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Aims

and results

A widely practiced intervention to modify cardiac health, the effect of physical activity on older adults is likely
heterogeneous. While machine learning (ML) models that combine various systemic signals may aid in predictive
modelling, the inability to rationalize predictions at a patient personalized level is a major shortcoming in the cur-
rent field of ML.

We applied a novel methodology, SHapley Additive exPlanations (SHAP), on a dataset of older adults n=86
(mean age 72 =4 years) whose physical activity levels were studied alongside changes in their left ventricular (LV)
structure. SHAP was tested to provide intelligible visualization on the magnitude of the impact of the features in
their physical activity levels on their LV structure. As proof of concept, using repeated K-cross-validation on the
train set (n = 68), we found the Random Forest Regressor with the most optimal hyperparameters, which achieved
the lowest mean squared error. With the trained model, we evaluated its performance by reporting its mean abso-
lute error and plotting the correlation on the test set (n = 18). Based on collective force plot, individually numbered
patients are indicated on the horizontal axis, and each bandwidth implies the magnitude (i.e. effect) of physical
parameters (higher in red; lower in blue) towards prediction of their LV structure.

As a tool that identified specific features in physical activity that predicted cardiac structure on a per patient level,
our findings support a role for explainable ML to be incorporated into personalized cardiology strategies.
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Graphical Abstract

Key question(s)

This study explored whether
explainable machine learning
techniques could identify and
explain features in physical activity
that predicted cardiac structure on
a per patient level for older adults.

Key finding(s)

In a proof-of-concept study that
included 86 older adults, a novel
approach using Shapley Additive
Explanations (SHAP) methodology
provided intelligible visualization
on the magnitude of the impact of

Take-home message

There is practical clinical value in
incorporating explainability tools
such as SHAP into machine
learning prediction.
Interpretability may have a role in
enhancing personalized medicine

the features in their physical strategies.
activity levels on their cardiac
structure.
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Introduction

Currently, multiple groups are working on developing machine
learning (ML) techniques for cardiovascular disease." A com-
mon theme across this rapidly burgeoning field is the experimen-
tal use of heterogeneous methodologies. While the pursuit to
fine-tune ML models in disease prediction is an ongoing one, there
is far less work on operationalizing these models for future clinical
translation.

Backed by power in large datasets present in population-based
healthcare, we anticipate immense potential for ML to influence
healthcare goals of interest to large population sets. The field of
physical activity is a prime example, where strategies personalized to
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individuals will likely have widespread healthcare impact. Physical ac-
tivity has an important role in modulating the impact of population
ageing on cardiovascular disease as well as ageing-related declines
in muscle mass and overall function.* However, there is wide interin-
dividual variation in responses to physical activity.®

As physical activity is a major modifiable lifestyle factor that can
mitigate ageing-related changes in cardiovascular function in conjunc-
tion to sarcopenia and frailty, focusing work from ML to personalize
physical activity strategies is likely impactful.

In this work, we applied the SHapley Additive exPlanations
(SHAP) methodology on a dataset of older adults whose physical ac-
tivity levels were studied in conjunction with changes in their left ven-
tricular (LV) structure. We hypothesize that intelligent visualization
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of physical factors of greatest impact on LV structure by the SHAP
approach would identify unique features on a per patient level.

Materials and methods

Study population

We studied data from a random pilot sample of human subjects recruited
from the Cardiac Ageing Study (CAS).® a prospective study initiated in
2014 that examines characteristics and determinants of cardiovascular
function in elderly adults. The current study sample consisted of men and
women who participated in the baseline CAS 2014-2017 examination
who had no self-reported history of physician-diagnosed cardiovascular
disease (such as coronary heart disease, atrial fibrillation), stroke, or can-
cer. Written informed consent was obtained from participants upon en-
rolment. The SingHealth Centralised Institutional Review Board (CIRC/
2014/628/C) had approved the study protocol.

Subjects underwent transthoracic echocardiography. Briefly, echocar-
diography was performed using ALOKA a10 with a 3.5 MHz probe. In
each subject, standard echocardiography, which included 2D, M-mode,
pulse Doppler, and tissue Doppler imaging, was performed in the stand-
ard parasternal and apical (apical four-chamber, apical two-chamber, and
apical long) views, and three cardiac cycles were recorded. Left ventricu-
lar ejection fraction and LV mass were measured. From the parasternal
long-axis view, LV dimensions were assessed and LV mass was calculated
using the Devereux’s formula.” All measurements were measured by the
same operator, and the measurements were averaged over three cardiac
cycles and adjusted by the RR interval.

Machine learning

With the collected data, the participants’ physical functional parameters
were identified and grouped together as features (Supplementary mater-
ial online, Appendix SA). They were then used to predict the target vari-
able, LV mass. The dataset was randomly divided, with 80% used for
training (n = 68) and 20% used for testing (n = 18). Missing feature data
were also replaced with mean values.

The Random Forest (RF) is an ML technique based on a collection of
decision trees.® Given our small dataset, RF is a suitable choice of model
because it can handle large numbers of variables with relatively small
numbers of observations.” The RF does this by including many trees, in
which each tree is generated for a portion of the data which is randomly
sampled with replacement. Each tree generates an output and the RF in-
ference is determined according to the aggregate of the output from the
different trees. The ability of the RF to deal with a non-linear boundary
and the combination of outputs from multiple trees allows the technique
to give an accurate output.®

In our approach, we used grid search and four-fold cross-validation on
the train set to find the optimal RF Regressor, which had the lowest mean
validation mean squared error. The final tuned parameters were listed in
Supplementary material online, Table ST1. With the trained model, we
evaluated its performance by reporting its mean absolute error and plot-
ting the correlation on the test set.

Using SHAP to interpret model

SHAP was used as a unified framework to interpret model predictions.
Specifically, we used Tree SHAP, a variant of SHAP to provide explana-
tions for the individual predictions made by RF. We created waterfall and
individual force plots, where each feature value was visualized as a force

that either increases or decreases the base value. Shapley values were
aggregated to provide global importance.

Results

We used RF regression to analyse the dataset and complemented it
with SHAP to interpret the output. The objective is to rank variables
by local and global importance, for determining LV structure, among
a cohort of community older adults involved in physical activity.

The baseline clinical characteristics and cardiovascular measure-
ment of the study population are described in Table 1.

Based on the test set (Figure 1), there is an observed correlation
between the predicted and actual values with R? value of 0.67. Both
curves follow each other closely and an acceptable mean absolute
error of 18.917 (<1 SD of 47.704 for the test set distribution). This
implies that our RF model is moderately accurate at predicting the
LV mass.

Based on the train set (Figure 2), basal metabolic rate (BMR) was
the most important feature in determining the LV structure due to its
greatest average impact on the model output, as indicated by the
mean absolute SHAP values. Other features such as appendicular
lean mass (ALM) were found to have unimportant as their mean
SHAP values were zero. As a more informative alternative, Figure 3
describes the relationship between the features and their global im-
pact based on the computed SHAP values for each instance. For ex-
ample, higher BMR contributed to a larger LV mass, showing positive
correlation. This is because a high BMR feature value (in red) maps to
a higher positive SHAP value, which is equivalent to the positive
change in value from the expected LV mass prediction for that obser-
vation. On the other hand, a low BMR feature value (in blue) general-
ly maps to a lower SHAP value that falls within the left distribution,
where most of them correspond to a negative contribution to the
expected output.

Based on the test set (Figure 4), the SHAP TreeExplainer visually
provides local interpretability to a model’s prediction for an individual
patient in two related flavours. Figure 4A can be thought of as the
decomposed version of Figure 4B, detailing the model’s decision in a
sequential manner. This is because each of the feature contribution
can be independently calculated using SHAP values and then summed
up to give the final prediction. For example, when predicting the LV
mass for Patient #6, a BMR feature value of 1516 contributed a cor-
responding SHAP value of 13.04, resulting in a final predicted LV
mass of 132. It can also be observed that the effect of BMR for this pa-
tient outweighs other weaker positive factors [e.g. Lean T and arm
mass (Lean LA)] and negative factors [e.g. skeletal muscle mass
(SMM) and body fat mass (BFM)].

Individual force plots can also be combined to produce stacked
SHAP explanations, which can be arranged according to their original
ordering (Figure 5) or clustering similarity (Supplementary material
online, Figure SA). Based on the test set, Figure 5 resembles the line
plot for the predicted values in Figure 1, where the vertical axis
describes the predicted LV mass by the RF Regressor while the hori-
zontal axis shows the original patient ordering. Each band width
implies the magnitude (i.e. effect) of physical parameters (higher in
red; lower in blue) towards prediction of their LV structure. Again,
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Table I Baseline clinical characteristics and cardio-

vascular measurements of the study population 300 —
Study "':p'ed
population e
(n=86)
................................................................................................. Y 200 A
Clinical covariates 1;?'
Age, years 72 (42) 150 |
Female sex (%) 43 (50) A
Weight, kg 59.6 (10.7) e V\/\
Systolic blood pressure, mmHg 150 (37.1)
Diastolic blood pressure, mmHg 73 (10.7) 01 2345678 91011121314 151617 18
Pulse, beats per minute 74 (13.0) Patient Number
Physical functional parameters Figure | Line plots comparing the true and predicted left ven-
Skeletal muscle mass, kg 220 (46) tricular mass by the Random Forest Regressor on the test set.
Body fat mass, kg 19.3 (6.8)
Percentage body fat, % 31.4 (8.0)
Waist-hip ratio 0.9 (0.06)
Fitness score 66.2 (9.2)
Basal metabolic rate, kcal 1255 (167.2)
Arm mass, kg 2.0 (.5) BMR
Trunk mass, kg 18.3 (34) Lean LA
Appendicular lean mass, kg 16.4 (3.8) SMM
Cardiac measurements by echocardiography Lean_T
Interventricular septum thickness at 0.8 (0.1) BFM
end-diastole (IVSD) (cm) PBF
Interventricular septum thickness at 12(02) s 6F 13 vibver o sbiras |96
end-systole (IVSS) (cm) 3
Left ventricular internal diameter 4.4 (0.5) PSS
end-diastole (LVIDD) (cm) Figure 2 Bar plot consisting of features sorted by their import-
Left ventricular internal diameter 24(0.5) ance, which is measured as the mean absolute SHapley Additive
end-systole (LVIDS) (cm) exPlanations values, within the train set.
Left ventricular posterior wall 0.8 (0.1)
end-diastole (LVPWD) (cm)
Left ventricular posterior wall 14(0.2)
end-systole (LVPWS) (cm)
Left ventricular outflow tract (LVOT) (cm) 2.1 (0.3) High
Aortic diameter (AO), cm 3.0 (0.5) BMR <@ —
Left atrium (LA) (cm) 3.6 (0.6) —_— e
Left ventricular ejection fraction (LVEF) (%) 75(7.3) —_ s~ %
Left ventricular fractional 44 (6.8) Lean T - ;
shortening (LVFS) (%) il >~ §
Left ventricular mass, g 119 (42.7) Faf A
Left atrial volume, mL 36 (12) Wi !
Peak velocity flow in early diastole 0.6 (0.1) . | i i ] i i ki
E (MV E Peak)v m/s - S:AP vaI:lOe (Imp::t on mifdel nu:oput) N
Peak velocity flow in late diastole by 0.8 (0.2)
atrial contraction A (MV A peak), m/s Figure 3 Summary plot describing the relationship between the
Ratio MV E peak: MV A peak 09 (03) value of the feature and the impact on the prediction within the
Mitral valve flow deceleration 200 (31) train set. Only the top seven features were displayed.
time (MV DT) (ms)
Pulmonary artery systolic pressure 27 (6.4)

(PASP) (mmHg)

using Patient #6 as an example, BMR was observed to be the single

S e R T S, predominant positive factor on LV mass, outweighing other weaker

positive factors and negative factors. In contrast, LV mass in Patient
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Figure 4 SHapley Additive exPlanations provides explainability to the predicted left ventricular mass of the black box Random Forest Regressor

for Patient #6 in the form of waterfall plot (A) and individual force plot (B).

Figure 5 Collective force plot for test set based on original patient ordering. The plot has been superimposed to show the impact of the physical

functional parameters for Patients #6 and #11.

#11 was predicted jointly by several positive factors (e.g. SMM, BMR,
Lean T). This suggests that intervening on these prominent physical
functional parameters (in red) would more likely improve the cardiac
health state of Patient #11, as opposed to Patient #6 who has less de-
terministic parameters.

A heatmap plot with the same clustering order, yielding the same
curve can also be presented (Supplementary material online, Figure
SA). In both figures, clinicians can see that Patients #6, #8, and #12
were grouped as similar instances (renamed as instances 1, 2, and 3,
respectively) due to their comparable features after clustering. The
clinicians can therefore infer that these patients in the same subgroup
can be characterized as having similarly high BMR as the main

contributor to their poor cardiac outcome, which also suggests activ-
ities that can lower their BMR may be effective for this group of
patients.

Discussion

In this exploratory work, we demonstrated the utility of SHAP to en-
hance interpretation of factors associated with physical activity and
cardiac structure.

In contrast to vast volumes of work performed on optimizing
model accuracy,F3 ML work on model interpretability is scarce.
However, our work adds to recent work by a handful of others who
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recognize the value of SHAP for model interpretation. In the field of
cardiology, Lu et al."® used XGBoost regression in conjunction with
SHAP analyses to identify heart failure clinical subtypes based on
electronic health records. Their model utilized structured data from
electronic health records to aid clinicians in detecting heart failure
stages but did not include other clinical information. In our work, we
studied clinical parameters in conjunction with patient-specific LV
structure and determined the relative importance of patient-specific
factors. The use of transthoracic echocardiogram'” as an imaging test
of choice for LV assessment is an added novelty of our work.
Similarly, another recent study used SHAP approach to depict
electrocardiographic features associated with LV geometry.'* Taken
together, innovative solutions that combine clinical parameters with
detailed cardiovascular imaging may represent novel approaches for
ML interpretation.

The existing gaps in ML work that are geared towards visual inter-
pretation present fresh opportunities for this field. In a large review
comprising of 103 cohorts and over 3 million individuals,™® most stud-
ies in ML only reported the best performing models and evaluation
metrics that were suited to their own dataset. While these methods
should continue to form the backbone of ML work, stronger em-
phasis on interpretability could further enhance clinical applications.
The clinicians also may be able to better corroborate findings across
different studies despite the technical heterogeneity (e.g. hyperpara-
meter selection, data partitioning). In this study, we showed that the
RF regression model performed well in predicting the LV mass using
a set of physical functional parameters, and further demonstrated the
use of SHAP as a visualization tool to provide informative plots based
on explanations that justify the model’s decision.

As a unified framework for interpreting model predictions, SHAP
is associated with three key desirable properties, namely local accur-
acy, missingness and consistency.'* These properties make SHAP a
superior method over other attribution methods such as Local
Interpretable Model-Agnostic Explanations (LIME)."> On a local level,
individual force plot and waterfall plot can be created for every in-
stance, where each feature value can be visualized as a force that
either increases or decreases the base value (i.e. the average of all
predictions). Furthermore, all the individual force plots can also be
stacked horizontally to produce a collective force plot and placed
side by side according to clustering similarity, allowing clinicians to
easily identify groups of similar instances.

As an extension, Shapley values can also be aggregated to provide
global interpretability. Global importance can be calculated by sum-
ming the absolute Shapley values per feature across the data as a way
of quantifying the marginal contribution of each predictor towards the
target variable. By sorting the features in decreasing order of import-
ance, the feature importance plot allows clinicians to visualize the most
important features that require more attention. It is critical to point
out that the implementation of SHAP, which is based on the magnitude
of feature attributions, is different from the permutation feature im-
portance, which is based on the decrease in model performance.

SHAP also offers summary plot, which may be more informative as
it combines feature importance with feature effects as well as shows
the relationship between the value of a feature and its impact on the
prediction from a more global perspective. Finally, a heatmap can
also be plotted, which allows for data in two dimensions. The variable

feature importance is sorted in descending order along the vertical
axis and uses hot-to-cold scheme to reflect the features’ contribu-
tions towards the predictions for the instances that lie on the
horizontal axis.

The potential impact of local explanations for ML models is
profound. The incorporation of an explainability tool like SHAP
into clinical workflow is especially important in overcoming the
resistance of adopting such black box models due to the perils of
blindly trusting their outputs at face value. Understanding why
these algorithms make certain predictions is just as crucial as their
accuracy because it facilitates transparency and can assist the
clinicians to make more informed decisions. The upshot of this im-
plementation is that patient outcomes may improve. Further
research in this area is needed.

Our exploratory work may be limited by a small dataset.
However, the goal of this exploration was to determine suitable
ML methods to present data in clinically useful ways, rather than
on model accuracy. In the area of interpretability, we have con-
fined our results to using SHAP methodology. We acknowledge
that there may be other methodology for interpretability, such as
LIME,"® counterfactual fairness,'”” and justification narratives'®
that are available in the wider Al field. However, in our task which
requires the measurement of feature importance for the clinicians
to interpret, SHAP stands out as the only additive feature attribu-
tion method that satisfies the two key properties of consistency
and accuracy.™

Conclusion

There appears to be practical clinical value in incorporating explain-
ability tools such as SHAP into ML prediction. Interpretability may
have a role in enhancing personalized medicine strategies. With some
guidance, the generated SHAP plots are easy to understand with the
well-designed colour variations and intuitive labels, even for a layman
without any background in ML. The SHAP AP is also publicly avail-
able and well-documented,’® hence it can be easily integrated into
any user interface that supports python. We hope our work provides
the motivation for the medical industry to begin incorporating such
explainability tools into their workflow with the overall goal of
improving personalized medicine.

Supplementary material
Supplementary material is available at European Heart Journal — Digital

Health online.
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