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ABSTRACT
Spatially distributed high-resolution data of land surface tempera-
ture (LST) and evapotranspiration (ET) are important information
for crop water management and other applications in the agricul-
tural sector. While satellite data can provide LST high-resolution
data of 100 m, the current development of unmanned aerial
systems (UAS) and affordable low-weight thermal cameras allows
LST and subsequent ET to be derived at resolutions down to
centimetre scale.

In this study, UAS-based images in the thermal infrared (TIR)
and visible spectral range were collected over a managed tempe-
rate grassland in July 2016 at the Terrestrial Environmental
Observatories Networks TERENO preAlpine observatory site at
Fendt, Germany. The UAS set-up included a lightweight thermal
camera (Optris Pi Lightweight) and a regular digital camera (Sony
α 6000) that allowed for the acquisition of thermal and optical
images with a ground resolution of 5 cm and 1 cm, respectively.
Three TIR-based ET models of different complexity were applied
and the resulting ET estimates were compared to the Eddy covar-
iance (EC) observations of turbulent energy fluxes and also to the
evaporative fraction. While the Deriving Atmosphere Turbulent
Transport Useful To Dummies Using Temperature
(DATTUTDUT) model and the Triangle Method belong to the
group of simpler contextual models, the Two-Source Energy
Balance (TSEB) model incorporates a more physically based for-
mulation of the surface energy balance. In addition to the com-
parison of UAS-based estimates of latent heat fluxes to EC
observations, the effect of the spatial resolution of the model
imagery input on the modelled results was analysed by running
the models with imagery from the native resolution of the
acquired images to resolutions that were aggregated up to 30 m.

The results show that both contextual models are sensitive to
the input image resolution and that the agreement with the EC
observations improves with increasing image resolution. The TSEB
model assumes that LST pixels represent a mixed signal of the soil
and canopy components, thus an image resolution coarse enough
to ensure this assumption should be chosen. However, with the
exception of the native image resolution of 5 cm, we found no
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effect of image resolution on the spatially weighted mean TSEB
estimates.

For the studied grassland, the comparison of model estimates
with EC observations indicates that all three models are able to
reproduce observed energy fluxes with comparable accuracy with
mean absolute errors of ET between 20 and 40 W m−2. The TSEB
model showed larger deviations from the reference observations
under cloudy conditions with rapid fluctuations of LST within the
30 min averaging period for EC. The two contextual models
yielded similar results for most of the flights. The good perfor-
mance of the DATTUTDUT model, which had the lowest input
requirements of the three models, is especially promising in view
of the application of UAS for routine near-real-time ET monitoring.

1. Introduction

Information on the magnitude of evapotranspiration (ET) from land surfaces, along with
its variability in space and time, is essential for effectively managing water resources in
agricultural systems (Anderson et al. 2011; Bastiaanssen et al. 2005; Cammalleri et al.
2014; Carlson 2007; Chirouze et al. 2014; Cleugh et al. 2007; Jiang and Islam 2001; Kustas
et al. 2012; McMahon et al. 2013; Morillas et al. 2013; Tang et al. 2011). However, the
regional quantification of ET remains difficult, in particular when spatially distributed
information with high resolution is sought. Direct measurements of ET provided by Eddy
covariance (EC), Bowen ratio (BR), or scintillometer systems have high temporal resolu-
tions (i.e. 30 min) but deliver only an integral signal over a footprint of a few ten to
hundreds of metres (Foken 2008). Spatially distributed estimates are mostly based on
exploiting land surface temperature (LST) information gained from air- or spaceborne
thermal infrared (TIR) remote sensing. For satellite platforms, high temporal and spatial
resolution are mutually exclusive since high spatial resolution is currently associated to
long revisit times (e.g. 100 m/16 days for the Landsat 8 platform) and high temporal
resolution is limited to geostationary satellites with relatively coarse spatial resolution
(3 km/15 min for the Meteosat Second Generation). In contrast, airborne campaigns can
provide both, high temporal and spatial resolution at the same time, but are time-
consuming and cost-intensive.

Unmanned aerial systems (UAS) can be a viable alternative especially when the area of
interest is comparatively small. The advent of low-cost UAS platforms and concomitantly
lightweight camera systems in the visible, near-infrared (NIR), and thermal spectral range
hasmotivated their increased use in the remote-sensing community, e.g. precision agriculture
applications (Berni et al. 2009; Brosy et al. 2017; Zhang and Kovacs 2012; Candiago et al. 2015;
Reineman et al. 2013; Link, Senner, and Claupein 2013; Lelong et al. 2008; Turner et al. 2014;
Stefano et al. 2017; Vázquez-Tarrío et al. 2017). However, studies using UAS-based TIR sensors
tomap LST and subsequently derive surface turbulent heat fluxes are still rare (Hoffmann et al.
2016b; Ortega-Farías et al. 2017; Ortega-Farías et al. 2016; Brenner et al. 2017). In view of the
ease of use of UAS and the flexibility in mission planning and operation, simple approaches
that facilitate operational ET monitoring in near real time would perfectly complete the asset
of UAS.
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One way of classifying approaches for the estimation of ET from remotely sensed TIR
imagery is to divide them into two groups, contextual and single-pixel methods
(Chirouze et al. 2014). Contextual methods make use of the heterogeneity within an
LST image and use the information of the whole image for the estimation of ET at each
single pixel. The general idea of contextual models is that the variability in LST alone or
in combination with the variability in vegetation properties is linked to the surface
status, e.g. soil moisture availability or energy flux partitioning at the surface (Tomás
et al. 2014; Timmermans, Kustas, and Andreu 2015; Moran et al. 1994; Jiang and Islam
2001; Gillies, Kustas, and Humes 1997; Gillies and Carlson 1995). If the image scene
contains a wide range of vegetation covers and surface states that represent conditions
from potential to no ET, all pixels of the image can be scaled between the cold/wet and
hot/dry extremes within the scene. The Triangle Method is a well-established concept
for the estimation of turbulent heat flux partitioning (Carlson 2007). It derives an
estimate of evaporative fraction (EF) for each pixel by analysing its relative position
within a surface temperature–vegetation index (VI) space that is bounded by a cold/wet
and hot/dry edge. Recently Timmermans, Kustas, and Andreu (2015) developed the
Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature
(DATTUTDUT) model that limits the input requirements to solely LST information and
scales the pixels within the scene based on this information alone. Advantages of these
contextual models are that they do not rely on complex empirical parameterizations of
the aerodynamic terms (e.g. aerodynamic resistance, aerodynamic temperature), which
typically introduce uncertainties in flux estimates (Bhattarai et al. 2018; Tomás et al.
2014). In addition, errors associated with the absolute accuracy of the LST information or
ancillary meteorological inputs (e.g. wind speed, water and atmospheric pressure) are
minimized in contextual models (Allen, Tasumi, and Trezza 2007). Furthermore, due to
comparatively low input and computational requirements, contextual models would be
particularly suitable for routine applications with UAS TIR imagery. However, especially
for small areas, for homogeneous land-use types, or for imagery with low resolution, the
assumption that all possible states including the extreme cold/wet and hot/dry end-
members of a landscape are present within the image scene might be violated. Thus,
there exists a relationship between domain size and spatial resolution of the input
imagery needed for a proper definition of the cold/wet and hot/dry endmembers
(Long, Singh, and Scanlon 2012). While UAS campaigns allow for the acquisition of
high-resolution imagery, that reveals small-scale variability in surface conditions, the
area being monitored is typically restricted by practical considerations including battery
life and the need for high image overlap as well as by legal requirements concerning the
visibility of the UAS during operation. Consequently, the chance to sample the true
extremes from no to potential ET is reduced. Thus Zipper and Loheide (2014) argued
that contextual models are not applicable at field scales since the vegetation cover in
agricultural landscapes is fairly homogeneous and thus the identification of the extreme
limits is complicated. Although contextual models have been extensively tested over a
wide range of landscapes using moderate-resolution remotely sensed imagery, their
applicability at the subfield scale using high-resolution imagery has not been evaluated
to the same extent (Xia et al. 2016).

In contrast to contextual models, single-pixel methods estimate ET for each pixel
independently from all other pixels in the image by solving the surface energy balance
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(SEB) equation. The rationale behind many EB models is that the latent heat flux is the
residual term of the SEB once all other components are either measured or estimated.
Net radiation is typically estimated based on measured incoming radiative components,
LST, and information on surface properties such as surface albedo and emissivity (Boegh,
Schelde, and Soegaard 2000; Su 2002; Xia et al. 2016). The soil heat flux is often assumed
to be a fraction of net radiation (Santanello and Friedl 2003; Murray and Verhoef 2007;
Norman, Kustas, and Humes 1995; Liebethal and Foken 2007). Sensible heat flux is, by
analogy with Ohm’s law, driven by a temperature gradient between the surface and the
atmosphere and is counteracted by a resistance term. Despite the simplicity of this
expression, the complication lies in the determination of the aerodynamic surface
temperature that cannot be measured directly and is not equal to the radiometric
surface temperature measured by the Thermal Infrared Sensor (Norman and Becker
1995; Kustas and Anderson 2009). Thus, the approach for the approximation of the
aerodynamic surface temperature from the radiometric surface temperature is the main
difference in the various EB models. In this study, we applied the two-source energy
balance (TSEB) model developed by Norman, Kustas, and Humes (1995). The basic idea
of this and other two source EB models is to solve explicitly the problem of the
ambiguity of the relationship between aerodynamic and radiometric temperature by
separating surface temperature, radiative and turbulent fluxes, as well as resistances into
a canopy and soil component (Shuttleworth and Wallace 1985; Norman, Kustas, and
Humes 1995; Anderson et al. 1997; Anderson et al. 2007; Norman et al. 2000). Due to the
more detailed treatment of the radiative exchange and energy fluxes between the two
components, the parameterization of these models is more complex and requires more
input data. The TSEB model requires information on canopy characteristics (like the
Triangle Method) and ancillary meteorological data including air temperature, wind
speed, vapour pressure, and atmospheric pressure. However, the TSEB model has proven
to be fairly robust for a variety of landscapes and weather conditions and, compared to
contextual models, also when applied over homogeneous landscapes (Li et al. 2005;
Colaizzi et al. 2012; Kustas and Anderson 2009). Typically TIR-based ET models are
applied using moderate- to medium-resolution satellite imagery such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Landsat for which pixels represent
a mixed thermal signal of various sources, which is a key assumption in the parameter-
ization of the TSEB model. For high-resolution UAS-based imagery especially over
relatively homogeneous landscapes, this assumption might no longer be valid.

The performance of simple contextual and more complex two-source models has
been studied in detail in model inter-comparisons over a wide range of landscapes
mostly based on medium-resolution imagery such as Landsat 7, 8 and Advanced
Spaceborne Thermal Emission and Reflection Radiometer with spatial resolutions of
60, 100, and 90 m, respectively (French, Hunsaker, and Thorp 2015; Timmermans et al.
2007; Choi et al. 2009; Chirouze et al. 2014). These studies concluded that both con-
textual modelling schemes and the TSEB model perform similarly well in reproducing
observed tower-based energy fluxes even though the spatial distribution and patterns in
ET showed significant discrepancies. However, studies using high-resolution imagery
over different landscapes are needed to understand the effect of, in the case of UAS, a
restricted modelling extent and high image resolution on the performance of the
different modelling schemes (Xia et al. 2015).
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In this study, we use the Triangle Method, DATTUTDUT, and TSEB model to estimate
ET from a managed temperate grassland site. In July 2016, we collected airborne
observations of the surface using an octocopter UAS. Camera images were collected
containing information about the surface in the visible and TIR spectrum at near-nadir
angles.

First, we determine the sensitivity of the three modelling approaches to the extent
and spatial resolution of the TIR input data (Section 3.1). Since typically the domain of
UAS-based image acquisitions is relatively small but allows for very high spatial resolu-
tion, we investigate the effect of the spatial resolution of the input imagery on the
modelling results. More precisely, we analyse the sensitivity of the three approaches to
the spatial resolution of the thermal as well as the visible range imagery by running the
models with imagery from the very high native resolution of the acquired images (5 cm)
to aggregates up to 30 m resolution. This aims at highlighting important aspects for the
planning of UAS-based TIR imaging campaigns as well as limitations and strengths of
the different models with high-resolution input imagery acquired at the subfield scale.
To our knowledge, this study presents the first application and evaluation of the Triangle
Method and the DATTUTDUT model with high-resolution UAS-based thermal imagery.

Second, we compare modelled energy fluxes as well as EF as indicator of surface
energy partitioning to EC measurements (Section 3.2). The focus of this analysis is to
examine the applicability of the three models given the characteristics of UAS-based
imagery, i.e. the potential for high spatial resolution on the one hand and a limited
spatial domain of the surveyed area on the other hand. Typically, TIR-based ET models
have been developed for clear-sky conditions since to date no relevant spaceborne
thermal remote-sensing products are available. Since UAS allow for data acquisition also
under overcast and cloudy conditions, we also examine the model’s performance under
these conditions. In addition, for the Triangle Method we test the utility of two different
VI that can be derived from true colour (RGB) images provided by a regular digital
camera.

Given the different modelling approaches, the input requirements of these three TIR-
based ET models vary from the highest input requirements by the TSEB model to the
Triangle Method that requires co-registered images of LST and VI to the parsimonious
DATTUTDUT model running (under clear-sky conditions) solely with LST information.
Thus, we also discuss the commensurability of processing and input requirements on
the one side and model performance on the other side with a special focus on UAS
campaigns and operational applicability for near-real-time ET monitoring.

Third, since the comparison of model estimates to EC observations can only evaluate
the representativeness of a spatially weighted mean flux, we compare the spatial
patterns of modelled EF for the three modelling approaches in Section 3.3.

2. Materials and methods

2.1. Data and site description

2.1.1. Study site and micrometeorological data
We collected airborne observations over a temperate grassland as part of the ScaleX 2016
field campaign (Wolf et al. 2017) at the Fendt site of the Terrestrial Observatories Network
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(TERENO) pre-Alpine observatory (Zacharias et al. 2011) in southern Germany. The site (DE-
Fen) is equipped with a permanent EC station for water vapour, carbon dioxide, as well as
energy flux measurements since 2010 (Zeeman et al. 2017). It includes a three-dimensional
sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT) and an infrared gas analyser
(LI7500, LI-COR., Lincoln, NE). The station is located in a north–south-oriented valley in the
foothills of the Bavarian Alps (47.833° N, 11.061° E; 595 m a.s.l.) with grassland being the
prevailing land use with sporadic croplands (Brosy et al. 2017; Zeeman et al. 2017). In
summer 2016, the grassland at the study site served as a meadow. Figure 1 shows an
overview of the study area with the location of the EC station and the area of UAS-based
thermal imaging. As shown in Figure 1, a dirt road and several scientific instruments were
located within the UAS imaging area. The turbulent energy fluxes and corresponding flux
footprints were computed in 30 min intervals (Mauder et al. 2013; Mauder and Foken 2015)
and were combined with ancillary meteorological data listed in Table 1. The observed
energy fluxes were adjusted in order to reach EB closure using a method that preserves
the observed BR (Twine et al. 2000).

During the measurement campaign, farmers were managing the fields surrounding
the EC station. After mowing, they distributed the cut grass over the field for drying and
collected the dry grass the next day. Although UAS flights were conducted within a

Figure 1. Overview of the study area using an orthophoto (© Bayerische Vermessungsverwaltung –
the Bavarian Agency for Surveying and Geoinformation) superimposed by an UAS-based RGB image
acquired on 11 July at a flying altitude of 100 m. The red marker indicates the location of the EC
tower. The solid yellow line sketches the area covered by the thermal imager for the flights at an
altitude of 25 m. The dashed yellow line corresponds to the area covered with the flights at 100 m
altitude. The exact extent of the thermal orthomosaic varied from flight to flight.
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relatively short time window of 1 week, land-cover characteristics changed from stand-
ing high grass, to freshly cut grass to standing short grass between the single flights.
While it was raining shortly before the observation period, it remained dry during the
week of measurements.

2.1.2. UAS set-up and design of the flight campaign
An octocopter UAS (MikroKopter OktoXL, HiSystems GmbH, Moormerland, Germany)
with a payload limit of 4 kg was used as a platform and was equipped with a
commercially available digital RGB camera (Sony alpha 6000, Sony Corporation, Tokyo,
Japan) and a thermal imager (Optris Pi Lightweight kit, Optris GmbH, Berlin, Germany).
The Pi Lightweight kit with a weight of just 380 g consists of a small PC and a thermal
camera (Optris Pi 400) and is designed for aerial thermography. The sensor detects
thermal radiation in the spectral range from 7.5 to 13 µm and has a thermal sensitivity of
80 mK and accuracy of ±2.0°C. The optical resolution is 382 × 288 pixels with a field of
view of 38° × 29° (f = 15 mm). The digital camera was triggered using the Sony
PlayMemories Time-lapse Camera App, provided by the manufacturer. Focus, exposure,
aperture, and ISO configurations were set manually before the flight and kept constant
during the flight. Both cameras were mounted on a gimbal to allow for the collection of
nadir-view LST images and were triggered every second during the whole flight. UAS
flights were conducted along predefined waypoints covering the area around the EC
station. Table 2 gives an overview of the flight characteristics.

Due to the close proximity of a glider plane airfield near the field site, flying altitude
was restricted to 25 m for most of the conducted flights. Only for 2 days, where a flight
coordinator was present at the field, flights up to an altitude of 100 m were made. Flying

Table 1. Environmental observations at the study site and corresponding instrumentation.
Observed variable Instrument

Air temperature HMP45 (Vaisala, Vantaa, Finland)
Air pressure WXT520 (Vaisala, Vantaa, Finland)
Surface temperature (1 min interval) IR120 (Campbell Scientific Inc., Logan, UT)
Relative humidity HMP45 (Vaisala, Vantaa, Finland)
Sensible and latent heat fluxes CSAT3 (Campbell Scientific Inc., Logan, UT) LI7500 (LI-COR., Lincoln, NE)
Shortwave/longwave incoming/
outgoing radiation

CNR 4 (Kipp&Zonen, Delft, The Netherlands)

Soil heat flux HFP01-SC (Hukseflux, Delft, The Netherlands)
Wind speed WXT520 (Vaisala, Vantaa, Finland)

Table 2. Overview of flight date, time, altitude, and covered area.
Flight no. Date Time (h:min) Altitude (m) Speed (m s−1) Area (ha)

1 5 July 2016 11:11–11:16 25 2 0.7
2 6 July 2016 13:11–13:16 25 2 0.64
3 6 July 2016 14:03–14:06 100 5 2.71
4 6 July 2016 15:04–15:09 25 2 0.78
5 7 July 2016 12:16–12:21 25 2 0.82
6 7 July 2016 16:41–16:46 25 2 0.72
7 8 July 2016 13:02–13:07 25 2 0.75
8 10 July 2016 13:16–13:21 25 2 1.55
9 11 July 2016 13:34–13:39 25 2 1.66
10 11 July 2016 17:00–17:04 100 5 5.85

The flight time is given in local time (UTC +2, CET DST).
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speed was set to 2 and 5 m s−1 at 25 and 100 m altitude, respectively, in order to achieve
a high degree of overlap between consecutive TIR images. The area covered with the
thermal sensor varied between flights from 0.64 to 5.85 ha (see Table 2). The native
resolution of the thermal imagery is around 5 and 20 cm for flights at 25 and 100 m
altitude, respectively. The native resolution of the RGB imagery is higher with around 1
and 4 cm at 25 and 100 m flying altitude.

2.2. UAS image processing

For each flight a series of RGB and thermal images were recorded in 1 s intervals. The
single images were combined into an RGB and thermal orthomosaic for each flight.
Orthomosaics were generated using Agisoft PhotoScan Professional (Agisoft LLC). The
software reconstructs a three-dimensional point cloud from overlapping single images
with a technique called Structure from Motion (Westoby et al. 2012; Fonstad et al. 2013;
Smith, Carrivick, and Quincey 2016). In the first step, image alignment, information from
the GPS unit of the UAS was used as a first estimate of camera location and orientation.
Once all images were aligned, camera locations were refined using ground control
points that were derived from a high-resolution digital elevation model and an ortho-
photo available for the study site. After image alignment, a dense point cloud is
generated that serves as basis for creating a digital elevation model as well as the
orthomosaic. The same procedure was applied to the RGB and thermal imagery.

Both TSEB and the Triangle Method need information on vegetation properties.
Thereto, two VIs were derived from the RGB orthomosaics. First, the Normalized
Green-Red Difference Index (NGRDI) given in Equation (1) expresses the difference
between the green and red bands divided by their sum (Pérez et al. 2000). At our
study site, the discrimination between living green and dried dead vegetation, which
was used for the determination of the fraction of green vegetation (fg) in the TSEB
model, was important since fg was very heterogeneous over the field and changed in
between flights because farmers were mowing the fields. Since the NGRDI did not
separate these two groups satisfactorily, a second index was tested as model input. It
is derived from the difference between the green and the blue bands divided by their
sum (see Equation (2)) and is in the following abbreviated as NGBDI for Normalized
Green-Blue Difference Index (Wang et al. 2015; Du and Noguchi 2017). Preliminary tests
showed that this index better discriminates between the living and dead grass.
Compared to the red and green bands, the blue band digital numbers showed larger
differences between pixels with green and dead vegetation with lower values for green
vegetation than for dead vegetation, which allowed also visually for the best discrimina-
tion between the two groups of the three available single bands.

NGRDI ¼ g� r
gþ r

(1)

NGBDI ¼ g� b
gþ b

; (2)

where r, g, b are the red, green, and blue channel of the RGB image.
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Green and dead vegetation pixels were discriminated in the high-resolution NGBDI
maps (1 cm resolution) by setting a threshold on the NGBDI index. The threshold was set
manually so that it yielded the best visual separation of the green from the dead
vegetation. The fraction of green vegetation, fg, was then derived as the ratio of the
green and dead vegetation pixels (1 cm resolution) within each pixel of the coarser
thermal imagery (5 cm resolution).

LAI and vegetation height images were derived from detailed land-use maps that
were compiled during the field campaign. Vegetation heights were measured on several
days during the field campaign in order to incorporate changes due to management
operations between flights. LAI was measured with a plant canopy analyser (LAI2000, LI-
COR., Lincoln, NE). Since a detailed study on vegetation properties at the experimental
site in 2015 showed that the used plant canopy analyser overestimates LAI for this
temperate grassland site by approximately 60% (pers. comm. M. Zeeman), the measured
values were corrected accordingly. The obtained relationship between vegetation height
and LAI agreed well with the 2015 results.

One aim of this study was to analyse the sensitivity of the models to the spatial
resolution of the model imagery input. To this end, aggregates of 0.25, 0.50, 0.75, 1, 2.5,
5, 10, 15, and 30 m representing mean values over the corresponding number of pixels
were generated from the images in their native resolution. An upper limit of 30 m was
chosen since it corresponds to the highest spatial resolution that can be achieved from
satellite imagery (Landsat 7 and 8) using data fusion and data-mining sharpeners (Gao
et al. 2006; Gao et al. 2012).

2.3. TSEB

The TSEB model, developed by Norman, Kustas, and Humes (1995), belongs to the group
of SEB models (Kalma, McVicar, and McCabe 2008). These models intend to derive latent
heat flux as the residual term of the EB equation once all other components are known:

Rn ¼ LEþ Hþ G; (3)

where Rn is net radiation, H is sensible heat flux, LE is latent heat flux, and G is soil heat
flux. In the presented form, Equation (3) excludes the effects of canopy heat storage and
local advection since their contributions are assumed to be negligible.

In contrast to ‘big-leaf’ one-source models (Monteith 1965), the TSEB model partitions
the surface temperatures as well as the energy fluxes into a soil and a canopy component
and balances the energy budget for these components separately:

Rns ¼ LEs þ Hs þ G (4)

Rnc ¼ LEc þ Hc; (5)

where subscripts ‘s’ and ‘c’ represent the soil and canopy flux component, respectively.
Component net radiation was calculated using the approach described in Xia et al. (2016)

and Song et al. (2016), which is based on measurements of incoming radiation components,
the component temperatures Ts and Tc, and information on surface properties such as albedo,
transmittance through the canopy and emissivity. Soil heat fluxwas estimated as a function of
soil net radiation following the approach proposed by Santanello and Friedl (2003), which
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accounts for the phase shift between the two quantities during daytime. The three parameters
required for themethod by Santanello and Friedl (2003) were set to A = 0.25 and B = 24 h and
the phase shift was set to 3.5 h.

The measured radiometric surface temperature (Tr) is linked to the component
temperatures via the fractional vegetation cover (fc) at the sensor viewing angle Θ:

Tr ¼ fc Θð ÞT4c þ 1� fc Θð Þð ÞT4s
� �1

4: (6)

For the investigated grassland site, fc was uniformly set to a value of 0.9.
The component sensible heat fluxes are driven by a temperature gradient and are

regulated by a transport resistances network:

Hs ¼ ρcp
Ts � TAC

rs
(7)

Hc ¼ ρcp
Tc � TAC

rx
(8)

H ¼ Hs þ Hc ¼ ρcp
TAC � Ta

ra
; (9)

where ρ is the air density, cp is the specific heat of air at constant pressure, Ta is the air
temperature at a reference level, rs, rx, and ra are the resistances to heat transfer from the soil
surface, canopy, and atmospheric surface layer, respectively, and TAC is the air temperature
within the canopy stand. The roughness lengths for momentum and heat required for the
estimation of the resistances were set to 0.125 of the vegetation height. The series resistance
network is described in Colaizzi et al. (2012), Kustas and Norman (1999), and Timmermans
et al. (2007).

Initially LEc and thus Hc are estimated using a Priestley–Taylor formulation (Priestley
and Taylor 1972):

LEc ¼ Rnc � Hc ¼ αPTfg
Δ

γþ Δ
Rnc; (10)

where αPT (set to 1.26) is the Priestley–Taylor coefficient, fg is the fraction of green
vegetation, Δ is the slope of the saturation water vapour–temperature curve, and γ is the
psychrometric constant. With an initial value for Hc, estimates of Tc and Ts can be
obtained from Equations (6) and (8), respectively. In the case that the vegetation is
not transpiring at a potential rate, LE from the canopy will be overestimated by the
Priestley–Taylor formulation at the expense of LE from the soil. This might lead to
condensation from the soil (negative LEs), which is unlikely during daytime conditions.
Thus, αPT is decreased incrementally and the set of equations is solved until no con-
densation from the soil occurs. Finally, all other EB components are updated accordingly
to satisfy the EB equation. The TSEB model implemented in this study in based on the
publicly available code provided in the ‘pyTSEB’ GitHub repository (latest available
version: commit from 19 December 2016, https://github.com/hectornieto/pyTSEB/tree/
ac3fe785ead3a9c4f09d773e00a9334f75f21fd0).

As mentioned before, TSEB solves the set of equations for each pixel independently from
its surrounding pixels. Thus also aerodynamic resistances are calculated independently for
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each pixel. In the case of satellite remote-sensing imagery with relatively low spatial
resolution, this is a valid assumption. However, in the case of UAS-based imagery with
very high spatial resolution, this assumptionmight no longer be physically meaningful since
aerodynamic resistance is governed by processes at larger scales. In order to investigate the
effect of this independent treatment of neighbouring pixels, the model was run in two
different configurations. In one configuration, despite the high resolution, all pixels were
treated independently (as in the case of satellite imagery). In a second configuration, the
resistances and net radiation components calculated in the model runs with input imagery
with a spatial resolution of 30 m (see Section 2.2 for more detail) were plugged into the
high-resolution model runs. In the latter configuration, the assumption of a large enough
averaging volume for these variables is ensured. However, at the same time the use of a
coarser grid resolution for these parameters results in artificial sharp edges that super-
impose the spatial patterns derived at the finer grid resolution. The comparison of these two
parameterizations aims at evaluating the effect of the high degree of freedom for the
resistances and net radiation components in the case of the high-resolution input imagery
on the spatially weighted mean fluxes as well as the spatial variability.

Required inputs for the TSEB model are radiometric surface temperature, information
on land-cover properties such as fractional vegetation cover, leaf area index (LAI),
vegetation height, and fraction of green vegetation. Additionally, meteorological data
on air temperature, wind speed, water vapour pressure, and atmospheric pressure as
well as incoming shortwave radiation are required.

LST images acquired with the UAS, maps of LAI, vegetation height and fraction of
green vegetation (see Section 2.2 for the derivation of these maps) were used as
spatially distributed inputs to the TSEB model. Meteorological data was available from
the EC tower.

2.4. Triangle Method

In the Triangle Method the combination of LST and vegetation properties represents
a diagnostic for the surface status and surface energy fluxes partitioning (Jiang and
Islam 2001; Moran et al. 1994; Tomás et al. 2014). The triangle is formed by plotting
surface temperature against a VI as a proxy for vegetation cover properties.
Commonly, this VI is the normalized difference vegetation index (NDVI), but also
other variables such as LAI or fractional vegetation cover were applied in the past
(Jiang and Islam 2003; Nishida 2003; Tomás et al. 2014). The triangular form originates
from the fact that the temperature range over bare soil and low vegetation cover is
larger than for fully developed canopies. A central assumption in the Triangle Method
is that given a large enough number of pixels representing the full range of fractional
vegetation cover as well as soil moisture availability, sharp edges emerge in the
surface temperature–VI space (Carlson 2007). The warm edge reflects conditions of
no ET, whereas the cold edge represents the upper bound of ET for a given vegeta-
tion class (Jiang and Islam 2001). Jiang and Islam (2001) proposed a model to
calculate EF and ET from a Priestley–Taylor formulation:

LE ¼ ϕ Rn � Gð Þ Δ
γþ Δ

; (11)
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where ϕ is a complex effective parameter that incorporates the combined effects of the
αPT parameter and a surface wetness parameter. Equation (11) can be expressed as a
function of EF:

EF ¼ LE
Rn � G

¼ ϕ
Δ

γþ Δ
: (12)

The range of ϕ is thus limited to ϕmin = 0 (EF = 0) for conditions of no ET and
ϕmax = (γ + Δ)/Δ (EF = 1) for conditions of potential ET (Stisen et al. 2008). In order to
assess ϕ for each pixel in the image, the warm and cold edges of the triangle have to be
defined. The cold and warm edges are calculated using the ‘simple’ dry edge algorithm
and the ‘mean’ wet edge algorithm as detailed in de Tomás et al. (2014). The surface
temperature–VI space is split into bins based on the VI and for each bin the maximum
and minimum temperature are determined. The selected bin size might vary with image
resolution and is typically smaller (0.01) for higher resolution imagery and larger (0.05)
for coarser resolution imagery (Tomás et al. 2014; Zhang et al. 2016). In this study, we
test the performance of both bin sizes. Tmin for the cold edge is the mean of the
minimum Tr values from the 20 bins with the largest VI values. The warm edge is
derived from a linear fit between the maximum Tr values and the corresponding VI
bin value. In the case of the highest image resolution, the second hottest pixel instead of
the hottest pixel (maximum) per VI bin was used for the derivation of the dry edge in
order to reduce the effect of outliers. Having estimates for the cold and warm edge, ϕi

for each pixel can be scaled between ϕmax and ϕi,min based on its relative position in the
surface temperature space.

ϕi ¼
Ti;max � Ti

Ti;max � Ti;min
ϕmax � ϕi;min

� �
þ ϕi;min: (13)

While ϕmax is constant for all VI bins, ϕmin varies with VI (Stisen et al. 2008). EF in
combination with an estimate of available energy (net radiation minus soil heat flux)
allows for the calculation of ET rates. Since this method does not include a scheme
for the estimation of available energy, the approach implemented in the third
model evaluated in this study, the DATTUTDUT model, is adopted for the Triangle
Method as well (the description of the DATTUTDUT model follows in the next
section).

Typically, NDVI that combines information from the red and NIR spectral range is
used as VI. Since our UAS set-up consisting of a thermal and a regular digital camera
did not allow for the acquisition of data in the NIR spectral range, the applicability of
other VIs relying solely on information from the red, green, and blue bands was
tested. In this study, we used the UAS-based thermal images as well as maps of
NGRDI and NGBDI (see Section 2.2 for the derivation of the VI maps) as model inputs
for the Triangle Method. Since preliminary tests showed that a measuring truck
permanently located at the study site (see Figure 1) affected the shape of the surface
temperature–VI space, the measuring truck was masked in the input imagery for the
estimation of the wet and dry edge.
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2.5. DATTUTDUT

In contrast to contextual models that explore the surface temperature–VI space, the
DATTUTDUT model proposed by Timmermans, Kustas, and Andreu (2015) estimates EF
solely from surface temperature information. The rationale for the development of the
DATUTDUT model is that more complex models in general rely on more input informa-
tion and thus model estimates might become uncertain in regions where these data are
not available or unreliable. The model interprets LST as a key indicator for the surface
status. Assuming that the image scene contains the whole range of possible states, EF
can be scaled between the extreme dry/hot pixels representing areas without ET and
cold/wet pixels where ET is at its potential rate:

EF ¼ LE
LEþ H

¼ LE
Rn � G

¼ Tmax � Tr
Tmax � Tmin

; (14)

where in the original paper Tmax is taken as the hottest pixel, Tmin is taken as the 0.5%
quantile of surface temperature in the scene and Tr is the radiometric surface temperature
for each pixel. In this study, the 99.99% quantile was taken as Tmax instead of the hottest
pixel.

In order to derive ET rates from the computed EF, estimates of Rn and G are needed.
DATTUTDUT computes Rn similarly to EB models from the net shortwave and longwave
radiation:

Rn ¼ 1� αð ÞRsd þ �s�aσT4a � �0σT4r ; (15)

where Rsd is incoming shortwave radiation, α is surface albedo, εs and εa are surface and
atmospheric emissivity, Ta is air temperature, and σ is the Stefan–Boltzmann constant.
The procedure for the derivation of net radiation described here and adopted from
Timmermans, Kustas, and Andreu (2015) is also used for the Triangle Method.

To avoid the need for user inference, the DATTUTDUT model sets nominal values for
εs (1.0) and εa (0.7). Ta is assumed to be equal to Tmin. G is calculated as a fraction of Rn
(Γ). In the DATTUTDUT model, Γ and α scale linearly with LST between 0.05 and 0.45 and
between 0.05 and 0.25, respectively, with higher surface temperatures leading to higher
factors as shown in Equations (16) and (17) (Equations (3) and (7) in Timmermans, Kustas,
and Andreu 2015):

α ¼ 0:05þ 0:2
Tr � Tmin

Tmax � Tmin

� �
(16)

Γ ¼ 0:05þ 0:4
Tr � Tmin

Tmax � Tmin

� �
: (17)

The DATTUTDUT model assumes clear-sky conditions and derives Rsd from Sun–Earth
geometry relationships to minimize user interference and data requirements
(Timmermans, Kustas, and Andreu 2015). However, since we conducted flights also
under cloudy conditions, we use measured Rsd from the EC tower. Thus, Rsd and the
UAS-based thermal imagery are the sole inputs to the model. Since the model otherwise
runs fully automated, the user inference is limited to the generation of an orthomosaic
of LST.
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3. Results and discussion

We start the discussion of the results by analysing the effect of the spatial resolution of
the input imagery on model estimates in Section 3.1. In Section 3.2 model estimates are
compared to EC observations. In both sections, the presented results of the Triangle
Method correspond to the model runs with the NGBDI as VI and the VI bin size set to
0.01. Regarding the parameterization of the resistance and radiative terms in the TSEB
model, a comparison showed that almost no differences in the spatially weighted mean
fluxes exist between the two tested setups (see Table 3). Thus, in both sections we only
show the results of model runs for which the resistance and radiative terms were
calculated on an individual pixel basis. A comparison of the two VIs is also presented
in this section. For better readability, the Triangle Method will be abbreviated as TM in
all figures. The spatial patterns and frequency distributions of modelled EF are discussed
in Section 3.3.

3.1. Sensitivity of model estimates to the spatial resolution of the input imagery

UAS-based imaging campaigns allow for the acquisition of observations with high
spatial resolution. In order to analyse the effect of the spatial resolution of the ET
model input imagery, fluxes were computed for different image resolutions using the
spatially aggregated remotely sensed observations of LST and vegetation properties. Xia
et al. (2015) evaluated the performance of the TSEB and DATTUTDUT model over
vineyards using aircraft-based remotely sensed observations. While they ran the
DATTUTDUT model at the native pixel resolution (varying between 0.38 and 0.66 m
for the thermal images), observations were spatially aggregated to 5 m resolution to
create TSEB input fields. This resolution ensured that both an inter-row and vine row
were sampled within each pixel, which is an integral part of the parameterization of the
TSEB model. However, even though in the case of grassland the sampling of both soil
and vegetation component within each pixel will be ensured at much higher resolution,
model assumptions might still be violated if the input grid size becomes too fine. On the
other hand, for contextual models a high image resolution is becoming more important
as image domain becomes smaller (Long, Singh, and Scanlon 2012; Tomás et al. 2014). A
large number of pixels should ensure a wide range of sampled vegetation cover and soil

Table 3. Difference statistics comparing model output of energy balance components as well as
evaporative fraction from the TSEB, DATTUTDUT, and Triangle Method (TM) model with EC observa-
tions (closed with Bowen ratio method) in W m−2.

TSEB ind, res DATTUTDUT TM NGBDI, NGRDI

Bias MAE RMSE Bias MAE RMSE Bias MAE RMSE

Rn (W m−2) −8 14 17 −34 44 51 −34 44 51
LE (W m−2) −13, −10 37, 38 50, 49 2 23 29 8, 0 27, 32 31, 34
H (W m−2) 8, 6 31 49 6 30 37 −1, 7 41, 46 46, 52
G (W m−2) −4 18, 19 24 −41 50 55 −41 50 55
EF 0.01, 0.02 0.08 0.11 0.03 0.07 0.09 0.03, 0.00 0.09 0.10

Listed are the bias (Σ(O – M)/n), mean absolute error (MAE = Σ|O – M|/n), and root mean squared error (RMSE = [Σ(O –
M)2/n]1/2), where n is the sample size, O is the observed, and M is the modelled value. For the TSEB model, two values
are given for the model runs with aerodynamic and radiative terms calculated at a 30 m grid (res) and independently
for each pixel (ind). For the TM model, the two values refer to the model runs using either NGBDI or NGRDI as
vegetation index. In the case that both parameterizations resulted in the same value, only one value is given for both.
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moisture states. In this study, we kept the image domain size constant and varied the
spatial resolution of the imagery from the native resolution of 5 and 20 cm at 25 and
100 m flying altitude, respectively, to 30 m averages.

Figure 2 shows exemplarily the effect of the spatial resolution of the model input
imagery on the modelled fluxes for three flights at different days for the Triangle
Method, TSEB, and DATTUTDUT model. It depicts the modelled mean flux, which was
spatially weighted according to the footprint weights, for each energy component as
well as the corresponding standard deviation as a function of the input resolution (from
coarse to high resolution from left to right). It is evident that the contextual models are
highly sensitive to the input resolution, which is for the given domain size inversely
proportional to the number of pixels available for scaling between the extreme wet/cold
and dry/hot endmembers. For the DATTUTDUT model, latent heat flux estimates
strongly vary with changes in the spatial resolution and show a tendency towards

Figure 2. Change in modelled energy fluxes as well as surface temperature as a function of the
resolution of the input imagery for three flights. Given are the mean (solid line) and the standard
deviation (colour bands) of modelled energy components (a–i) and surface temperature (j–l) for the
different input resolutions with input image resolution increasing from left to right. The flight date
as well as time (h:min) is indicated above each subplot.
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higher latent heat fluxes with higher spatial resolution of the inputs. The Triangle
Method shows in general a similar albeit less pronounced behaviour, however, not as
consistently over all flights (see Figure 2(h)). As is shown in Figure 3(a), the level of
sensitivity varies with the parameterization of the wet/cold and dry/hot edge, i.e. the
selected bin size. In comparison, the TSEB model shows a low sensitivity to the input
resolution of the LST input data. Only on 5 July, when large areas of the field were
covered with freshly mowed grass, which was spread over the field for drying, the high
native resolution results in a significantly lower latent heat flux and a concomitant
higher soil heat flux compared to the coarser input resolutions (see Figure 2(a)). For
the native resolution imagery, 17% of all pixels have a fraction of green vegetation (fg) of
zero (for comparison: the share of pixels with a fg of zero is only 3% for the second
highest resolution of 0.25 m). In principle, the valid range for this parameter is 0 ≤ fg ≤ 1
(Guzinski et al. 2013). However, for pixels with a fg of zero the soil heat flux is increased
significantly at the expense of the latent heat flux, which is set to zero. This reflects the
model’s assumptions that no transpiration occurs from pixels with a fg of zero and for
pixels without transpiration also no evaporation from the soil occurs (Guzinski et al.
2015). The rational for this assumption is that if the Priestley–Taylor coefficient α falls
below zero in the iterative process (meaning no transpiration from this pixel), this
indicates very dry conditions under which no evaporation from the soil would occur.
For the high level of disaggregation in the native resolution imagery with fg values of
zero, the modelled energy partitioning for these pixels results in a deterioration of the
agreement with the observations as shown in Figure 3(a). However, alternatively, the
model could be switched from a two-source to a one-source EB model, which does not
partition the turbulent fluxes into a soil and canopy component, for pixels with a fg of
zero. Using this parameterization instead, still a decrease of the latent heat flux at the
expense of increases in the sensible and soil heat flux could be observed for the native

Figure 3. Mean absolute error (MAE) of the evaporative fraction (a) as well as available energy (b) as
a function of the spatial resolution of the thermal and RGB input imagery for the TSEB, DATTUTDUT,
as well as Triangle Method (TM) model. The DATTUTDUT and TM model incorporate the same
scheme for the estimation of available energy. Image resolution increases from left to right. The
selected bin size (VI bs) is a model parameter in the Triangle Method that affects the estimation of
the cold/wet and dry/hot extremes. The EC measurements were closed using the Bowen ratio
method.
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pixel resolution compared to the coarser resolution runs (not shown here). However, the
effect of the high spatial resolution was clearly alleviated using the one-source approach
for these pixels.

As demonstrated by Figure 2, the TSEB model and the two contextual models show
differences in flux variability with input resolution. While the variability of energy fluxes,
as indicated by the standard deviation, increases with the spatial resolution in the TSEB
model (as might be expected), the opposite occurs in the case of the two contextual
models. The spatial averaging acts as a low-pass filter that in turn impacts the scaling of
the EF and shifts the frequency histogram towards the extremes.

Figure 3 shows the variation of the mean absolute error (MAE) of EF and available
energy with image resolution. Both contextual models estimate primarily EF and derive
turbulent heat fluxes by multiplying the modelled EF value with estimates of available
energy that are derived from surface temperature information and an estimate of
shortwave incoming radiation. However, this simplistic method for the estimation of
available energy is not explicitly linked to the two contextual models themselves and
could be substituted by a more sophisticated modelling scheme if the required data is
available. Thus, the use of EF instead of turbulent heat fluxes in Figure 3(a) places more
emphasis on the effect of the spatial resolution on the model core assumptions and less
on the correct estimation of available energy. In the case of the DATTUTDUT model, the
MAE of EF decreases continuously between 30 and 1 m image resolution, then remains
similar for all other model runs and reaches its minimum at the native image resolution.
For the Triangle Method, the sensitivity to the spatial resolution of the input depends on
the selected VI bin size in the definition of the wet/cold and dry/hot edge. While in the
case of a VI bin size of 0.05 the MAE of EF is relatively constant over most of the input
resolutions, a higher variability can be observed for a bin size of 0.01. However, for all
displayed bin sizes the native resolution always leads to a low MAE.

According to Carlson (2007), the Triangle Method is able to yield EF estimates with a
typical MAE of 0.1 and 0.2 (Jiang, Islam, and Carlson 2004). In our study, the MAE is
below 0.2 for all image resolutions and falls below 0.1 regardless of the VI bin size only
when using the highest image resolution. As already demonstrated in Figure 2, the TSEB
model shows a low sensitivity to image resolution. The increase of the MAE of EF at the
native resolution is a result of the energy partitioning for pixels with a fg of zero as
discussed before.

Figure 3(b) shows the MAE of available energy as a function of image resolution.
Similar to EF, the TSEB model estimates available energy with little MAE for all image
resolutions with a slight increase at the native image resolution. For the two contextual
models, which both use the same scheme to model available energy, MAE first
decreases rapidly with increasing resolution and then flattens out for higher resolutions.

In general, the sensitivity analysis of the model performance to image resolution
shows that higher resolution leads to better EF estimates by the two contextual models
even though a coarser bin size dampens the effect of spatial resolution in the case of the
Triangle Method. Interestingly, the increase of input resolution below 1 m does only
slightly affect the mean error of the DATTUTDUT model that uses solely the variability in
LST for scaling between the minimum and maximum temperature. Thus, Figure 3(a)
suggests that for the given study area and for resolutions higher than 1 m, estimates by
the DATTUTDUT model are relatively insensitive to the exact image resolution. The VI bin
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size influences the effect of the spatial resolution in the Triangle Method. However, even
though a low MAE was observed also for coarser resolutions, depending on the model
parameterization (see Figure 3(a)), in general a higher input resolution leads to a more
robust model performance. The preference of a high input resolution is also motivated
by the better prediction of available energy with higher resolution inputs. For the single-
pixel TSEB model, an effect of image resolution on modelled energy flux partitioning
could be observed only in the case of the native image resolution. However, even at this
very high resolution, a deterioration of flux estimates could be observed only for a share
of pixels with very specific properties, namely a fg of zero, that occurred predominantly
on the day after mowing.

3.2. Comparison of model estimates and EC observations

In this section, we present a detailed comparison of model estimates and EC measure-
ments. For the comparison, modelled spatially distributed fluxes were aggregated to a
spatially weighted mean flux according to the estimated footprint of the EC measure-
ments. As described in the previous section, the modelled fluxes vary with TIR and RGB
image resolution with the sensitivity being more pronounced for the contextual models.
Thus, the resolution that meets best the model’s assumptions and theoretical back-
ground was used for the comparison to the observations. In the case of the TSEB model,
which is relatively insensitive to the image resolution, model outputs of the 0.5 m
aggregates were used. For the grassland land cover, this resolution ensured the assump-
tion of mixed pixels containing information of the soil and vegetation component for
the vast majority of pixels. For the two contextual models, we used the native resolution
of the imagery, which yields the largest number of pixels for the definition of the wet/
cold and dry/hot edges for the Triangle Method and maximum and minimum surface
temperatures for the DATTUTDUT model.

Figure 4 shows the comparison of the modelled and observed fluxes for each of the
three models, where marker colours refer to the date and time of UAS-based data
acquisition. Observed fluxes were closed using the BR method (Twine et al. 2000).
Table 3 gives an overview of difference statistics summarizing the agreement of
model results and observations. In general, all three models reproduce observed latent
heat fluxes fairly well. In the case of the TSEB model, except for two flights that will be
discussed in the following, the difference between observed and modelled latent heat
fluxes is less than 50 W m−2. For the two contextual models, the patterns of the
agreement with the observations are very similar showing the same tendency to an
over- or underestimation for the single flights. The similar behaviour of the contextual
models is underlined by their high correlation coefficient especially for the latent heat
fluxes given in Table 4. The difference to the observation exceeds 50 W m−2 only once
and twice for the Triangle Method and DATTUTDUT model, respectively. Soil heat flux
estimates by the TSEB model agree clearly better with the observations, especially due
to their small bias (less than 5 W m−2) in contrast to the two contextual models that
systematically overestimate soil heat flux (both contextual models use the same scheme
to model soil heat flux and net radiation). An exception is the flight on 11 July at 17:00
(local time) were net radiation was already low and the observed ratio of net radiation to
soil heat flux (Γ) was high. Also in the case of net radiation, estimates by the TSEB model
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Figure 4. Comparison of modelled and observed energy fluxes and evaporative fraction for the TSEB
(0.5 m), DATTUTDUT (5 cm), and Triangle Method (TM) (5 cm) model. The observed data represents
the EC data closed with the Bowen ratio method. The colours indicate the time and date of the UAS
flights. The grey dashed line marks the 1:1 line.
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agree well with the observations. Here, the contextual models show a slight overestima-
tion with higher values. However, it is worth mentioning that for the contextual models
the soil heat flux and net radiation were modelled using a simplistic scheme described in
Timmermans, Kustas, and Andreu (2015). In this approach, air temperature, vapour
pressure, and albedo needed for the estimation of net radiation are derived from the
LST information. The use of measured meteorological data led to a marginal improve-
ment of modelled net radiation (reduction of MAE of net radiation from 44 to 35 W m−2,
not shown here), however, at the expense of higher input requirements. In general, the
use of a more complex description of net radiation could improve turbulent flux
estimates. However, since advantages of contextual models are the simple computation
and low input requirements and user interference, the parameterization was kept in the
described simplistic form. Since contextual models calculate EF by scaling between the
endmember extremes and then use the calculated available energy (net radiation minus
soil heat flux) to estimate turbulent heat fluxes, the accuracy of net radiation and soil
heat flux estimates influences the model outputs of the turbulent heat fluxes. However,
since the errors of both quantities are of the same magnitude, the effect on the available
energy is comparatively low (Timmermans, Kustas, and Andreu 2015). Figure 4(e) shows
the comparison of modelled and observed EF. For this quantity, all models perform
comparably well. However, both contextual models cover a smaller range of EF values
compared to the EC measurements and show relatively constant values for observed EF
values below 0.70. All models underestimate the high observed EF close to unity for the
late afternoon flight on 11 July at 17:00 (local time). It is worth mentioning that, as
displayed in Figure 4, relatively high EF rates prevailed during the field campaign. Thus,
no conditions of low EF linked to, e.g. water stress could be observed during the UAS
campaign. In general, the TSEB model seems to better reproduce the variability in
observed EF values; however, it shows larger deviations from the observations for two
flights on 6 July. For both flights, the estimates by the two contextual models better
match the observations. While TSEB overestimates EF at 14:00 (local time), it under-
estimates EF for a flight 1 h later. Figure 5 shows a time series of continuous (1 min
resolution) surface temperature measurements from an infrared temperature sensor
mounted at the EC tower and thus the variation of LST within half-hourly intervals
over which turbulent heat fluxes are averaged. The dashed blue line represents the
mean of these continuous measurements over half an hour indicated by the light red
background. The darker red block within these half hours corresponds to the time
period of the UAS flight. The dashed red line represents the mean LST over this shorter

Table 4. Pearson correlation coefficients of latent heat flux (above the 1:1 line) and sensible heat flux
(below the 1:1 line) for the TSEB, DATTUTDUT, and Triangle Method (TM).

TSEB (ind) TSEB (res) DATT TM (NGBDI) TM (NGRDI)

TSEB (ind) 1 1 0.95 0.91 0.91
TSEB (res) 1 1 0.95 0.91 0.91
DATT 0.63 0.62 1 0.98 0.98
TVDI (GBI) 0.40 0.39 0.92 1 0.99
TVDI (NDI) 0.37 0.35 0.88 0.98 1

For the TSEB model, two values are given for the model runs with aerodynamic and radiative terms calculated at a
30 m grid (res) and independently for each pixel (ind). For the TM model, the two values refer to the model runs
using either NGBDI or NGRDI as vegetation index.
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time span. It is evident that for both flights the difference between the mean LST during
the UAS flight and the mean LST over the half hour for EC averaging is relatively large,
with values of −1.7°C at 14:00 and +2.4°C at 15:00, respectively. Since air temperature
does not fluctuate as much in the same time, the temperature gradient during the UAS
flight is different to the gradient during the full half hour of EC flux averaging. Since this
gradient builds the main driving force for energy partitioning in EB models, the TSEB
model tends to an overestimation of EF compared to the EC measurement for the flight
at 14:00 (local time), when the air-to-surface temperature gradient during the UAS flight
was lower than the half-hour mean. For the flight at 15:00 the reverse happened and
thus TSEB underestimates EF under these conditions. In both cases, the UAS-based LST
measurements do not properly reflect the actual half-hour average circumstances and it
might be that the TSEB model better represents the conditions during the actual UAS
overpass than the two contextual models. However, a detailed analysis of flux conditions
during the time of overpass would require EC measurements computed for shorter time
intervals, e.g. 5 min. A 30 min interval is typically used for the computation of EC fluxes
as this includes a sufficient part of time scales relevant for the computation of turbulent
exchange between the surface and the atmosphere. However, future work might
examine the agreement of model estimates with EC measurements computed for
shorter time intervals, e.g. 5 min intervals, that correspond to the duration of the UAS
surveys. For all other flights the offset between the mean LST during UAS overflight and
the half-hour mean was less than 1.2°C. Rapid changes in LST were observed especially
on days with scattered clouds. It is unlikely to get data from satellite platforms under
these conditions; thus, the effect of LST and net radiation stability within half-hourly
periods on the agreement between estimated and observed fluxes was not investigated
in much detail (Kustas, Prueger, and Hipps 2002). However, UAS allow for data acquisi-
tion also under cloudy and overcast conditions with rapid changes in solar irradiation

Figure 5. Time series of air (Ta) and surface temperature (LST) between 12:00 and 16:00 local time
(UTC +2, CET DST) on 6 July 2016. The solid blue and green line represent 1 min interval
measurements of LST (collected with an infrared temperature sensor mounted at the EC tower)
and Ta, respectively. The light red blocks indicate half-hour intervals of EC averaging (always starting
at full hours) that served as reference for modelled energy fluxes. The darker red shaded area
delimits the time of UAS flights. The horizontal dashed lines mark the mean LST, the mean LST
during UAS flights, and Ta in blue, red, and green, respectively.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5161



and as a result changes in surface temperature. When EB models are used under these
conditions, special care has to be taken of the stability of surface and air temperature in
the interpretation of the results of a comparison of modelled and observed fluxes.
Hoffmann et al. (2016b) evaluated the TSEB model under cloudy and overcast conditions
using fixed-wing UAS-based remotely sensed observations. They observed no significant
differences in model performance compared to sunny conditions. However, they men-
tion that scattered clouds during the flight (in their study a 20 min time span) will affect
the generated thermal orthomosaic used in the EB model. In the present study, the flight
time was shorter (around 5 min of data acquisition excluding starting and landing) and
flights were timed to avoid abrupt changes between sunny and cloudy conditions
during the flight as well as possible. Nevertheless, the variation of LST in the half hour
of EC measurements led to a stronger disagreement between fluxes estimated by the
TSEB model and EC observations on 6 July.

Interestingly, this analysis showed that the simple DATTUTDUT model, even though only
marginally, outperforms themore complex TriangleMethod and TSEBmodel in the estimation
of the latent heat flux and EF when only regarding the modelling statistics shown in Table 3.
Prior inter-comparisons showed that in general flux estimates by the TSEBmodel are in better
agreement with EC measurements over a wide range of environmental conditions and over
homogeneous landscapes compared to contextualmodels (Choi et al. 2009; French, Hunsaker,
and Thorp 2015; Timmermans et al. 2007; Xia et al. 2015; Colaizzi et al. 2012; Li et al. 2005). The
slightly higher error statistics of the TSEB model in this study compared to the contextual
models are a consequence of the larger deviations of themodel results from the observations
for the two flights on 6 July, a day with scattered clouds, as discussed above in detail. With
regard to contextual models, Zipper and Loheide (2014) argued that the homogeneity of
agricultural landscapes complicates theproper definitionof the extreme limits at thefield scale
and limits the applicability of contextual models to transient dynamics in ET when the surface
is neither totally bare nor fully covered by closed canopies. Even though the grassland at the
study site represents a fairly homogeneous land cover, both contextual models performed
well. The goodperformanceof both contextualmodels in this studymight be explainedby the
high disaggregation level of LST information that the high-resolution UAS-based imagery
provides. The higher the resolution, the higher the chance for the simultaneous presence of
the hydrological extremes within the image; a necessity for contextual models.

3.2.1. Comparison of two different VIs in the Triangle Method
Since no information from the NIR range was available from the UAS-based imagery, the
use of other VIs relying solely on information from the red, green, and blue range as
input in the Triangle Method was tested. The results shown so far are based on a VI that
is calculated in a similar manner as the NDVI but using information from the blue and
green spectral range. Visible light VIs, such as the NGRDI, are often used to characterize
vegetation if NIR information is lacking (Pérez et al. 2000; Meyer and Neto 2008;
Raymond et al. 2005). Due to their low costs and low weight, consumer-grade true
colour (RGB) digital cameras are particularly suitable for assessing green vegetation
using UAS-based imaging systems (Torres-Sánchez et al. 2014; Saberioon et al. 2014;
Hoffmann et al. 2016a; Goodbody et al. 2017; Jannoura et al. 2015). Rasmussen et al.
(2016) evaluated the reliability of four VIs (ExG, NGRDI, NDVI, ENDVI) derived from
consumer-grade RGB as well as CIR (colour-infrared) cameras mounted on UAS. Even
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though CIR cameras are sometimes recommended rather than RGB cameras, they found
no clear advantage of CIR images and concluded that RGB cameras are powerful tools
for assessing green vegetation. Hoffmann et al. (2016a) used the NGRDI based on UAS
imagery to assess surface greenness of barley fields for the detection of crop water
stress. In their study, they found a medium–strong correlation between the NGRDI and
the NDVI and concluded that their results bode well for the use of the NGRDI as a
greenness index. Figure 6 shows scatter plots of Tr versus the two tested VIs (NGRDI and
NGBDI) as well as the calculated dry and wet edge for a bin size of 0.01 (solid line) and a
bin size of 0.05 (dashed line) for three flights. While the NGBDI has a range comparable
to the NDVI with most values between 0 and 0.8, the NGRDI has a significantly steeper
dry edge with a smaller range of values (Raymond et al. 2005). In general, negative
values are considered to be associated with soil pixels while positive values represent
vegetated pixels. However, at our site a considerable share of pixels with negative
NGRDI values were either freshly cut grass residuals or standing grass shortly after

Figure 6. Surface temperature (Tr)–vegetation index space for three flights for the NGBDI (a, c, e)
and NGRDI (b, d, f). The solid and dashed lines represent the dry and wet edge for a selected bin size
of 0.01 and 0.05, respectively.
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mowing. For the high-resolution input imagery, the effect of the selected bin size is
relatively low in most cases as already indicated in Figure 3(a). Thus, even though the
NDVI is the most commonly used VI for the Triangle Method, the form of the Tr–VI space
presented in Figure 6 is promising for the further use of both NGRDI and NGBDI as VI if
only true colour imagery is available. Despite the differences in the shape of the Tr–VI
space of the two tested indices, both VI led to very similar EF estimates for all flights as
demonstrated in Figure 7, which shows a comparison of EF modelled with the Triangle
Method using the NGRDI and NGBDI, respectively.

3.3. Comparison of patterns in modelled fluxes

The comparison to the EC measurements focused on the representativeness of the
modelled spatially weighted mean fluxes. Here, we analyse the distribution of modelled
values using frequency histograms and maps of modelled EF. Figure 8 shows maps of
instantaneous EF values as well as frequency histograms for three flights. As for the
comparison to the EC measurements, the results shown here correspond to model
computations with an image resolution of 0.5 m for the TSEB model and 5 cm for the
two contextual models. For the TSEB model, Figure 8 shows the results for the model
runs in which aerodynamic parameters were calculated on an individual pixel basis.
While the frequency histograms of the two contextual models were in general very
similar, the frequency histograms of the TSEB model showed a different EF distribution
for some flights as indicated by Figures 8(a) and (c). For the flights on 5 July and 11 July,
EF values differ significantly between the TSEB model and the contextual models. The
histogram of the TSEB model shows a bimodal shape for both flights. EF values of zero
result, as discussed before, from pixels with a fraction of green vegetation of zero. The
bimodal shape of EF values modelled by the TSEB model is a consequence of the
differences in vegetation height and LAI between the fields within the scene, which
were mowed at different points in time (see Figure 8). In contrast, the two contextual

Figure 7. Comparison of model estimates of evaporative fraction (EF) by the Triangle Method (TM)
based on the NGRDI (triangle) and NGBDI (circle) as vegetation index, respectively. Colours indicate
the time and date of the UAS flights.
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models show a unimodal pattern for both flights that is shifted towards higher EF values
compared to the TSEB model on 5 July and to lower values on 11 July. However, for both
flights TSEB estimates agreed better with the EC observations. Figure 8(b) shows that for
a flight for which all three models yielded similar mean EF values, also their frequency
histograms agree well with each other.

The sensitivity analysis towards image resolution showed that the DATTUTDUT model
performance was relatively independent of image resolution starting from 1 m resolu-
tion even though the number of pixels for scaling is decimated significantly (a factor of
400 from 5 cm resolution to 1 m). Figures 9(a) and (b) show frequency histograms of EF
and LST for the DATTUTDUT model for model runs with 5 cm and 1 m, respectively, for 2
days. The effect of the higher input resolution is minor in most of the cases as indicated
by Figure 9(b). Xia et al. (2015) observed a similar behaviour for the DATTUTDUT model
for 5 m resolution and the native image resolution (varying between 0.38 and 0.66 m)
over a vineyard. However, on 5 July a slight shift towards lower EF values and a trend
towards a bimodal distribution as also shown by the TSEB model can be observed. This

Figure 8. Maps and frequency histograms of instantaneous evaporative fraction modelled by the
TSEB (0.5 m), DATTUTDUT (5 cm), and Triangle Method (TM) (5 cm) for three flights.
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Figure 9. Maps and frequency histograms of instantaneous evaporative fraction modelled by the
DATTUTDUT model using input imagery with a resolution of 5 cm and 1 m (a, b), the Triangle
Method (TM) using the NGBDI and NGRDI as vegetation index with a resolution of 5 cm (c), and the
TSEB model using two different parameterizations of the aerodynamic properties with a resolution
of 0.5 m (d, e). While in the ‘independent’ model runs in (d) and (e) aerodynamic properties were
modelled for each pixel independently from the surrounding pixels, aerodynamic properties were
calculated on a 30 m grid in the case of the ‘restricted’ model runs.
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change in EF patterns results from a change in the frequency histogram of LST in the
case of the high heterogeneity in LST observed for that day. Contrary to the DATTUTDUT
model, the TSEB model keeps its bimodal shape for this flight even at a 5 cm resolution
(not shown here).

The two VIs tested for the Triangle Method, which yielded similar spatially weighted
mean EF values, resulted also in similar spatial patterns of EF as exemplified in Figure 9
(c). However, in general the NGBDI led to a slightly flatter histogram compared to the
NGRDI.

Given the high resolution of the UAS-based imagery, the independent analysis of
neighbouring pixels in the TSEB model may result in changes in the modelled
resistances and radiative exchange processes within very short distances (in this
case 0.5 m). However, boundary layer characteristic such as aerodynamic resistance
is governed by processes on a larger scale and the independent treatment of pixels in
the case of high-resolution imagery might introduce too many degrees of freedom
for these parameters. Thus, two different parameterizations were tested. The two
parameterizations (calculation of the resistances and net radiation terms on a 30 m
grid and on a per-pixel basis) did not differ in the modelled mean fluxes; however,
they show slight differences in the spatial distributions. As shown in Figure 9(d) the
use of aerodynamic and radiative properties calculated on a coarser grid introduced
artificial patterns in the modelled EF values when the differences of thermodynamic
and vegetation properties between adjacent fields were high as on 7 July. At the
same time, the restriction of the variability of these terms narrowed down the EF
distribution. However, as depicted in Figure 9(e) for days with more transient changes
in vegetation cover as on 10 July, no effect of the aerodynamic and net radiation
parameterization on the spatial patterns could be observed. In general, the use of
UAS and resulting high-resolution temperature data produce (boundary) conditions
which might violate at least some of the assumption inherent in current ET modelling
schemes commonly applied with satellite data. Even though in this study no signifi-
cant differences between the two parameterizations could be observed, the use of
high-resolution imagery might make adaptions in ET model setups necessary in order
to comply with the model’s theoretical assumptions.

4. Conclusions

In this study, we used high-resolution UAS-based imagery in the visible and TIR spec-
trum in order to determine ET from a temperate grassland site. Three different ET
modelling strategies were applied and their performances in reproducing field scale
ET observations were evaluated for 10 UAS flights. Two of the applied models, the
Triangle Method and DATTUTDUT model, belong to the group of contextual models that
estimate EF by scaling the whole scene between the extreme endmembers of zero and
potential ET. The third model applied in this study, the TSEB model, implements a more
physically based two-source formulation that solves the EB equation for each individual
pixel and explicitly treats energy and radiation exchanges with the atmosphere sepa-
rately for the soil and canopy component.

Given that most TIR-based ET algorithms have been developed for satellite imagery
with coarser resolution but larger areal extent compared to UAS-based imagery, the
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effect of the high spatial resolution of the input imagery on model results was studied in
detail. For the DATTUTDUT model, the agreement with the observations significantly
improved with increasing image resolution. The effect of image resolution on the
performance of the Triangle Method was less clear and varied with the model para-
meterization, i.e. the selected bin size. However, the native resolution always led to the
lowest MAE value regardless of model parameterization. The TSEB model showed the
least sensitivity to input resolution of all three models. Since the TSEB model uses a
more physically based formulation of the EB at the surface and, unlike contextual
models, does not rely on the proper definition of extreme endmembers, it is more
robust with respect to a varying image resolution. Only under very specific conditions
shortly after mowing, when a considerable fraction of pixels in the UAS-based imagery
had a fraction of green vegetation of zero, a limited deterioration of the agreement
between the modelled energy fluxes and the EC observations could be observed for the
TSEB model using the native image resolution.

The comparison of model estimates of ET and EF to the EC observations showed that all
three models are able to reproduce the observations with comparable accuracy with a MAE
of ET of 37, 27, and 23Wm−2 for the TSEBmodel, Triangle Method, and DATTUTDUTmodel,
respectively. The results of the two contextual models were similar for most of the flights. In
the case of the Triangle Method, both tested VIs using information from the green and blue
band (NGBDI) and the green and red band (NGRDI), respectively, yielded similar flux
estimates for all flights.

The TSEB model performed best in reproducing measured net radiation and soil heat
flux. The two contextual models use a simplistic scheme to model both quantities and
showed an overestimation of soil heat flux and a slight overestimation of high net
radiation values. In the present study, the errors in both quantities tended to cancel out
each other in the calculation of the available energy and thus had a minor effect on
modelled ET. However, this tendency might not hold for other locations or meteorolo-
gical conditions.

The TSEB model showed higher discrepancies from the observed EF and ET values
compared to the two contextual models for two flights. In both cases, cloudy conditions
with strong fluctuations in surface temperature and thus gradients between the surface
and air prevailed. Consequently, conditions during the UAS flight deviated from the
average conditions during the half hour of EC averaging. Since the surface-to-air
temperature gradient is the main driver in the TSEB model, the agreement between
modelled and observed fluxes deteriorated under these conditions.

Our study showed that ET estimates of the simple DATTUTDUT model are in good
agreement with the observations. This result is especially promising in view of possible
routine near-real-time ET monitoring applications since the DATTUTDUT model requires
no other than the LST information to model EF and, in the case of cloudy conditions, an
estimate of shortwave incoming radiation to derive ET estimates from the modelled EF.
However, in contrast to the DATTUTDUT model, the TSEB model can provide energy flux
estimates for the canopy and soil component separately that might suit further interests
for agricultural management and water management. Thus, as already suggested by Xia
et al. (2015) the development of a hybrid methodology that integrates a very simple ET
model (DATTUTDUT) and a more physically based ET model (TSEB) could be a possible
next step towards routine high-resolution ET monitoring.
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For the investigated grassland site, all three models proved to be suitable for map-
ping spatially distributed energy fluxes at the field scale using the UAS-based imagery.
However, further experiments at different sites in different climates are required to make
general statements about the applicability of these models at the field scale. The applied
low-cost UAS system operated at low altitudes proved suitable for obtaining the
required spatially distributed model input data. Thus, the results of this study support
the applicability of UAS for field scale ET monitoring.
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