices generated from

sense and antisense intragenic reads, and the possibility of

using antisense reads to augment the standard count matrix

and to study antisense transcription. Finally, we discuss the

clustering and differential expression analysis results using

sense intragenic reads from different splicing statuses.

The first striking observation from our analyses is that off-

target priming is prevalent in scRNA-seq data. As shown in

Supp table 3, among the seven scRNA-seq datasets we analyzed

— spanning different species, sample types, tissue types, and

sample sizes — on average 78% of sense intragenic UMIs are

not exclusively compatible with spliced transcripts (i.e. do not

span an exon-exon junction), and this percentage can grow up

to up to 96% in some datasets. Antisense transcript UMIs on

average account for 18% (maximum 30%) of intragenic UMIs.

Intergenic UMIs on average account for 8% (13% in maximum)

of total genomic UMIs. This work aims to explore the biological

interpretability of off-target scRNA-seq reads and shed light on

the potential usages of off-target reads to improve and expand

current single-cell analysis methods.

Intergenic reads associate with cell-specific open
chromatin regions

Intergenic reads are reads compatible with the genome but

not gene annotations. In the processed datasets, intergenic

reads on average account for approximately 10% of the high-

quality reads (Supp table 3). Although those reads do not

match any existing gene annotations, they are presumed to

arise from RNAs, and to represent cellular transcripts. In

scCensus, we associate scRNA-seq reads with intergenic open

chromatin regions (OCRs) detected from single-cell sequencing
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assays for transposase-accessible chromatin (scATAC-seq), i.e.,

scATAC-seq peaks.

In this section, we present our intergenic read analysis

results using the selected scMultiome datasets, in which the

gene expression and chromatin accessibility profiles of each

cell are measured by scRNA-seq and scATAC-seq, respectively.

Briefly, we counted the intergenic scRNA-seq UMIs associated

with each intergenic ATAC-seq peak, to generate a scRNA-seq

OCR count matrix Mocr. In this count matrix, the features

represent the intergenic ATAC-seq peaks, and the entries

represent the scRNA-seq UMI count of each feature. Similarly,

we generated an intergenic count matrix, Mint, by counting the

UMIs compatible with the intergenic regions between each pair

of adjacent genes. We compared the results from Mocr and Mint

with the standard count matrix Mstd (section 2.6). We focus

here on the results from a human PBMC scMultiomics dataset,

the results from other datasets and other types of OCR count

matrices are listed in Supp figs. 5 to 15.

We first validated the biological interpretability of intergenic

reads to show that they do not appear to be DNA

contamination, ambient RNAs, or ribosomal RNAs. Our

results demonstrate that for each cell, the size ratio of

intergenic regions to intergenic OCR regions was on average

six times higher than their count ratio, with a p-value < 10−8

(Supplementary Files). The p-value was computed using a one-

side t-test (section 2.6). Moreover, the cell clusters obtained

from Mint and Mocr were consistent with those obtained from

the standard count matrix Mstd, especially when the clustering

resolution was low, as shown in figs. 1a, 1b and 24 to 30).

This suggests that, at the coarsest resolutions, the large-scale

similarity structure of the cell count matrices persists, even

when vastly different types of features are being quantified.

The similarity was measured using the Adjusted Rand Index

(ARI) [Chiquet et al., 2023]. An ARI = 1 means that two

sets of cluster assignments are identical. When the clustering

resolution is low, the cluster assignments under the Mint and

Mocr matrices are very similar to the standard count matrix,

with an ARI higher than 0.9. As the clustering resolution

increases, the ARI decreases. Although it is uncertain whether

the divergence in the high resolution was caused by the high

sparsity of Mocr, the high similarity at a low resolution provides

compelling evidence that Mocr contains sufficient biological

signals to distinguish the major cell types. Similar results

were obtained when performing our analysis using independent

scATAC-seq datasets, or using a reference that augments

unannotated 3′ UTRs [Pool et al., 2023] (Supplementary Files

and Supp table 5). These two pieces of evidence together show

that intergenic reads probably reflect meaningful biological

signals of the underlying cells, and that the signal-to-noise ratio

is sufficient to extract some of this information. One likely

explanation for these fragments is that they originate from

non-coding RNAs originating from intergenic open chromatin

regions (e.g. enhancer RNAs [Sartorelli and Lauberth, 2020]

and promoter RNAs [Chellini et al., 2020]).

Furthermore, by comparing Mocr with the standard

scATAC-seq count matrix, we discovered that intergenic reads

reveal cell-specific chromatin structure. Briefly, for each cell

i, we computed the cosine similarity of its intergenic ATAC-

seq peak counts (ci
atac) to the intergenic OCR counts of every

cell j (cj
ocr). We define these similarities as sim cos(ci

atac, c
j
ocr),

where i, j ∈ {0..N − 1} and N is the number of cells in

the dataset. Our results showed that if we rank the cosine

similarity of the same cell across modalities — cos(ci
atac, c

i
ocr)

— the distribution is heavily skewed to the left (toward low
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Fig. 1. Intergenic reads reveal cellular chromatin structure. ARI

stands for Adjusted Rand Index. ARI=1 means the compared sets of

cluster assignments are identical. ocr intergenic means results from the

intergenic OCR count matrix. intergenic means the intergenic count

matrix. ocr non coding means the not protein-coding OCR count matrix.

ocr not sense coding means the OCR count matrix containing all but not

reads from the sense orientation of protein-coding genes. ocr all means

the total OCR count matrix. Panels (a) and (b) show the ARI of the

clustering results using low and high resolution, respectively. Section 3.1

discussed the ARIs of ocr intergenic and intergenic. Panel (c) shows the

ranking of the cosine similarity of ocr intergenic to ATAC-seq counts of

the same cell compared with all other cells (sig), together with three null

distributions to show the significance of the high ranking (section 3.1).

ranks). That is, on average, the cosine similarity of the same

cell across modalities is much higher than the similarity of

cell i with most other cells j. This distribution is shown as

the curve labeled as sig in Figure 1c. We considered several

different null models. Null distributions were generated by

evaluating cos(ci
atac, c

k
ocr) for a random cell k for each i (with

replacement), shuffling the two count matrices, and permuting

the ranking of cells, corresponding to the curves labeled as

null rand cell, null shuf count, and null permut in fig. 1c. The

difference of sig compared with the three null distributions is

statistically significant, as evaluated by a Wilcoxon rank sum

test, with p-values all < 10−16. Although we focused on the

intergenic reads and peaks in this analysis, the same conclusions

still held when including more ATAC-seq peaks, as shown in

Supp figs. 17 to 23 and Supplementary Files.

In conclusion, by counting the intergenic scRNA-seq UMIs

proximate to intergenic scATAC-seq peaks, we find that

intergenic scRNA-seq reads are enriched around scATAC-seq

peaks and can produce cluster assignments consistent with

those from standard scRNA-seq count matrix, indicating their

biological interpretability. Perhaps even more interesting, the
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strong association between intergenic scRNA-seq and scATAC-

seq peak counts suggests that intergenic scRNA-seq reads

reflect cell-specific chromatin structure, indicating that they

might originate from intergenic regulatory RNAs, such as

enhancer RNAs [Sartorelli and Lauberth, 2020, Young et al.,

2017] and promoter RNAs [Chellini et al., 2020]. The strong

association also suggests the possibility of designing novel

distance metrics according to these two modalities to help in

aligning or integrating unpaired scATAC-seq and scRNA-seq.

Antisense transcriptomic reads contain mixed signals
from mRNAs and regulatory RNAs

In the context of scRNA-seq, antisense intragenic reads are

reads that map to gene annotations in an antisense manner.

These reads are usually discarded in assays such as 10X

Chromium V2 and V3 where stranded sequencing protocols are

used and the reads are expected to align with the underlying

genes in the forward (or sense) orientation. In our processed

datasets, antisense intragenic UMIs can account for up to 30%

of total intragenic UMIs (Supp table 3), with an average of

18% across the datasets we evaluated. 10x Genomics previously

demonstrated the prevalence of antisense scRNA-seq reads [10x,

2021], and also discussed four potential mechanisms that can

explain their presence in the collection of sequenced molecules,

including priming by the template-switching oligo, poly(dT)

primer strand invasion, first-strand cDNA priming, and sense-

antisense fusion. Antisense reads may also arise from RNAs

generated via antisense transcription [Katayama et al., 2005,

Barman et al., 2019, Barann et al., 2013] or other types of

bidirectional transcription events [Morris et al., 2008].

In this section, we discuss our findings by comparing

the analysis results obtained from the sense (Msense) and

antisense (Manti) intragenic count matrices of each dataset

(Supp table 3). The antisense count matrix contains intragenic

UMIs only associated with antisense fragments (section 2.5).

We focus here on the results from a human brain scMultiomics

dataset, the results from other datasets are listed in Supp

figs. 17 to 33.

We first compared the clustering results obtained from the

sense and antisense counts. As shown in fig. 2a, we observe

an ARI of 0.65 between the cluster assignments from sense

and antisense count matrices when both have 11 clusters —

the number of cell types discovered by sctype (section 2.3).

This indicates that antisense reads contain interpretable and

meaningful biological signals (by virtue of their substantial

overlap with the intended signal from the sense intragenic

reads). Then, we confirmed that some antisense reads are

the likely products of the four technical mechanisms discussed

above. Because the four technical mechanisms can happen only

after valid RNA priming, the resulting antisense reads should

also reflect gene expression, and, therefore, their quantification

results should be well-correlated with their sense counterpart.

That is, while we expect antisense counts to diverge from sense

counts, they nevertheless require the actual presence, in the

assayed cell, of the RNA molecule to which they map. Our

results show a moderate-to-high correlation between cells’ sense

and antisense counts. Among the three selected metrics, the

Spearman ρ (fig. 2b) correlation coefficient of cells’ sense and

antisense counts are centered around 0.4, the Pearson r (fig. 2c)

centered at 0.6, and the cosine similarity(fig. 2d) are centered

around 0.7. We also confirmed that the correlation scores are

very close to zero when using shuffled sense and antisense count

matrices (Supp fig. 16).

Our results suggest that, on one hand, many antisense reads

seem to directly provide evidence for the presence of RNA

molecules in cells that agree with the counts obtained in the

sense matrix. Thus, this substantial fraction of the antisense

reads is compatible with the four technical mechanisms

previously described in the 10x Genomics technical note. On

the other hand, the imperfect correlation also suggests that

some fraction of antisense reads appear not to be explained

by these specific technical mechanisms. Together with the

imperfect ARI discussed above, as well as the distinct cell

markers discovered from the sense and antisense count matrices

(Supp figs. 31 to 33), we hypothesize that some antisense reads

likely arise from antisense transcription or other bidirectional

transcriptional activities.

ARI (11 clusters)

0.97 0.89

0.91

0.64

0.66

0.67

im
pu

te
d

in
tra
ge
ni
c

an
tis
en
se

sense

imputed

intragenic

(a)

0

2

4

0.0 0.2 0.4 0.6
spearman

de
ns

ity

(b)

0

1

2

3

0.00 0.25 0.50 0.75
pearson

de
ns

ity

(c)

0

1

2

3

0.00 0.25 0.50 0.75
cosine

de
ns

ity

(d)

Fig. 2. Antisense intragenic reads are interpretable and show a moderate-

to-high correlation with sense reads. Panel (a) shows the high Adjusted

Rand Index scores of the cluster assignments obtained from sense,

imputed, antisense, and intergenic count matrix (section 3.2). ARI=1

means the compared sets of cluster assignments are identical. Panels (b),

(c), and (d) show the Spearman ρ, Pearson r, and cosine similarity of the

sense and antisense counts of cells, respectively.

In addition to evaluating the concordance between the sense

and antisense intergenic count matrices, we also explored the

possibility of using the information contained in the antisense

count matrix to augment (i.e. improve the sensitivity and

reduce the sparsity [Bouland et al., 2023] of) the standard

(sense) scRNA-seq count matrix.

Due, in part, to limited sampling from a finite population of

molecules (and potentially other sources of increased “dropout”

in scRNA-seq [Qiu, 2020]), the standard count matrix is

dominated by zeros, i.e., it is a very sparse matrix. As we

observed the correlation between cells’ sense and antisense

counts, but note that antisense reads are usually excluded

from the standard count matrix, we attempted two relatively
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näıve methods to improve the sensitivity of Msense according

to Manti.

The first strategy examines all entries that have a non-zero

entry in Manti, and if the corresponding entry in Msense is

zero, it is changed to a 1. This results in the generation of

an augmented sense count matrix, Mimputed (section 2.5). We

only change zeros to ones instead of copying over the actual

antisense counts to reduce the potential disturbance caused by

the signals from regulatory RNAs in Manti.

The second strategy sums Msense and Manti matrices

to obtain an intragenic count matrix, Mgenic, similar to

considering reads in both orientations when generating the

standard count matrix. Both strategies led to a substantial

reduction of sparsity. Specifically, if one considers matrix

entries where Msense, Manti, or both are non-zero, then in

19.3% of such cases we observe a corresponding 0 entry in

Msense and a non-zero entry in Manti across the processed

datasets. In other words, among the non-zero entries of Mgenic,

19.3% are zero in Msense but non-zero in Manti. We note

that our strategies primarily aided in the detection of the

presence of genes in cells where they were not previously

detected, but not in the detection of genes not detected across

any of the cells in Msense (only less than 0.2% of the values

imputed from Manti were for genes not otherwise present when

looking across all cells in Msense). Again, this behavior supports

the sense and antisense reads reflecting mostly the same

underlying biology. We found that the augmenting strategies

reduced the count sparsity in the scRNA-seq matrices, but

did not substantially “disturb” or alter the results of standard

analyses. Figure 2a showed that both strategies yielded cluster

assignments consistent with the sense count matrix. The ARI

of the results from Msense to Mimputed is 0.97, somewhat higher

than the ARI from Msense to Mgenic of 0.89.

In conclusion, by quantifying sense and antisense intragenic

scRNA-seq reads separately, and comparing their analysis

results, we found a moderate correlation between their

counts and a moderate-to-high similarity between their cluster

assignments. Our results reinforced that a substantial fraction

of the antisense reads observed in scRNA-seq are the result

of specific technical artifacts that nonetheless reflect the

expression of genes that may otherwise be detected in the sense

orientation by a more sensitive assay or deeper sequencing. We

showed that incorporating the counts generated by antisense

reads can help reduce the sparsity and improve the sensitivity

of gene detection. Moreover, another fraction of antisense

reads seem to likely originate from regulatory RNAs derived

from antisense transcription [Katayama et al., 2005, Barman

et al., 2019, Barann et al., 2013] or other types of bidirectional

transcription events [Morris et al., 2008]. Proper incorporation

and assessment of these reads deserves its own dedicated

analysis, and likely the development of novel methods to

account for them in preprocessing and processing.

Sense intragenic reads with different splicing statuses
reveal different transcriptional information

Intronic reads are the reads compatible with annotated gene

models but only with their intronic regions, i.e., unspliced

transcripts.

One mechanism for generating such off-target reads is

intronic polyA priming [10x, 2021]. Such priming occurs

as many introns contain short (and even moderate-length)

polyA tracts, and evidence has shown that polyA tracts of

length 6 to 8 are sufficient to be anchored by oligo(dT)

primers [Nam et al., 2002, Svoboda et al., 2022]. In our

selected datasets, less than 40% sense intragenic UMIs can

be unambiguously classified as arising from spliced transcripts

(Supp table 3). We note, however, that we have adopted in

this manuscript a rather conservative notion of spliced and

unspliced status [Eldjárn Hjörleifsson et al., 2022, He et al.,

2023], and other approaches, that consider purely exonic reads

as arising from spliced RNA, will lead to different ratios.

Existing studies have shown the prevalence of intronic reads

[He et al., 2023, Pool et al., 2023, Chamberlin et al., 2022, 10x,

2021] and proposed algorithms that utilize unspliced reads in

different ways [La Manno et al., 2018, 10x, 2022b, Gorin et al.,

2023].

In this section, we focus on explaining some caveats with

the currently common approaches for utilizing intronic reads for

standard types of analysis, as well as interesting findings that

underscore the necessity of expanding existing, and designing

novel, algorithms to consider signals from both splicing statuses

separately. Specifically, sense intragenic reads are quantified

into three count matrices, MS contains UMIs only compatible

with spliced transcripts, MU contains UMIs compatible only

with unspliced transcripts, and MA contains UMIs compatible

with both, i.e., having an ambiguous splicing status. Our

analysis also included two combinations of the three-count

matrices. MSA was created by summing MS and MA matrices

elementwise, and MUSA was created by summing MU, MS, and

MA matrices elementwise. Usually, MSA is used as the standard

count matrix for datasets from single-cell samples, and MUSA

is used for single-nucleus samples. We focus on the results from

a human PBMC scMultiome dataset, the results from other

datasets are listed in Supp figs. 34 to 47

Our clustering analysis results showed that, when using a

coarse resolution clustering to assign cells into major cell types,

like B cells, T cells, and Monocytes in PBMC [Sen et al.,

2018], the evaluated count matrices all resulted in consistent

cluster assignments, as demonstrated by the very high ARIs

displayed in fig. 3a. This suggests that the difference between

major cell types in these matrices is robust, so that they can

be easily distinguished from all tested combinations of splicing

statuses. The cluster assignments from MUSA had slightly lower

ARIs than others; this may be caused by the specific distance

metric or the random seed used for finding cell clusters [Hao

et al., 2021], as the clusters under this count matrix became

more concordant when using a slightly higher resolution (Supp

fig. 35b). The increment of ARIs as the clustering resolution

increases for MUSA when other ARIs are all decreased also

highlights the need to take more than one of the count matrices

as input to validate the final clustering results.

Furthermore, our clustering analysis results showed that,

when using a high resolution (i.e. a fine-grained clustering)

as in the standard clustering analysis pipeline [Hao et al.,

2021], the cluster assignments from different combinations

of splicing status show basic consistency but also express

interesting differences, with ARIs ranging from 0.5 to 0.85.

These imperfect ARIs suggest that, when using a single mixture

of counts to perform clustering analysis, no matter which

combination is used, the pipeline tends to cluster cells based on

the outstanding signals from that combination, and interesting,

potentially divergent, signals from other combinations remain

latent.

The difference of the cluster assignments from MS and

MU is especially important when clustering cells under active

differentiation. For example, although cells under active

differentiation should show consistent gene expression profiles
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under the spliced counts, cells in an early stage might have

a distinct gene expression profile under the unspliced counts

compared with cells in the terminal stage, because the spliced

and unspliced transcripts in cells are desynchronized because of

the kinetics of splicing [Alpert et al., 2016]. The difference of

the cluster assignments of MSA and MUSA in fig. 3b emphasizes

the inconsistency by simply using MUSA as the standard count

matrix for datasets from both single-cell sand single-nucleus

samples, as e.g., CellRanger [Zheng et al., 2017] does in versions

≥ 7.
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Fig. 3. Sense intragenic reads with different splicing statuses contain

distinct signals. U denotes the analysis results from the unspliced counts,

S denotes results from the spliced counts and A denotes results from the

ambiguous counts. USA is the sum of U, S, and A and SA is the sum of

S and A (section 3.3). Panels (a) and (b) show the high Adjusted Rand

Index scores of the clustering results generated from the count matrices

using a low and high clustering resolution, respectively. ARI=1 means the

compared sets of cluster assignments are identical. Panel (c) shows the

intersection of the DEGs discovered from hippocampus neuron cells from

the count matrices.

Our differential expression analysis results suggested that

in each cell type, the counts from the three splicing statuses

resulted in largely non-overlapping differentially expressed

genes (DEGs), as shown in fig. 3c. For spliced and unspliced

counts, over 40 of their top 100 DEGs are exclusive. As for the

two combinations, MUSA and MSA, their top 100 DEGs are the

mix of the DEGs obtained from MU, MS, and MA separately.

A closer look at these DEGs reveals that, as we concluded

from the clustering analysis results, the DEGs obtained from

each combination of splicing status contain exclusive, well-

documented, cell type markers (Supplementary Files). For

example, CST3, an important marker gene for monocytes [Hu

et al., 2020], was identified as a DEG for the classical monocyte

cell type when using MS and MA, but does not show up among

the top DEGs when using the two combinations, MSA and

MUSA. Similarly, CD86, a marker gene for Dendritic cells [Tze

et al., 2011], was found as a DEG of the Myeloid Dendritic cell

type when using MU, but in none of the other modalities. One

more example of the marker genes that were only discovered

from MS is a well-known CD8+ T cell marker, CD3G [Li et al.,

2019]. All these exclusive marker genes discovered using the

counts of the three splicing statuses separately, suggest that

simply summing them together to generate the standard count

matrix might not be the most appropriate way to utilize the

information from different splicing statuses.

In conclusion, by quantifying sense intragenic scRNA-

seq reads according to their splicing status and performing

clustering analysis and differential expression analysis on

them and their combinations, we found that their cluster

assignments slightly diverge but still show consistency and well-

known cell type markers are discovered exclusively from each

modality. Together with the previous finding that unspliced

counts show gene length bias [Phipson et al., 2017, 10x,

2021, Chamberlin et al., 2022, Gorin et al., 2023], our results

emphasize the necessity of improving existing methods and

developing new algorithms to consider the signals from different

splicing statuses jointly, but separately, for more comprehensive

analysis results.

Discussions
In this work, we have analyzed, across different organisms,

annotations, and tissue types, off-target scRNA-seq reads

compatible with intergenic, sense intragenic, and antisense

intragenic regions. Our results draw a holistic picture of

the off-target scRNA-seq reads, evaluate their biological

interpretability, and show examples of using off-target reads

to improve single-cell analysis from different perspectives.

Specifically, our intergenic read analysis results suggest

that intergenic reads are likely to arise from regulatory RNAs,

such as enhancer RNAs and promoter RNAs. We showed that

intergenic reads reflect the chromatin architecture of cells, and

have a strong association with scATAC-seq data, indicating the

possibility of using them for aligning or integrating unpaired

scRNA-seq and scATAC-seq data.

Furthermore, our antisense read analysis results indicate

that antisense reads contain mixed signals relating to both

gene expression and regulation. We show that antisense reads

can be used to reduce the sparsity and increase the sensitivity

in the scRNA-seq count matrix, and they also have the

potential to provide insights into antisense transcription and

other bidirectional transcription events.

Finally, we have analyzed sense intragenic reads from

different splicing statuses separately and find that reads with

different splicing statuses contain distinct signals signals, and,

in part, signals from different stages of transcription. We

found that the results of the clustering analysis and differential

expression analysis using reads from different splicing statuses

and their combinations are largely consistent but also reflect

interesting disagreements. Especially interesting was that

well-established cell markers can be found in each modality

exclusively. Our result highlighted the necessity of expanding
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current methods and designing new analysis algorithms that

can consider signals from different splicing statuses jointly,

but individually, to draw more comprehensive biological

conclusions.

Some constraints we adopted in our analysis highlight the

limitations and future directions of this work. First, because

of the limited sensitivity and relatively low number of UMIs

per gene, and the limited read lengths (most reads are 100

bases long) in scRNA-seq protocols we evaluated, in this work

we have assumed reads compatible with introns to arise from

unspliced transcripts, and reads compatible with exon-exon

junctions to arise from spliced transcripts, ignoring the specific

category of partially-spliced transcripts. Yet, given the relevant

kinetics and speed of splicing, it is likely that a substantial

fraction of measured molecules are actually partially spliced.

An alternative assay, such as long-read single-cell sequencing,

may provide more insight into the underlying splicing dynamics,

and may provide a greater ability to properly categorize read

evidence arising from partially spliced molecules. Moreover,

we assigned an ambiguous splicing status when unable to

determine the splicing status of reads. One future direction is

to develop more sophisticated methods to resolve the splicing

status ambiguity, or to assign a meaningful probability to such

a status [He et al., 2023].

Second, we defined intergenic and intronic regions according

to existing gene annotations, but some scRNA-seq reads may

arise from unannotated transcripts and thus may be assigned

an incorrect genomic feature type. One future direction is

to improve existing gene annotations, as discussed in Pool

et al. [2023] and Barquin et al. [2023], to reduce such

misclassification.

Most importantly, in this work, we focused on analyzing the

impact and and potential uses of the latent signals encoded

within off-target scRNA-seq reads using simple examples and

strategies. This is possible, in part, because such signals look

to be substantial and relatively strong. In the end, however,

the proper way to incorporate and integrate such signals is

to develop methods and algorithms that include and model

them from the start, and propagate the relevant associated

information through the entire single-cell and single-nucleus

preprocessing and processing pipelines. From this perspective,

the current work is not only an analysis of the prevalence and

characteristics of off-target reads, but a motivation and call-

to-arms of the single-cell method development community to

design algorithms, analysis methods, and software tools to more

comprehensively and holistically model and make use of these

off-target reads.
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