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A B S T R A C T   

Bruton tyrosine kinase (BTK) is involved in a multifarious inflammatory and autoimmune process. As a result, 
BTK has emerged as a promising novel remedial target for amalgamated autoimmune diseases. Medicament 
corporations have recently devoted considerable attention to the evolution of BTK inhibitors. Pemphigus is an 
uncommon and often fatal autoimmune illness. Blisters and erosions on cutaneous surfaces and mucous mem
branes are crippling symptoms of pemphigus vulgaris, which are caused by immunoglobulin G autoantibodies 
binding to keratinocyte proteins, resulting in keratinocyte adhesion defects. Although systemic corticosteroids 
and adjuvant medications are used to treat pemphigus, some patients are resistant to these. BTK inhibitors inhibit 
B-cell signaling, which is clinically useful in treating pemphigus. Assorted clinical trials are underway to assess 
the safety, tolerability, and pharmacokinetics of distinct BTK inhibitors, including PRN473 and remibrutinib. The 
current review evaluates translational autoimmunity in pemphigus and discusses BTK inhibitors in the treatment 
of pemphigus.   

1. Introduction 

Immunoglobulin G (IgG) autoantibodies, in contrast to epidermal 
adhesion proteins, cause pemphigus, a severe autoimmune disease. 
These autoantibodies append to the epidermal adhesion protein des
moglein (Dsg), culminating in intraepidermal blistering, acantholysis, 
and erosion in the relevant fields [1,2]. Pemphigus can be classified into 
various subtypes. Pemphigus vulgaris (PV), which causes agonizing oral 
erosions, and pemphigus foliaceus (PF), which causes skin lesions, are 
the two primary categories. A few types of this disease can be lethal if 
left untreated [3]. 

During the induction stage of pemphigus, high-dose of oral cortico
steroids (CS) are indicated as first-line treatment, with decreasing doses 
throughout the maintenance period, according to Japanese recommen
dations [4]. Treatment of pemphigus involves the administration of a 
low-dose oral steroid to maintain remission. Prednisolone is the pre
eminent preference for introductory therapy during the consolidation 
phase. If the treatment outcomes are deduced to be clinically irresolute, 
other approaches such as steroid pulse therapy, immunosuppressants, 
intravenous immunoglobulin treatment at a high dose, and plasma ex
change should be considered. Despite the use of these standard treat
ments, achieving remission remains a challenge. Furthermore, many 
individuals who respond to these traditional treatments have various 

adverse effects [5]. Refractory instances of treatment with rituximab 
have been recently reported. However, not all patients benefit from 
rituximab because of the risk of dangerous adverse effects and long-term 
B-cell depletion [6]. Furthermore, multi-hour rituximab infusion de
pletes abundant healthcare assets and is awkward for patients [7,8]. As a 
result, state-of-the-art therapeutic approaches with contrastive modus 
operandi are required [9]. Bruton tyrosine kinase (BTK), a crucial 
modulator of B-cell receptor (BCR) signaling, curtails costimulatory 
molecule expression, BCR-aroused propagation, and antibody 
manufacturing in B-cells [10–12]. Therapeutics for B-cell reduction have 
determined that BTK is a primary factor in the pathogenesis of 
pemphigus [13]. This review aimed to evaluate translational autoim
munity in pemphigus and the effectiveness of BTK inhibitors in the 
management of pemphigus. 

2. Methodology 

Using the appropriate key terms, a literature search was conducted in 
the following databases: PubMed, MEDLINE, Scopus, Google Scholar, 
and Cochrane. The author primarily searched for articles about auto
immunity in pemphigus and aspects of BTK inhibitors in its manage
ment. Fig. 1 shows the results of the initial literature search, which 
yielded 562 publications. All published articles were reports describing 
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the role of BTK inhibitors in the treatment of pemphigus; articles pub
lished in the English language were included in this review (Fig. 1). 

3. Public health and pemphigus 

PV is the most common subtype of pemphigus, with a predisposition 
towards Ashkenazi Jews [14–16]. This has been linked to the ubiquity of 
stipulated HLA class II genes in Jewish individuals [17]. 

In the Caucasian population, the incidence of sporadic PF is 0.04 per 
100.000 people yearly. Only approximately 20% of pemphigus cases are 
of sporadic PF type [15,17]. Many HLA alleles are affiliated with higher 
risks of PF [18,19]. 

4. Bruton tyrosine kinase enzyme 

BTK is an important regulator of immunity because of its role in the 
maintenance of B-cells and immune cells related to innate immunity. It 
is an essential component of BCR, Fc receptors, and other innate im
munity related pathways [20,21]. Additionally, BTK is necessary for Ab 
(IgG and IgE)-mediated immune complex signaling through the con
corded FcgR and FceR signaling pathways [20,21]. The importance of 
innate immune cells in immunologically mediated dermatological 

diseases is unappreciated [9,22]. In such cases, neutrophils, eosinophils, 
and mast cells are activated and accumulate in the lesioned skin, which 
is ordinarily identical to tissue impairment and disease acerbity, and 
myriad BTK-reliant cells lead to cutaneous inflammation [9,22]. These 
resident and trespassing immune cells can be treated topically or 
systemically. 

BTK inhibition has been proven in preclinical research to determine 
the specificity of immune-mediated cutaneous disorders. BTK inhibitors 
have been demonstrated to curtail proteinuria, the kidney microenvi
ronment, and cutaneous brims in heterogeneous rodent models of 
arthritis and lupus [7,8]. In representations of the Ab-induced Arthus 
reaction and murine passive cutaneous anaphylaxis, BTK inhibitors also 
prevent acute skin inflammation and vasculitis [23]. BTK inhibition has 
been detailed in clinical trials as an effective treatment for various B-cell 
cancers [10]. Ibrutinib, acalabrutinib, and zanubrutinib are the only 
three covalent BTK inhibitors approved by the FDA for use in patients 
with B-cell malignancies and autoimmune disorders [11]. Diverse orally 
administered BTK inhibitors, including fenebrutinib, rilzabrutinib 
(PRN1008), remibrutinib, tolebrutinib (PRN2246/SAR442168), and 
evobrutinib, are available for treatment of various immune-mediated 
diseases, including multiple sclerosis and pemphigus [7,24]. 

PRN473 is a BTK covalent impediment molecule that has been 

Fig. 1. PRISMA flow chart.  
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applied topically and has been created with tailored covalency to show 
durable and transitional BTK binding [24,25]. PRN473 binds to BTK 
with both noncovalent and covalent interactions, resulting in increased 
efficacy and perpetuation, but reduced coupling to off-target kinases 
[24]. Because PRN473 hinders the development and progression of 
immune-mediated skin diseases, topical administration is important in 
cutaneous disorders. This results in a local therapeutic effect, with the 
least amount of systemic unfolding. PRN473 curbs mast cell and baso
phil activation induced by IgE (FceR), monocyte activation induced by 
IgG (FcgR), and neutrophil migration mediated by IgG (FcgR) [26]. 
When administered to treat canine PF, oral PRN473 showed potential 
and a decent tolerance profile [27]. 

5. Translational autoimmunity in pemphigus 

In pemphigus, CD4 autoreactive T cells targeting Dsg proteins initi
ates an autoimmune cascade in genetically susceptible individuals, and 
evokes B lymphocytes to synthesize anti-Dsg antibodies [28]. 

In PV and PF, precise point antigen autoantibodies promote kerati
nocyte detachment (acantholysis) and blister development (PF). Dsg3 
was observed to be located deep in the epidermis, whereas Dsg1 was 
observed in the superior stratum of the epidermis. However, when both 
forms of Dsgs exist, only one form is inhibited, while contrasting objects 
will recoup. When a monomeric configuration of Dsg exists, autoanti
body activity in the lesions ceases. In distinct pemphigus forms, this 
rationale explains the observation of target antigen-specific autoanti
bodies found in the skin and mucosa inequitably [29]. These phenomena 
are illustrated in Fig. 2. 

A definite mechanism of acantholysis development in pemphigus is 
still being investigated. Three factors resulting from the binding of anti- 
Dsg IgG are reported: desmosomal activity is lost, blisters form as a 
result of Dsg trans-interaction due to steric obstruction, and amended 
outside-in signaling by pemphigus autoantibodies [28,29]. 

Pemphigus is also recognized as a desmosome-redesigning disease 
because superstratum Dsg maintenance undergoes remodeling, resulting 
in the lack of this surface protein. A decrease of Dsg initiates develop
ment of acantholysis. Desmosomes are further susceptible to post
liminary depletion processes as their adherence activity decreases [30]. 

Pemphigus IgG-induced acantholysis occurs due to the stimulation of 
keratinocyte intracellular signaling pathways; cytoskeletal architectures 
are disrupted by this signaling phenomenon. These contrasting charac
teristics are not similar to other adhesion proteins. Ca2+ influx occurs 
when Dsg1 is targeted [31–34]. 

PV IgG tethers to Dsg3 and activates desmosomal signaling path
ways, stimulating heat shock protein (HSP27) and p38 mitogen- 
activated protein kinase (MAPK), in addition to cytoskeletal disen
gagement. These observations come from studies that adopted PV Dsg-3 
autoantibodies to activate desmosome signaling in human keratinocyte 
cells. Both p38MAPK and HSP27 are involved in the maintenance of 
cytoskeletal components, such as actin and intermediate filaments. 
These findings imply that signaling is effective in PV IgG-induced 
acantholysis. Eventually, restraining desmosome signaling by HSP27 
and p38MAPK phosphorylation has been considered as a prospective 
therapeutic strategy for PV [35]. 

The above-mentioned PV IgG mediated internalization of surface 
proteins takes only a few hours. In mouse models of pemphigus, 
p38MAPK regulates surface Dsg3 internalization and degradation [36]. 
Downregulation of Dsg enhances intracellular adhesion and mitigates 
the acantholytic effects of pathogenic IgG [37]. 

In the epidermis of pemphigus patients, activation of intracellular 
signaling pathways mediated by HSP27 and p38MAPK was also 
observed, which was evident from the increased phosphorylation of 
these two proteins [38]. Dermal infiltrates in pemphigus lesions 
encompass interstitial and perivascular neutrophils and eosinophils, 
which are mobilized by the innate immune system. Correspondingly, 
therapeutic targets are found not only in adaptive but also in innate 
immune pathways. The advantage of using BTK inhibition to treat 
pemphigus is that a selective BTK inhibitor can target heterogeneous 
autoimmunity pathways, such as inhibition of monocyte and macro
phage cytokine release caused by FcR, BCR-mediated B-cell pathways 
modulation, neutrophil passage, mediator absolution, and FcR-induced 
mast cell degranulation. 

6. Role of BTK in the treatment of pemphigus 

In clinical trials, BTK inhibition has been an effective remedy for an 

Fig. 2. Interplay of activated T cells and activated B cells setting of BTK-mediated anti-DSG antibodies which ultimately culminates in acantholysis of pemphigus.  
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array of B-cell malignancies. PRN473 is a BTK covalent blocker that has 
been utilized topically and has been created with customized covalency 
to show stable, reversible BTK binding [36,37]. PRN473 binds to BTK 
with both noncovalent and covalent contacts, resulting in high potency 
and sustained inhibition but sparse binding to off-target kinases [36]. As 
PRN473 inhibits the initiation and progression of immune-mediated 
cutaneous diseases, topical administration is especially significant. 
This produces localized therapeutic effects with the least systemic 
vulnerability. PRN473 inhibits mast cell and basophil activation medi
ated by IgE (FceR), monocyte activation mediated by IgG (FcgR), and 
neutrophil migration mediated by IgG (FcgR) [38]. Oral PRN473 
showed effectiveness and a good tolerance profile in a canine model 
[39]. A phase 2 trial evaluating the effectiveness, tolerance profile, and 
pharmacokinetics of PRN473 in patients with mild to moderate atopic 
dermatitis is ongoing. 

6.1. Ibrutinib 

BTK inhibition was first used to treat pemphigus in an elderly patient 
with chronic lymphocytic leukemia (CLL) and acquired paraneoplastic 
pemphigus (PNP). Ibrutinib was administered to manage his CLL con
dition, and his pemphigus lesions ameliorated substantially as a result. 
This showed that ibrutinib could for treatment of pemphigus thera
peutics [39]. A case study by Ito et al. [40] reported that a composite of 
ibrutinib and rituximab significantly treated PNP in a 62-year-old man. 
Furthermore, a few case reports have shown the efficacy of rituximab in 
patients with PNP associated with B-cell lymphomas [41,42]. 

6.2. Rilzabrutinib 

Rilzabrutinib (PRN1008) is a robust BTK inhibitor with unique 
reversible covalent binding that potentially bolsteres the safety of this 
molecule in contrast to irreversible BTK inhibitors such as ibrutinib. In a 
phase 1 study, oral rilzabrutinib was well-tolerated by 62 healthy vol
unteers. During the trial, no serious adverse effects occurred. However, 
mild side-effects are frequent and mostly related to the gastrointestinal 
system [43]. A distinct BTK inhibitor, PRN473, exhibited promise in 
animal studies, but was less effective compared to rilzabrutinib in 
humans [27]. The FDA has granted rilzabrutinib orphan drug status for 
the cure of PV cases [44]. In a canine model PF study, during the first 
two weeks of treatment with rilzabrutinib, all dogs demonstrated 
reduction in lesions and canine PDAI score, and by 20 weeks, all dogs 
had attained near-complete remission [45]. Rilzabrutinib, singularly or 
amalgamated with low doses of CS, was found to be safe in patients with 
PV and had an efficient and fast clinical response [46]. Currently, phase 
3 trials (PEGASUS; NCT03762265) on the efficacy of rilzabrutinib with 
CS in the treatment of PV are ongoing. 

6.3. Tirabrutinib 

Tirabrutinib hydrochloride (ONO/GS-4059), also known as tira
brutinib, is a broad-range oral BTK inhibitor, which has recently been 
licensed in Japan for the treatment of plasma cell lymphoma, primary 
lymphoma of the central nervous system, and Waldenstrom macro
globulinemia [3]. Tirabrutinib inhibits increase in culprit protein levels 
in lupus-prone animal and human B-cells and reduces 
stimulation-induced IgG production (unpublished findings) [47]. This 
molecule is designed to inhibit the IgG autoantibody-mediated signaling 
pathway involved in the pathogenesis of pemphigus pathogenesis and 
provide an alternative therapy for resistant pemphigus. Yamagamia 
et al. [3] conducted a phase II trial to evaluate the safety and efficacy of 
tirabrutinib in patients with refractory pemphigus. Sixteen patients were 
included in this study. After 6 months of treatment, the primary 
endpoint was reached in 18.8% of all patients (3/16; 95% confidence 
interval, 6.6%–43.0%). Eight patients (50%) achieved complete remis
sion by week 52, while 10 patients (62.5%) achieved remission. 

6.4. Remibrutinib 

Remibrutinib (LOU064) is an orally administered, covalent BTK in
hibitor. Remibrutinib is a novel type of enzyme blockers with high 
specificity and potency. As a result, remibrutinib has fewer side-effects 
than its ancestor molecules [48]. CD203c inhibition was used to assess 
basophil suppression by remibrutinib, with positive outcomes observed 
with a 2/day dose [49]. Kaul et al. [50]. reported that remibrutinib 
exhibited promising blood and cutaneous pharmacodynamics with an 
encouraging safety profile, providing alternative therapeutic options for 
diseases driven by B cells, basophils, and mast cells, such as Sjögren 
syndrome, allergic asthma, and chronic spontaneous urticaria. A phase 1 
trial assessing the safety and tolerability of remibrutinib in healthy 
volunteers and volunteers with atopic diathesis and atopic dermatitis is 
ongoing. A phase 2 trial of remibrutinib was conducted to examine the 
efficacy and safety of the drug in adults with chronic spontaneous ur
ticaria (CSU) who were not managed with H1-antihistamines. In addi
tion, a phase 3 trial of remibrutinib to investigate the efficacy, safety, 
and tolerability for 52 weeks in adult patients with CSU inadequately 
controlled by H1-antihistamines will be initiated. 

A summary of contemporary evidence on BTK inhibitors for 
pemphigus is presented in Table 1. 

7. Conclusion 

Pemphigus refers to a range of autoimmune blistering disorders that 
damage the mucous membranes and skin. The disease shows frequent 
recurrence and presents a major threat to patients’ quality of life. BTK 
plays an important role in the immune system. Targeting translational 
autoimmunity in pemphigus using BTK inhibitors is an exciting research 
topic. Compared to rituximab, other BTK inhibitors offer a novel 
archetype for the treatment of autoimmune disorders. The persistent 
clinical morbidity burden and potential fatality in patients with 
pemphigus have encouraged clinical dermatologist to look beyond 
routine care. This pursuit of better management of patients with pro
tracted pemphigus can end with BTK inhibitors. However, more RCTs 
are required to further analyze the safety and efficacy of BTK inhibitors. 
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Table 1 
Bruton tyrosine kinase inhibitors in pemphigus [3,40,43,46].  

Medicine 
name 

Study 
phase 

Clinical trial identifier and end point 

Rilzabrutinib 
PRN1008 

Phase I ACTRN12614000359639 
Orally administered rilzabrutinib was well-tolerated, 
safe, and attained high levels of Bruton tyrosine kinase 
in peripheral mononuclear cells 

Phase II NCT02704429 (completed) 
Rilzabrutinib alone, or with lower corticosteroid 
doses, was safe, with rapid activity in pemphigus 
vulgaris. 

Phase III NCT03762265 (active, not recruiting) 
Tirabrutinib 

GS-4059 
Phase II JapicCTI-184231 

Tirabrutinib was safe, augmented remission and 
lessened required corticosteroid dose in cases of 
refractory pemphigus. 

Ibrutinib Case- 
study 

Ibrutinib combined with rituximab fully treated the 
paraneoplastic pemphigus  
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