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Abstract: Concern for environmental issues is a crucial component in achieving the goal of sustainable
development of humankind. Different countries face various challenges and difficulties in this
process, which require unique solutions. This study investigated the relationship between land
transfer, fertilizer usage, and PM2.5 pollution in rural China from 2000 to 2019, considering their
essential roles in agricultural development and overall national welfare. A cross section dependence
test, unit root test, and cointegration test, among other methods, were used to test the panel data.
A Granger causality test was used to determine the causal relationship between variables, and an
empirical analysis of the impulse response and variance decomposition was carried out. The results
show that the use of chemical fertilizers had a significant positive impact on PM2.5 pollution, but the
impact of land transfer on PM2.5 pollution was negative. In addition, land transfer can reduce the use
of chemical fertilizers through economies of scale, thus reducing air pollution. More specifically, for
every 1% increase in fertilizer usage, PM2.5 increased by 0.17%, and for every 1% increase in land
transfer rate, PM2.5 decreased by about 0.07%. The study on the causal relationship between land
transfer, fertilizer usage, and PM2.5 pollution in this paper is helpful for exploring environmental
change—they are supplements and innovations which are based on previous studies and provide
policy-makers with a basis and inspiration for decision-making.

Keywords: land transfer; fertilizer usage; PM2.5 pollution

1. Introduction

With the pursuit of high economic growth and a high standard of living worldwide, the
environmental quality has been dramatically affected. Climate change and environmental
pollution pose a serious threat to sustainable development and human health worldwide,
which has aroused widespread concern [1]. In recent years, China’s air pollution crisis has
become one of the most urgent environmental problems in China. China has experienced
severe haze pollution, and the load of PM2.5 (particles with an aerodynamic diameter
of less than 2.5 microns) is too high [2]. According to research by the World Health
Organization (WHO), air pollution causes 800,000 deaths every year, among which PM2.5
produces the greatest influence on human health [3]. PM2.5 can absorb a large number
of toxic substances because of its large surface area and high enrichment effect [4]. In
many epidemiological studies, PM2.5 has been related to cerebrovascular, respiratory, and
cardiovascular diseases [5]. Most researchers have found that long-term exposure to PM2.5
will negatively affect the heart and lungs [6]. For every ten gm3 increase in PM2.5, respiratory
mortality increases by 1.01%, and cardiovascular diseases increases by 1.04%. In addition,
the rising speed of PM2.5 also leads to increases of 0.48% and 0.60% in the hospitalization
rates of the respiratory system and cardiovascular diseases, respectively [3].
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As a serious air pollutant, PM2.5 is mainly affected by the surrounding environmental
conditions, industrial production activities, meteorological factors, and the excessive use of
chemical fertilizers (nitrogen-containing components) in agricultural production and other
human activities [5]. Some studies show that urbanization has an impact on the PM2.5
levels [7,8]. In addition, on the macroscale, meteorological conditions have been proven
to have a considerable impact on PM2.5 pollution [3]. According to a study conducted in
northern and western China [9], dust in spring/autumn will increase primary particles.
PM2.5 pollution is also significantly related to land use patterns [10]. Li and Shen [11]
believe that optimizing land use patterns at the city or community level is helpful for
reducing PM2.5 pollution.

In many parts of China, PM2.5 pollution is mainly affected by NH3 emissions [12],
because secondary inorganic aerosols are the main component of PM2.5 [13]. As the only
alkaline component in the atmosphere, NH3 can neutralize with sulfuric acid (H2SO4) and
nitric acid (HNO3) in the atmosphere, producing a large number of secondary inorganic
aerosols (the sum of sulfate, nitrate, and ammonium), causing severe haze pollution [14].
Moreover, ammonia from agricultural fertilizers is a major contributor to PM2.5 pollution
around the world. Kawashima et al. (2022) found that ammonia from the use of agricultural
fertilizers is a significant source of PM2.5 pollution [15]. In addition, Kang et al. (2022) found
that ammonia produced by inorganic fertilizers and organic fertilizers had no significant
differences in terms of soil impact [16].

At present, China has become the world’s largest emitter of NH3 [17]. China is a
big agricultural country, and chemical fertilizers play an important role in global food
production [18,19]. China’s fertilizer application has exceeded the economical optimal
application rate [20]. Chemical fertilizer is one of the primary sources of atmospheric
NH3 [21]. NH3 emissions from agricultural sources account for more than 80% of the
total NH3 emissions, including livestock and nitrogen fertilizer applications [22,23]. On
average, only 30% to 50% of nitrogen is absorbed by crops [24], and a large amount of
active nitrogen (Nr) is lost to the environment [25]. Nutrients that cannot be absorbed by
crops seep into water or escape into the atmosphere, resulting in various environmental
problems [26].

Controlling agricultural NH3 emissions has been proven to effectively reduce PM2.5
levels [27]. To reduce NH3 emissions from the source, on one hand, it is necessary to
reduce the use of chemical fertilizers. On the other hand, it is necessary to improve the use
efficiency of chemical fertilizers. As the market for the transfer of farmland rights continues
to mature, the number of land transfers is increasing, and the number of large-scale farmers
is also gradually increasing. Farmers with large farms are the main force in China’s future
use of organic fertilizers, as they can pursue greater long-term agricultural benefits in
this way [28]. Under the condition of reducing the number of applied chemical fertilizers,
large-scale land management will not lead to a decline in output [29]. Meanwhile, for
every 1% increase in farm scale, fertilizer use efficiency increases by 0.2%, reducing the
environmental pollution caused by excessive use of chemical fertilizers [30].

The geographical and temporal distribution, source analysis, health consequences, and
estimation of PM2.5 have been extensively studied by predecessors [31], and much valuable
empirical evidence about PM2.5 pollution has been produced. However, few studies have
paid attention to the relationship between land transfer, fertilizer usage, and PM2.5 pollution.
Similarly, there is no consensus on the actual nature of their interaction. However, it is
urgent and vital to investigate the relationship between land transfer, fertilizer usage, and
PM2.5 pollution. Taking China as an example, this paper discusses the relationship between
land transfer, fertilizer use, and PM2.5 concentration by using various econometric methods.

Our research is particularly important for improving China’s air pollution and policy-
making, and it has made scientific contributions in the following three aspects: Firstly, we
used the panel vector autoregression (PVAR) model to reflect the heterogeneous influence
of land transfer and fertilizer usage. As far as we know, this was the first time in China that
the PVAR method has been used to study the relationship between land transfer, fertilizer
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usage, and PM2.5 pollution. The method helps to determine the direction of causality among
PM2.5 air pollution, land transfer rate, and fertilizer use and helps to identify changes in
the short-term and long-term effects between variables. Secondly, PM2.5 seriously threatens
human life and health. Exploring the important sources of PM2.5 and putting forward
targeted and effective policies to reduce PM2.5 pollution is of great significance. Finally,
the Chinese government intends to achieve peak carbon emissions in 2030 and achieve
carbon neutrality in 2060. China’s situation is attractive to the world. This paper is one of
the few studies that has attracted international attention to key issues such as land transfer,
fertilizer usage, and PM2.5 pollution in China.

The rest of this paper is organized as follows: Section 2 consists of a literature review
and the construction of the research hypotheses; Section 3 includes the data sources and
econometric methods; Section 4 introduces and discusses the empirical results; and the last
section includes a summary and policy suggestions.

2. Literature Review and Research Hypotheses Construction
2.1. Land Transfer and Fertilizer Usage

For the relationship between land transfer and fertilizer usage, we put forward the
following assumption:

H1. Land transfer has a significant negative impact on the use of chemical fertilizers.

The basis for our hypothesis is as follows:
Rural labor migration can effectively influence rural land circulation [32], and the

role of migrant workers in promoting rural land circulation will increase over time [33].
Because of the reform and opening up, China has experienced a rapid and extensive urban-
ization process. According to the latest data from the seventh census, by the end of 2020,
China’s rural population decreased to 509.79 million, the urban population increased to
901.99 million, and the urbanization rate had risen to 63.89% [34]. High-speed urbanization
has led to abandoned farmlands and rural labor loss in China [35], which has caused severe
land-use problems [36]. In order to make full use of abandoned land in rural areas, the
Chinese central government has also formulated relevant policies to promote rural land
circulation, improve the land utilization rates, and encourage the circulation of agricultural
land management rights [37]. In 2014, the General Office of the Communist Party of China
(CPC) Central Committee and the General Office of the State Council issued the Opinions
on Guiding the Orderly Circulation of Rural Land Management Rights to Develop Mod-
erate Scale Operation of Agriculture, requiring that land circulation and moderate-scale
operations should be vigorously developed, and the contractual management rights should
be confirmed within five years. The reform of the “separation of powers”, put forward in
2016, enables those farmers who do not want to continue to engage in agriculture to trade
their rural land use rights, and also enables those farmers who want to expand the scale of
agricultural operations to lease rural land [38]. This kind of agricultural land use rights
trade is usually called “rural land transfer” (RLT).

In recent years, the process of land transfer has been dramatically accelerated. The
research shows that farmers prefer to use chemical fertilizers in order to reduce labor input
under small-scale land production [39]. Land circulation expands the scale of rural agricul-
tural land management, and the proportion of large-scale farmers in agricultural production
will continue to increase in the future, becoming larger and larger [40]. Therefore, generally
speaking, land circulation reduces chemical fertilizers and uses organic fertilizers instead.
Due to the scale effect, large-scale farmers place more emphasis on future income and are
more likely to improve land quality through the use of organic fertilizers [41]. Large-scale
farmers have a higher socioeconomic status than small-scale farmers [42], requiring a higher
reputation and stimulating them to apply organic fertilizer [43].
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2.2. Fertilizer Use and Inhalable Particulate Pollution

For the relationship between fertilizer use and inhalable particulate pollution, we put
forward the following assumption:

H2. The use of chemical fertilizers has a significant positive effect on the concentration of PM2.5.

The basis for our hypothesis is as follows:
Feeding the growing and increasingly affluent global population is arduous [39].

To meet this challenge, about two hundred tons of chemical fertilizers and three tons of
pesticides have been used in global agricultural output [44]. China is the largest consumer of
agricultural chemicals in the world. However, only 9% of the world’s arable land consumes
more than 30% of chemical fertilizers and pesticides [45]. In the past 30 years, synthetic
nitrogen fertilizer has played a vital role in ensuring China’s food security. However, low
efficiency and a high percentage of agricultural chemical losses are widespread, resulting
in economic losses and serious local, regional, and even global pollution [45].

The chemical formula of ammonia is NH3. High concentrations of NH3 from agri-
culture contributes significantly to PM2.5 pollution in China, with fertilization being the
most crucial agricultural source of NH3 and PM2.5 in the atmosphere. The main particulate
pollutants are produced when tractors disturb the wind, or the fertilizer particles are en-
trained in the soil. In addition, the photochemical reaction between ammonia and nitrogen
oxides after fertilization produce secondary organic agricultural machinery aerosols and
NH3 [46]. NH3 plays an underestimated role in the formation of the main components of
the concentration of fine particulate matter (PM2.5) in Chinese cities. It has been found that
in the main fertilization season (summer) and the occasional fertilization season (winter),
the influence of NH3 emissions on the monthly average concentration change of PM2.5
in the first and second half of the year is 5.5 times and 1.5 times that of SO2 and NOx,
respectively, which is a much greater factor than that of SO2 and NOx [12]. Since 1960,
with the application of fertilizers, the global ammonia concentration has been increasing
significantly [47].

2.3. Land Transfer and PM2.5 Pollution

For the relationship between land transfer and PM2.5, we put forward the following
assumption:

H3. The improvement of the land transfer is helpful to reduce PM2.5 pollution.

The basis for our hypothesis is as follows:
In the past 20 years, more and more farmers are engaged in land transfer (leasing

other farmers’ land) to expand the scale of the farmland they manage in China. According
to data from the Ministry of Agriculture and Rural Affairs, the area of cultivated land in
circulation increased from 4.25 million hectares to 30.67 million hectares between 2007 and
2016, and the proportion of cultivated land in circulation increased from 5.2% to 35% of
the total cultivated land [11]. The transfer of land rights often leads to changes in land
use and intensity, which inevitably leads to changes in regional carbon emissions [48].
The concentration of PM2.5 is similar to the growth trend of carbon emissions and has a
spatial correlation. The changes in land use and land use intensity caused by land transfer
may have an impact on the environmental problems of PM2.5 pollution. According to the
existing research, the transfer of land rights can strengthen environmental protection and
reduce air pollution [49,50]. First of all, the government’s stable transfer of land manage-
ment rights ensures that large-scale farmers can obtain corresponding future benefits from
the application of organic fertilizers. Their application of organic fertilizers has increased
significantly [41], reducing ammonia emissions from synthetic fertilizers. Secondly, control-
ling ammonia emissions can effectively reduce PM2.5 [51]. Improving the technology and
management of agricultural production can reduce agricultural NH3 emissions [52]. The
extensive application of many technologies, such as covering and storing manure, replacing
urea with animal manure, deep application of low ammonia, etc. [51], and improving
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extensive agricultural management [53] have great potential for reducing NH3 emissions,
and the farm has been expanded by leasing land. Finally, the transfer of land increased
the fragmentation of land—the number increased, but the location was not concentrated.
According to the monitoring data of Chinese family farms in 2018, large-scale farmers
managed an average of 15 scattered plots, and some farmers even managed as many as
1269 scattered plots [54]. Farmland fragmentation helped to reduce PM2.5 [29].

3. Materials and Methods
3.1. Variables and Data

The regional scope of the data selection is China’s 30 provincial-level administrative
units, excluding Hong Kong, Macao, Taiwan, and Tibet. Due to different statistical calibers,
we did not include data from Hong Kong, Macao, and Taiwan. Due to factors such as
Tibet’s economy, education, and population, the previous data were missing, so the data
area we selected did not include Tibet. Land turnover rate, fertilizer use intensity, and
PM2.5 concentration are the three main variables in this study, among which land turnover
rate = total household contracted cultivated land turnover area/cultivated land area. The
fertilizer use intensity variable is defined as the fertilizer application amount per unit area
(i.e., total fertilizer application amount/cultivated land area). The related data of the total
area of household contracted cultivated land, the area of cultivated land, and the total
amount of chemical fertilizer application, all come from China Rural Statistical Yearbook.
The air pollution data comes from the global surface PM2.5 concentration measured by the
Atmospheric Composition Analysis Group of Washington University, the average PM2.5 of
each province in China is shown in Figure 1.
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Data in Table 1 are information about the three key variables. The second column
is the sample size; the sample size is relatively large, and as such the results are more
convincing. The third column is the sample mean, the last five columns are the minimum
value of the data, and four points: The first quartile, the median, the third quartile, and the
maximum value. The three variables have increased in the same trend in the past 20 years.
China’s urbanization process basically started after 2000. In order to promote economic
development, the environment is sacrificed to a certain extent. The initial minimum value
of PM2.5 concentration was 15.4 micrograms/cubic meter, and the current maximum value
is 112.7 micrograms/cubic meter. It can be found that its increase is huge, and it must
attract the attention of all mankind and strive to suppress its increase.

Table 1. Descriptive statistics of variables of interest.

Count Mean Std Min 25% 50% 75% Max

perfertilizer 600 0.47 0.40 0.08 0.27 0.44 0.58 4.15

landtransferate 450 0.17 0.15 0.01 0.06 0.13 0.24 0.93

PM2.5 570 47.28 17.18 15.40 34.50 46.80 59.55 112.70

Lnperfertilizer 600 −0.95 0.62 −2.55 −1.30 −0.82 −0.54 1.42

Lnlandtransferate 450 −2.27 1.10 −4.96 −2.90 −2.07 −1.41 −0.08

LnPM2.5 570 3.78 0.40 2.73 3.54 3.85 4.09 4.72

This paper made a complete empirical test on the collected panel data. Figure 2 shows
the flow chart of the empirical steps.
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3.2. The Relational Models of Study Variables

Equation (1) specifies the generic relational model used to illustrate the connections
to investigate the relationship between the study variables. PM2.5 denotes air pollution,
transferate denotes land transfer rate, perfertilizer denotes fertilizer use rate, i denote the
number of Chinese provinces, and t defines the time in the relational model. The following
is the broad relational model that relates the study variables:

PM2.5= f (landtransferateit, perfertilizerit) (1)

According to Gauss–Markov theory, the econometric form of the above model is as
follows:

PM2.5 = α + β1landtransferateit + β2perfertilizerit + εit (2)

where α is the intercept, β1 and β2 are explanatory variable coefficients, and εit is the error
term. The other variables are the same as those previously mentioned.
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3.3. Econometric Methodology

This study investigated the causal relationship between land transfer, fertilizer use,
and PM2.5 pollution in China. In order to help achieve the research goal, a series of tests
were carried out, including a cross section test, a unit root test, a cointegration test and a
Granger causality test.

3.3.1. Cross Section Test

Land transfer, fertilizer usage, and PM2.5 pollution may be affected by the same factors,
such as advances in agricultural tools. Therefore, the cross-sectional correlation of panel
data must be considered-otherwise, the estimated results will be biased. In this study, we
adopted the CD test [55] and Lagrange multiplier test (LM test) developed by Pesaran.

The CD test formula is as follows:

CD =

√
2T

N(N − 1)

(
N−1

∑
i=1

N

∑
j=i+1

ρij

)
(3)

where N and T are cross sections and periods; ρij stands for the cross-sectional correlations
of the error between I and j.

The LM test formula is as follows:

LM =

√
1

N(N − 1)

N−1

∑
i=1

N

∑
j=i+

(
Tijµ

2
ij − 1

)
→ N(0, 1) (4)

3.3.2. Unit Root and Stationarity Tests

Before formally studying the relationship between the selected variables, it is necessary
to confirm whether the sequence is stable after the level value or the first-order difference.
In this paper, the unit root test methods, such as Levin-Lin-Chu (LLC) [56], Im-Pesaran-Shin
(IPS) test [57], ADF and PP test are adopted, and the unit root test is a normative test for
determining whether the sequence is an I (1) process.

LLC

The LLC unit root test method is based on the DF and ADF test formulas of traditional
single time-series data, and considers the autocorrelation of a single individual as the
disturbance term. The inspection process mainly includes the following two steps: (1)
First, remove the autocorrelation and deterministic items from ∆yit and yit influence and
normalize it as a proxy variable. (2) Conduct ADF regression with proxy variables.

The hypothetical form of the LLC unit root test method:

H0: ρ = 0 (has a unit root); H1: ρ < 0. The LLC test is a left one-ended test.

Im, Pesaran, and Shin (IPS Inspection)

LLC is suitable for the same root test, and IPS is suitable for different root tests. IPS
does not require the assumption that each individual is completely homogenous. This is
a major feature and is superior to LLC, which can be extended to deal with unbalanced
panel data.

ADF test

ADF is an augmented Dickey-Fuller test. Dicky and Fuller proposed an enhanced DF
test, which formed the enhanced Dickey-Fuller test. The formulas for its three forms are as
follows:

yt =
p−1

∑
i=1

ζi∆yt−i + ρyt−1 + εt (5)
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yt =
p−1

∑
i=1

ζi∆yt−i + α + ρyt−1 + εt (6)

yt =
p−1

∑
i=1

ζi∆yt−i + α + βt + ρyt−1 + εt (7)

The hypothetical form for the three forms is H0: |ρ| ≥ 1; H1: |ρ| ≤ 1.
Test statistics t = ρ̂−1

σ̂ρ

PP Inspection

DF test is divided into ordinary AR(1) processes: yt = ρyt−1 + εt; AR(1) process with
drift term: yt = ρyt−1 + α + εt; trend stationery AR(1) process: yt = ρyt−1 + α + βt +
εt three cases. The PP test optimizes the DF statistic and corrects the DF statistic by a
nonparametric method, so that it has the function of lag period estimation.

3.3.3. Optimal Lag Selection

Lag selection is required for economic tests such as the unit root, stationarity, and
cointegration. On the other hand, inappropriate lag selection may result in freedom-related
constraints. The Akaike information criterion (AIC), sequential modified LR test statistic
(L-R), Schwarz information criterion (SC), final prediction error (FPE), and Hannan-Quinn
information criterion (HQ) are used to determine the appropriate delays.

3.3.4. Cointegration Test

Cointegration analysis was performed after the unit roots of the series had been
explored. The cointegration analysis is a method for determining whether or not two
variables have a long-term relationship. The Kao cointegration analysis methods are
employed in this scenario. Kao [58] created a cointegration test based on the DF (Dickey-
Fuller) and ADF (Generalized Dickey-Fuller) tests. The null hypothesis in Kao’s panel
cointegration test is “no cointegration,” and the alternative hypothesis is “cointegration
exists.” In the relevant stage of ADF test statistics, the null hypothesis is rejected.

The model considered by Kao [59] is as follows:

yit= αi + X′itβ + eit, i = 1, 2, . . . , N; t = 1, 2, . . . , T (8)

where Xit is an m-dimensional column vector, assuming that for each individual i, yit
and X′it are all I(1) variables, under the null hypothesis of no cointegration; eit will also
be an I(1) variable. Using Equation (9), the residual êit of OLS regression, the auxiliary
regression formula of the ADF test proposed by Kao is:

êit = ρêi,t−1 +
p

∑
j=1

δj∆êi,t−j + vit (9)

The corresponding statistic is recorded as ADF, and the statistic sequentially converges
to the standard normal distribution.

3.3.5. Granger Causality

Although cointegration aids in the identification of possible short- or long-run corre-
lations, it falls short of capturing the causal links between variables. It is critical to have
empirical knowledge of the causal links to reducing air pollution. Causality analyses were
utilized to help empirically determine the causal linkages among the variables employed in
this study [59]. Causality studies were used to determine the long- and short-term causal
links between PM2.5 emission, land transfer rate, and fertilizer use rate. The empirical
causality models depended on the relational model’s cointegration state. Multiple time-
dependent causalities could be included in a relational model that shows cointegration
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interactions, i.e., both long- and short-run causal linkages could be present. Hurlin et al. [60]
and Law et al. [61] proposed a method to apply the standard Granger causality test to panel
data. The specific model is as follows:

Yit =
p

∑
k=1

Y(k)Yi,t−k +
p

∑
k=1

β(k)Xi,t−k + µ× t + vit (10)

In the above formula, p represents the lag order and is a positive integer, and vit is
a random error term. The null hypothesis is H0: for any k, β(k) = 0, and the alternative
hypothesis is H1: there is k such that β(k) 6= 0. If the null hypothesis is rejected, X is the
Granger cause of Y; otherwise, X is not the Granger cause of Y. The null hypothesis can be
tested with the following statistics:

F
(SSR2 − SSR1)/p

SSR1/(T × N − N − 2p− 1)
(11)

Among it, SSR1 and SSR2 are the residual sums of squares of OLS estimates, with and
without constraints, respectively. N is the panel data width, T is the time length, and p is
the lag order.

4. Results
4.1. Results of Cross Section Correlation Test and Unit Root Test

Table 2 shows the test results of the cross section correlation. From the results, it can
be seen that the original assumption that there is no dependence between the land transfer,
fertilizer usage, and PM2.5 was rejected at the significance level of 1%, indicating that there
is a dependence. We have adopted the LLC test, IPS test, ADF test, and PP test for the
unit root test to ensure the correctness of the test. The test results are recorded in Table 3.
The results of the four test methods were consistent. The variables PM2.5, land transfer,
and fertilizer usage are not stable in level value, so there are unit roots. However, after
the first-order difference, the original unit root hypothesis was rejected at the significance
level of 1%, and all the variables were stationary sequences at the same confidence level.
Therefore, all the variables are first-order single-integer sequences, and they have the
same-order single-integer relationship with each other, which can be used for the next
cointegration test.

Table 2. Cross-sectional dependence test results.

Test Statistic Probability

Breusch–Pagan LM 2756.0190
0.0000 ***Pesaran scaled LM 78.6899

Pesaran CD 47.3619
Note: *** is significant at the level of 1%. The cross-sectional dependence test results in the third column of the
table are all 1% significant.

4.2. The Results of Cointegration Results

Kao’s residual panel cointegration test results test whether there is a long-term equi-
librium relationship between our independent and dependent variables. Table 4 shows
the results of the cointegration test. The p-value is 0.0329, and the zero hypothesis was
rejected at the significance level of 5%. The research results support a long-term equilibrium
relationship between PM2.5 pollution, land transfer, and fertilizer usage, so policy-makers
should consider all these factors when making long-term environmental policies.
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Table 3. Panel unit root tests results.

Variables Level First-Difference

Intercept Intercept and
Trend Intercept Intercept and

Trend

LLC test

LnPM2.5 0.0215 0.2195

0.0000 *** 0.0000 ***

Lnfertilizer 0.0000 1.0000
Lnlandtransferate 0.2869 0.7774

Im, Pesaran, and Shin test

LnPM2.5 0.0030 0.9886
Lnfertilizer 0.1394 1.0000

Lnlandtransferate 0.2952 0.9454
ADF-Fisher Chi-square test

LnPM2.5 0.0001 0.4311
Lnfertilizer 0.2152 1.0000

Lnlandtransferate 0.7871 0.9947
PP-Fisher Chi-square test

LnPM2.5 0.0000 0.2686
Lnfertilizer 0.0194 1.0000

Lnlandtransferate 0.5854 0.9991
Note: *** is significant at the level of 1%. The results of the four panel unit root tests after the first difference are
the same, and they are significant at the 1% level. LLC: Levin-Lin-Chu Test.

Table 4. Kao’s residual panel cointegration test results (ADF).

Null Hypothesis t-Statistics Probability

ADF No co-integration −1.8403 0.0329 **
Note: ** is significant at the level of 5%. ADF: augmented dickey–fuller test.

4.3. Stationarity Test

In order to explore the concrete relationship among PM2.5 emission, fertilizer usage,
and land transfer, this paper constructed a three-bit vector autoregressive model. Impulse
response function analysis and variance analysis can only be carried out if the stability is
satisfied. After inspection, all the root values were distributed within the unit circle (the
results are shown in Figure 3), which indicate that the PVAR model constructed in this
study has good stability.
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4.4. Fully Modified Least Squares and Dynamic Least Squares Estimation Results

The detailed results of the fully modified OLS (FMOLS) and the dynamic OLS (DOLS)
are shown in Table 5. The research results show that fertilizer usage was positively corre-
lated with PM2.5 emissions, whereas the landtransferate was negatively correlated with
PM2.5 emissions. In the long run, under the FOLS method, fertilizer usage increased by
1%, PM2.5 emissions increased by about 0.17%, landtransferate increased by 1%, PM2.5
decreased by about 0.07%, and, under the DOLS method, fertilizer usage increased by 1%.
The emission of PM2.5 increased by about 0.58%, the landtransferate increased by 1%, and
the PM2.5 decreased by about 0.08%. All the results were statistically significant at the level
of 0.01. The sign of the coefficients of FMOLS estimation and DOLS estimation was consis-
tent, which indicated that our estimation was stable and reliable. Both of them indicated
that the increase in chemical fertilizer use aggravated the environmental pollution and
worsened the environmental situation. In contrast, the increase in landtransferate helped to
alleviate the environmental problems and had a positive effect on curbing environmental
pollution. These conclusions have been confirmed in the existing literature [12,50].

Table 5. The results of FMOLS, DOLS estimation techniques: full panel.

Variables Coefficient Standard Error t-Statistic Probability

FMOLS
LNPERFERTILIZER 0.1672 0.0615 2.7184 0.0069 ***

LNLANDTRANSFERATE −0.0723 0.0130 −5.5514 0.0000 ***
DOLS

LNPERFERTILIZER 0.5841 0.1609 3.6297 0.0004 ***
LNLANDTRANSFERATE −0.0869 0.0250 −3.4839 0.0007 ***

Note: *** is significant at the level of 1%. FMOLS: fully modified least squares. DOLS: dynamic least squares.

4.5. Granger Causality Test Results

The Granger causality test is used to examine the relationship between variables and
measure whether the change of one variable is the cause of the change of another variable. The
Granger causality test results of variables are shown in Table 6. The results showed that the
amount of fertilizer use and PM2.5, land transfer and PM2.5, land transfer and fertilizer use all
showed two-way causality, and all the results were significant at the 1%-10% level, indicating
that the relationship between the three core variables is closely related and they affect each
other, especially the contribution of chemical fertilizer use to PM2.5 pollution is huge.

Table 6. Pairwise Granger Causality Tests.

Null Hypothesis F-Statistic Probability

LNPERFERTILIZER is not a cause of LNPM2.5 10.8216 0.0000 ***
LNPM2.5 is not a cause of LNPERFERTILIZER 9.4480 0.0000 ***

LNLANDTRANSFERATE is not a cause of LNPM2.5 2.3823 0.0187 **
LNPM2.5 is not a cause of LNLANDTRANSFERATE 1.8407 0.0730 *

LNLANDTRANSFERATE is not a cause of
LNPERFERTILIZER 1.8220 0.0750 *

LNPERFERTILIZER is not a cause of
LNLANDTRANSFERATE 2.3372 0.0203 **

Note: *** is significant at the level of 1%, ** is significant at the level of 5%, and * is significant at the level of 10%.

4.6. Impulse Response and Variance Decomposition

In order to measure the contribution of endogenous variables to the impact, we
analyzed the variance of variables. The results are shown in Table 7. It can be seen that
in the absence of any external influence, PM2.5 pollution had the greatest contribution
to itself. With the development of time, its influence is gradually decreasing, with the
variance explanation rate falling from 100% in the first period to about 92.15% in the 15th
period. The contribution rate of other factors is on the rise, with the contribution rate of
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chemical fertilizer and land circulation rising from 0% in the first period to 0.95% and
9.9%, respectively. Similarly, during the forecast period of the 15th period, the fertilizer
usage is mainly affected by itself, with its own contribution rate remaining above 96%.
Then, affected by the land transfer, the contribution rate reached the highest value in the
fifteenth period, which was about 3.16%. The effects of PM2.5 was not significant, and the
maximum explanation rate was only 0.58%. However, compared with the first period, the
variance explanation rate of landtransferate until the 15th period of lag increased by about
13.54 percentage points, which is path dependent. The variance explanation rate of PM2.5
in the 15th period of lag had increased by about 0.23 percentage points, whereas that of
chemical fertilizer had decreased by about 13.76 percentage points.

Table 7. Variance decomposition result.

Period Standard Error LNPM2.5 LNPERFERTILIZER LNLANDTRANSFERATE

Variance Decomposition of LNPM2.5
1 0.115135 100.0000 0.000000 0.000000
2 0.139743 99.30975 0.016292 0.673959
3 0.164213 99.45920 0.040039 0.500763
4 0.183580 99.48060 0.099349 0.420056
5 0.200954 99.30485 0.194925 0.500228
6 0.216554 98.95226 0.306540 0.741204
7 0.230904 98.44637 0.422994 1.130635
8 0.244235 97.82241 0.534944 1.642641
9 0.256733 97.11040 0.636664 2.252931

10 0.268522 96.33659 0.724818 2.938590
11 0.279692 95.52227 0.797946 3.679785
12 0.290312 94.68443 0.855882 4.459684
13 0.300434 93.83634 0.899323 5.264339
14 0.310101 92.98815 0.929495 6.082354
15 0.319346 92.14754 0.947918 6.904544

Variance Decomposition of LNPERFERTILIZER
1 0.169845 8.68 × 10−5 99.99991 0.000000
2 0.231111 0.019958 99.37400 0.606041
3 0.271837 0.014629 98.96764 1.017731
4 0.301632 0.013770 98.63929 1.346938
5 0.324492 0.021302 98.35129 1.627407
6 0.342535 0.037971 98.08514 1.876892
7 0.357054 0.064266 97.83485 2.100885
8 0.368905 0.100043 97.59800 2.301960
9 0.378686 0.145043 97.37364 2.481319

10 0.386829 0.198853 97.16129 2.639854
11 0.393660 0.260988 96.96058 2.778436
12 0.399426 0.330908 96.77104 2.898057
13 0.404321 0.408037 96.59211 2.999853
14 0.408496 0.491780 96.42313 3.085095
15 0.412074 0.581532 96.26332 3.155150

Variance Decomposition of LNLANDTRANSFERATE:
1 0.284353 0.074641 37.79296 62.13239
2 0.387579 0.056880 35.21509 64.72803
3 0.451648 0.052132 33.42575 66.52212
4 0.496082 0.061876 31.91942 68.01871
5 0.528335 0.076144 30.60939 69.31446
6 0.552514 0.094534 29.45579 70.44968
7 0.571050 0.115456 28.44131 71.44323
8 0.585521 0.138153 27.55349 72.30836
9 0.596999 0.161883 26.78174 73.05637

10 0.606232 0.186067 26.11587 73.69807
11 0.613759 0.210215 25.54577 74.24402
12 0.619968 0.233930 25.06150 74.70457
13 0.625151 0.256899 24.65341 75.08969
14 0.629522 0.278881 24.31230 75.40882
15 0.633245 0.299700 24.02956 75.67074
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The impulse response function was utilized to represent the shock-induced changes in
the variables. Figure 4 depicts the results of the responses in each variable.
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Figure 4. Impulse response plot for three variables. (a,b) are the graphs of the impulse response of
PM2.5 to fertilizer and landtransferate, (c,d) are the graph of the impulse response of fertilizer to
PM2.5 and landtransferate, (e,f) are the graph of the impulse response of landtransferate to PM2.5 and
fertilizer. Note: red lines represent the upper and lower lines of the 95% confidence interval, blue line
represents the impulse response function.
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Figure 4a,b show the impulse responses of PM2.5 to fertilizer use and land transfer.
From the results of the effect of chemical fertilizer use on PM2.5 in (a), there was a time lag
in the first period, a slight upward trend in the second period, a negative response after
the third period, and a negative number after crossing the zero axis, and finally, close to
the zero axis tended to be stable in the long term, indicating that fertilizer use increased
PM2.5 in the short term. Judging from the impact of PM2.5 on the land transfer rate, there
was a time lag in the first period, and the second and third periods had continuous positive
responses, reaching the maximum positive response (about 0.15), and after that, it had been
a negative response. Gradually increasing, indicating that in the long run, the effects of
reducing PM2.5 in the land transfer rate was more obvious, but in the short term, farmers
prefer to use chemical fertilizer rather than land transfer to obtain economic results.

Figure 4c,d show the impulse responses of fertilizer use to PM2.5 and land transfer. It
can be seen from (c) that after being impacted by one standard deviation from LnPM2.5,
LNPERFERILIZER responded positively in the first two periods, then becomes negative,
and began to stabilize after the 10th period and converged to about −0.01 for a long time.
There is a bidirectional causal relationship between PM2.5 and fertilizer use. It can be
seen from (d) that, after being impacted by one standard deviation from Lnlandtransfer-
ate, LNPERFERILIZER had a negative response in the first two periods, and gradually
converged from the third period. Land circulation reduced the use of fertilizers to a
certain extent.

Figure 4e,f are the impulse responses of land circulation to PM2.5 and fertilizer use.
The impact of PM2.5 on land transfer was small, whereas land circulation had a negative re-
sponse to fertilizer use throughout the impact period, and the negative response continued
to increase. The impact of chemical fertilizer use on land transfer is negative.

5. Conclusions and Policy Implications

Environmental pollution has become an increasingly important obstacle to the devel-
opment of all countries in the world. Alleviating air pollution has become an imminent
concern, and is also related to the realization of a better life and the sustainable devel-
opment of human beings in the future. Therefore, exploring the influencing factors and
emission reduction measures of PM2.5 emissions is of great significance. This paper studied
the causal relationship between land transfer, fertilizer usage, and PM2.5 pollution. It
considered the influence of economic development and urbanization on carbon emissions
through a whole set of empirical processes, having obtained the corresponding empirical
results.

First, the cross-sectional correlation test verified that there was a dependency between
land transfer, fertilizer use, and PM2.5. The unit root test of the panel data was carried out
using an LLC test, an IPS test, an ADF test, and a PP test to analyze the stationarity of the
variables. The test results in Table 3 showed that the variables after the first-order difference
were stationary, indicating that the LnPM2.5, Lnfertilizer, and Lnlandtransferate sequences
were single-integrated sequences of the same order, and that the PVAR model can be
regressed. At the same time, the results of the Kao test rejected the null hypothesis, “there
is no cointegration relationship between variables”, indicating a cointegration relationship
between the three variables.

In the subsequent stationarity test of the PVAR model, it can be observed that all the
reciprocals of the unit root were less than one, and the blue bullets were distributed within
the unit circle. The estimation results of FMOLS and DOLS mainly showed the influence
coefficient of chemical fertilizer use and land transfer on PM2.5. The results all showed
that fertilizer use was positively correlated with PM2.5 emissions, but land transfer was
negatively correlated with them. The Granger causality test was used to test the causal
relationship between PM2.5, land transfer, and fertilizer use. The results showed that there
was a causal relationship between the three variables, and they affected each other. The
impulse response function of the PVAR model (shown in Figure 4) more intuitively reflects
the dynamic interaction and effect size of fertilizer use on PM2.5. The conclusion is that
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fertilizer use increases PM2.5 in the short term, and variance decomposition also evaluates
the contribution rate of each variable to the fluctuation of endogenous variables.

Through the demonstration of the empirical results, the validity and significance
of putting chemical fertilizer use, PM2.5, and land circulation into the same system for
research are ensured. At the same time, it ensures the correctness of the model construction,
with no false regressions. FMOLS, DOLS estimation results, impulse response function,
and variance decomposition reached the same conclusion: that fertilizer use increased
PM2.5 emissions and brought environmental pollution. This is consistent with the research
views and conclusions of Li et al. [62], who determined that reducing agricultural NH3
emissions can effectively reduce PM2.5 pollution [63]. Xu et al. [64] believed that PM2.5
was significantly positively correlated with cultivated land area, and the fragmentation of
cultivated land was beneficial to the decrease of PM2.5. However, the correlation coefficient
between the land transfer rate and PM2.5 emissions was negative at the 1% significance
level, indicating that an increase in land transfer rate would reduce PM2.5 emissions. land
transfer has greatly increased the land scale of large-scale farmers, has improved production
efficiency [11], and has encouraged large-scale farmers to apply organic fertilizers [65],
which can alleviate some environmental problems.

Based on the above research and conclusions, the following policy recommendations
are put forward: (1) The government should actively promote and accelerate land transfers
so that future land operations will develop on a large scale. At the same time, it should
ensure the stability of land transfer quality and management rights to protect large-scale
farmers’ rights and interests, encourage them to replace chemical fertilizers with organic
fertilizers, and pursue the long-term interests of the land. (2) Optimize land use to actively
promote ecological land improvement; improve extensive agricultural management; estab-
lish farmers’ awareness of the multidimensional balance between social, economic, and
ecological benefits; and reduce PM2.5 pollution to improve air quality. (3) Implement a
land rotation system, reduce agricultural production intensity, attach importance to the
treatment and effective control of crop fertilizer residues, increase technology research and
development, and use various advanced technologies to control agricultural ammonia
emissions.

This study still has some limitations, such as using the PVAR model to treat the
research variables as endogenous variables, ignoring that other activities (such as industrial
activities) in the sample area may also increase PM2.5 pollution. Considering other factors
that may affect PM2.5 pollution is a direction for further research.
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